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Efficient spectrum utilization remains a key challenge in modern wireless 
communications, especially in dynamic environments with limited 
spectrum availability. This paper introduces Real-Time Spectrum 
Optimization (RTSO), a framework that combines Geo-Location Spectrum 
Databases (GLSDBs) with real-time spectrum sensing to detect frequency 
channel occupancy and identify spectrum holes. RTSO uses advanced 
energy detection techniques, including Additive White Gaussian Noise 
(AWGN) modelling, to distinguish between idle and occupied channels 
accurately. It incorporates mathematical tools such as occupancy time and 
Frequency Channel Occupation (FCO) metrics for effective spectrum 
analysis. A notable feature is a revisit-time-based sensing mechanism that 
infers channel status during intermittent scans. Practical evaluations 
demonstrated improved detection accuracy, reduced false alarms, and 
better decision-making for dynamic access to available channels. Key 
performance metrics, including latency, bandwidth, and error rate, were 
compared with baseline methods, showing substantial gains in efficiency. 
This work provides a valuable contribution to cognitive radio systems and 
dynamic spectrum access, paving the way for more intelligent and adaptive 
spectrum management strategies in real-time communication networks. 
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A. Introduction 
The exponential growth of wireless communication systems has intensified the 

demand for spectrum resources, creating challenges in managing limited bandwidth 
effectively. Traditional spectrum allocation methods, which assign fixed frequencies 
to specific services, have proven inefficient in dynamic environments, leading to 
underutilization of valuable spectrum [1]. To address this, Dynamic Spectrum 
Access (DSA) and Cognitive Radio (CR) technologies have been proposed as 
promising solutions. These technologies enable secondary users to 
opportunistically utilize idle frequency channels, known as spectrum holes, without 
causing interference to primary users [2]. 

Accurate spectrum sensing is a cornerstone of DSA, as it ensures reliable 
detection of spectrum holes for temporary utilization. However, conventional 
spectrum sensing techniques face challenges such as missed detection, high false 
alarm rates, and environmental noise, which compromise the reliability of spectrum 
occupancy measurements [3]. These limitations necessitate advanced approaches 
to optimize spectrum utilization while maintaining interference mitigation and 
Quality of Service (QoS). 

The RTSO (Real-Time Spectrum Optimization) framework addresses these 
challenges by integrating Geo-Location Spectrum Databases (GLSDBs) with 
advanced real-time spectrum sensing techniques. This framework introduces 
energy detection enhanced by Additive White Gaussian Noise (AWGN) modelling 
[4], enabling precise differentiation between occupied and unoccupied frequency 
channels. The RTSO framework further incorporates a revisit-time-based sensing 
mechanism to assess spectrum occupancy intermittently across multiple channels 
while maintaining accuracy. 

This study presents RTSO as a comprehensive framework for detecting 
frequency channel occupancy and identifying spectrum holes. The framework 
employs advanced mathematical models, including occupancy time and Frequency 
Channel Occupation (FCO) metrics, to support reliable decision-making for dynamic 
spectrum access. Practical experiments demonstrate significant improvements in 
spectrum detection accuracy, reduced latency, and enhanced bandwidth utilization 
compared to baseline methods. These findings contribute to the advancement of 
cognitive radio systems and real-time spectrum management in addressing the 
growing spectrum scarcity problem [5]. 

This paper is organized as follows: Section 2 reviews related work and discusses 
the existing challenges in spectrum sensing. Section 3 elaborates on the proposed 
RTSO framework and its mathematical formulations. Section 4 presents 
experimental results and performance evaluations, while Section 5 concludes the 
paper and proposes future research directions. 
 
B. Related Work 

The growing demand for efficient spectrum utilization has driven significant 
research into dynamic spectrum access (DSA) and cognitive radio (CR) technologies. 
These studies aim to address spectrum scarcity by enabling secondary users to 
opportunistically access unoccupied channels. This section reviews recent 
advancements in spectrum sensing techniques, occupancy detection, and 
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interference mitigation strategies, highlighting the gaps addressed by the Real-Time 
Spectrum Optimization (RTSO) framework. 
 
2.1 Spectrum Sensing and Occupancy Detection 
Accurate spectrum sensing is vital for detecting spectrum holes and ensuring 
efficient utilization of available bandwidth. Traditional methods, such as energy 
detection and matched filtering, have been widely used due to their simplicity and 
effectiveness [5]. However, these techniques suffer from high false alarm rates and 
missed detection probabilities, particularly in noisy environments or low signal-to-
noise ratio (SNR) conditions [6]. To overcome these challenges, recent research has 
integrated machine learning (ML) models, such as deep learning and reinforcement 
learning, to enhance detection accuracy. For instance, [7] proposed a deep 
reinforcement learning approach for spectrum prediction, demonstrating improved 
accuracy in detecting idle channels under dynamic conditions. 
 
Moreover, the use of Geo-Location Spectrum Databases (GLSDBs) has gained 
attention as a complementary method for spectrum sensing. GLSDBs provide 
information about the occupancy of frequency bands based on geographical data, 
reducing the need for exhaustive real-time sensing [8]. However, database-driven 
approaches alone cannot account for unexpected spectrum usage changes, 
necessitating hybrid frameworks that combine real-time sensing with GLSDB data. 
 
2.2  Interference Mitigation 
Interference is a critical issue in dynamic spectrum access systems, as secondary 
users may unintentionally disrupt primary users' transmissions. Adaptive filtering 
techniques, such as notch filters and power control algorithms, have been proposed 
to address this problem [9, 10]. Additionally, frequency hopping and dynamic 
frequency adjustment strategies have been shown to effectively reduce interference 
in cognitive radio networks [11]. However, these methods often require significant 
computational resources and may not adapt quickly to real-time changes in the 
spectrum environment. 
 
Recent advancements in ML-driven interference mitigation offer promising 
solutions to these challenges. For example, [12] introduced a supervised learning 
model for detecting and mitigating interference, achieving substantial 
improvements in throughput and latency. Despite these advancements, existing 
frameworks still lack the ability to integrate real-time interference mitigation with 
spectrum sensing and occupancy prediction in a cohesive manner. 
 
2.3 Gaps in Current Research 
While significant advancements have been made in spectrum sensing, interference 
mitigation, and spectrum prediction, several gaps persist. Current methodologies 
often face challenges in achieving a balance between real-time responsiveness and 
computational efficiency, particularly in environments characterized by high 
variability in spectrum usage [13]. Furthermore, existing research tends to focus on 
isolated components of dynamic spectrum access systems, such as spectrum sensing 
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or interference mitigation, without addressing the necessity of an integrated 
framework that seamlessly combines these functionalities [14, 15]. 
 
The Real-Time Spectrum Optimization (RTSO) framework addresses these 
limitations by offering a unified solution that integrates real-time spectrum 
monitoring, machine learning-based spectrum prediction, and dynamic interference 
mitigation. By combining these components, the RTSO framework improves 
spectrum efficiency, minimizes interference, and ensures reliable spectrum access 
for secondary users in complex and dynamic environments [16]. 
 
 
C. Research Method 

 
3.Spectrum Sensing and Prediction using Machine Learning 
 
Machine Learning (ML) can significantly enhance the allocation of spectrum and 
reduce interference in wireless communication, particularly in shared 
environments. Each of these steps is represented by a box and arrows between them 
show the logical flow of data from one step to the next. Details of how ML can achieve 
these improvements are listed below: 
 
3.1 .Spectrum Data Acquisition: 

• The first step involves collecting spectrum data using sensors or Software 
Defined Radios (SDRs). 

• This raw data includes signal characteristics such as frequency, 
amplitude, and time. 

3.2 .Data Preprocessing: 
• The acquired data is cleaned and prepared for analysis. 
• Steps include noise removal, normalization, and data formatting to 

ensure consistent quality. 
3.3.Feature Extraction: 

• Key features of the signals, like power levels, frequency usage, and 
temporal patterns, are identified. 

• This step reduces the complexity of the data for better analysis. 
3.4.Machine Learning Model Training: 

• A machine learning model (e.g., supervised or unsupervised) is trained 
on the pre-processed data. 

• The training phase helps the model learn to identify patterns and make 
predictions. 

3.5 .Spectrum Sensing: 
• The trained model detects spectrum occupancy, identifying white spaces 

(unused frequencies) and active frequencies. 
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Figure 1. Spectrum sensing and prediction ML. 

 
3.6 .Spectrum Usage Prediction: 

• Using the learned patterns, the model predicts future spectrum usage 
trends, such as which frequencies are likely to become available or busy. 

3.7 .Decision-Making: 
• Based on the predictions, decisions are made for spectrum allocation, 

interference mitigation, or optimizing network performance. 
 

Problem Formulation 
 
4.1 Spectrum Sensing and Prediction 
4.1.1 Dynamic Spectrum Access (DSA): 

• Spectrum Sensing: ML algorithms can be employed to detect which portions 

of the spectrum are currently in use and which are free. Techniques like deep 

learning can analyse spectrum usage patterns in real-time, enabling more 

accurate detection of available channels. 

• Spectrum Prediction: ML models can predict future spectrum usage based 

on historical data. Time-series forecasting models, such as Long Short-Term 

Memory (LSTM) networks, can be used to anticipate when a particular 

frequency band will be free, allowing proactive spectrum allocation 
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o DSA optimizes spectrum allocation to maximize spectrum usage: 

                       

Equation                                                                                                                                                    (1) 

Subject to: 

                     

Equation                                                                                                                                                     (2) 

Where: 
• Ui (xi): Utility of spectrum xi for user i. 

• Stotal: Total spectrum available. 

 

4.2. Interference Management 

 

4.2.1. Interference Detection and Classification: 
• Anomaly Detection: ML can identify unusual patterns in the spectrum that 

indicate interference. Supervised learning techniques can classify different 

types of interference sources (e.g., co-channel interference, adjacent channel 

interference) and help in mitigating them effectively. 

• Reinforcement Learning: By continuously learning from the environment, 

reinforcement learning algorithms can dynamically adjust transmission 

parameters (such as power levels and frequencies) to minimize interference. 

 

4.3. Resource Allocation 

 
4.3.1. Optimized Resource Allocation: 

• Reinforcement Learning (RL): RL algorithms can optimize resource 

allocation by learning the best strategies to allocate spectrum resources 

dynamically. Multi-agent RL can be particularly effective in environments 

where multiple users or devices are competing for spectrum resources. 

 

4.4. Cognitive Radio Networks (CRNs) 

 
4.4.1. Adaptive and Intelligent Spectrum Management: 
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• Cognitive Radios: ML enables cognitive radios to adapt their transmission 

parameters based on the environment. These radios can learn from the past 

behaviour of the network and predict future conditions, making them more 

efficient in spectrum utilization. 

• Context-Aware Decision Making: By integrating contextual information 

(e.g., location, time, user requirements), ML algorithms can make more 

informed decisions about spectrum allocation, further reducing interference 

and improving communication quality. 

o Cognitive radio uses spectrum sensing to detect unused spectrum 
bands: 

False Alarm Probability (Pfa): 

                                         

Equation                                                                                                                                                   (3) 

Missed Detection Probability (Pmd): 
Pmd = 1 − Pd                                   

Equatio                                                                                                                                                   n 
(4) 

 
4.5. Real-Time Spectrum Management 

 
4.5.1 Fast and Efficient Decision Making: 
 

• Online Learning: ML techniques such as online learning can adapt to 

changes in the spectrum environment in real-time. This capability is crucial 

for environments with high mobility, such as vehicular networks. 

• Edge Computing: Implementing ML models at the edge of the network can 

reduce latency in decision-making processes, allowing for quicker responses 

to changes in the spectrum environment. 

 

4.6. Network Optimization 

 
4.6.1 Self-Organizing Networks (SON): 
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• Autonomous Optimization: ML can be used to create self-organizing 

networks that autonomously optimize themselves. For instance, ML can help 

in automatically adjusting the network topology, optimizing handovers, and 

balancing loads across the network. 

• Predictive Maintenance: ML can predict potential issues in the network, 

such as hardware failures or performance degradation, allowing for pre-

emptive measures to be taken. 

 

4.7. Enhanced Quality of Service (QoS) 

 
4.7.1 QoS Prediction and Management: 
 

• Predictive Analytics: ML can predict QoS metrics such as latency, 

throughput, and reliability. This predictive capability allows network 

operators to proactively manage resources and maintain high QoS levels. 

• User Behaviour Analysis: By analysing user behaviour and traffic patterns, 

ML can help in better understanding demand and allocating resources 

accordingly. 

 
In summary, Machine Learning provides a suite of tools and techniques that can 
greatly enhance spectrum allocation and reduce interference in wireless 
communication. By leveraging ML for spectrum sensing, interference management, 
resource allocation, and network optimization, wireless communication systems 
can achieve higher efficiency, improved QoS, and better adaptability to changing 
environments. These capabilities are particularly crucial in shared spectrum 
environments where efficient utilization and minimal interference are key to 
maintaining robust communication networks. 
 
D. Result and Discussion 

 
5. Proposed Real-Time Spectrum Optimization (RTSO) Framework 
 
The Real-Time Spectrum Optimization (RTSO) framework aims to address the 
challenges of spectrum scarcity and inefficiency by providing a comprehensive 
system for real-time monitoring, prediction, and optimization of frequency channel 
occupancy. This section details the proposed RTSO framework and highlights its 
distinction from existing spectrum management frameworks. 
 
5.1.Previous Work on Frameworks for Spectrum Management 
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Previous studies have explored various frameworks for spectrum management to 
enhance dynamic spectrum access (DSA) and minimize interference. These 
frameworks have largely relied on static or semi-dynamic spectrum allocation 
strategies that struggle to adapt to real-time spectrum conditions. For example, [13] 
proposed a hybrid framework combining spectrum sensing with database-driven 
approaches to predict spectrum availability. While effective in certain scenarios, 
such approaches fail to address the rapid variations in spectrum usage that 
characterize modern wireless environments. 
 
Machine learning (ML) has been incorporated into spectrum management 
frameworks to improve adaptability and prediction accuracy. [14] introduced a 
reinforcement learning-based framework for spectrum sharing, demonstrating 
improvements in resource allocation and interference reduction. However, the 
computational complexity of such methods often limits their scalability in real-
world applications. Additionally, existing frameworks tend to focus on specific 
aspects of spectrum management, such as sensing or mitigation, without offering a 
holistic solution that integrates all necessary components. Table 1 highlights the 
improvements of the RTSO framework over traditional baseline methods. 
 

Table 1. The improvements of the RTSO framework over traditional baseline 
methods. 

 
Aspect Baseline Methods RTSO Framework 
Spectrum Allocation Static spectrum allocation; 

fixed without real-time 
adjustments. 

Dynamic spectrum allocation 
based on real-time monitoring 
and machine learning. 

Spectrum Usage Detection Energy detection using fixed 
thresholds without predictive 
modeling. 

Advanced detection with 
machine learning for accurate 
prediction and spectrum usage 
optimization. 

Interference Mitigation Predefined methods like static 
filters or frequency 
adjustments. 

Dynamic interference 
suppression using adaptive 
filtering and frequency 
hopping techniques. 

Spectrum Access First-come-first-serve access 
without QoS prioritization. 

Optimized access with 
prioritization to maximize 
Quality of Service (QoS). 

Response to Changing 
Conditions 

Limited adaptability to 
interference and usage 
patterns. 

Highly adaptive, leveraging 
real-time data and learning-
based decision-making. 

Efficiency Often inefficient due to 
underutilized or over-
allocated spectrum. 

Higher efficiency with 
optimized utilization of 
spectrum resources. 

Latency Higher latency due to static or 
delayed responses. 

Lower latency with proactive, 
real-time decision-making. 

Error Rate Higher error rates due to lack 
of interference prediction and 
mitigation. 

Reduced error rates with 
dynamic interference 
management and prediction 
capabilities. 

 
5.2. The RTSO Framework 
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The RTSO framework builds upon these foundations by providing an integrated 
solution for spectrum monitoring, prediction, and optimization. Its key components 
are as follows: 
 

1. Real-Time Spectrum Monitoring: The RTSO framework employs advanced 
spectrum sensing techniques, including energy detection and machine 
learning-assisted analysis, to continuously monitor spectrum activity. By 
integrating a Geo-Location Spectrum Database (GLSDB) with real-time 
sensing, the framework ensures accurate detection of active and idle 
channels. This hybrid approach addresses limitations of traditional sensing 
methods and enhances the reliability of occupancy detection [9]. 
 

2. Machine Learning Module: The framework incorporates predictive 
modelling algorithms, such as deep reinforcement learning, to forecast 
spectrum usage patterns. By analysing historical and real-time data, the 
module identifies spectrum holes and optimizes channel allocation 
dynamically [7]. This predictive capability is essential for ensuring efficient 
utilization of spectrum resources in highly dynamic environments. 
 

3. Dynamic Interference Mitigation: The RTSO framework employs adaptive 
interference mitigation strategies, such as frequency hopping, power control, 
and notch filtering, to ensure seamless coexistence of primary and secondary 
users. The integration of interference detection and mitigation within a 
unified system minimizes latency and enhances spectrum efficiency [12]. 

 
4. RTSO Core: The central decision-making unit processes data from the 

monitoring, prediction, and mitigation modules to formulate optimal 
spectrum allocation strategies. By continuously updating its decision-making 
algorithms based on real-time feedback, the RTSO core ensures that 
spectrum utilization remains efficient and interference-free. 
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Figure 2. Real-Time Spectrum Optimization (RTSO) framework 

 
The framework illustrates a comprehensive Real-Time Spectrum Optimization 
(RTSO) system designed to improve spectrum utilization, reduce interference, and 
enhance Quality of Service (QoS). Below is a detailed discussion of the framework: 
 
1. Initial Inputs 
The framework integrates multiple data sources as inputs, which are vital for 
optimizing spectrum utilization: 
 

• Spectrum Occupancy Data: Real-time data from sensors monitoring 
channel states (occupied/unoccupied). 

• Signal Parameters: Metrics such as signal strength, signal-to-noise ratio 
(SNR), and interference levels in the target spectrum range (e.g., 470–694 
MHz). 

• Environmental Factors Data: Information about conditions like weather or 
terrain that can affect signal propagation and sensor accuracy. 
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• Quality of Service (QoS) Metrics: Requirements such as latency, 
throughput, and reliability to ensure decisions align with user needs. 

• Historical Data: Previous trends in spectrum usage to support machine 
learning models in predicting channel occupancy. 

• Threshold Values: Predefined limits for acceptable interference and signal 
quality to classify channel states and guide optimization. 
 

2. Key Functional Components 
 
The framework comprises three core components: 
 

• Real-Time Spectrum Monitoring:  
 

o Detects active and inactive frequencies. 
o Measures real-time signal strength and noise levels, providing the 

system with critical, time-sensitive data. 
 

• Machine Learning Module:  
 

o Utilizes historical and real-time data to predict future spectrum 
availability. 

• Optimizes allocation decisions by learning from patterns and adapting 
dynamically to changing conditions. 
 

• Dynamic Interference Mitigation:  
o Identifies and suppresses interference, ensuring minimal disruptions 

for users. 
o Dynamically adjusts frequency and power levels to mitigate noise and 

maintain reliable communications. 
 

3. RTSO Core 
 
This central module integrates data and insights from the monitoring, machine 
learning, and interference mitigation components. It combines inputs to optimize 
decision-making and outputs efficient spectrum utilization strategies. 
 
4.Final Output 

 
The optimized spectrum utilization achieved through this framework results in: 
 

• Improved Efficiency: Better allocation of spectrum resources and minimal 
interference. 

• Reduced Latency: Faster decision-making and communication throughput. 
 

• Measured Performance Metrics: Continuous evaluation of metrics like 
bandwidth, latency, and error rates ensures the system meets its 
optimization goals. 
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5.3 Significance of the Framework 
 

The RTSO framework represents a hybrid approach that combines real-time monitoring, 

machine learning predictions, and dynamic interference management. Its unique 

integration of these elements ensures that both primary and secondary users can 

efficiently share the spectrum without compromising performance. By addressing key 

challenges such as interference and underutilization, the framework paves the way for 

enhanced spectrum management in modern wireless communication systems. 

Experimental simulations were carried out to thoroughly assess the RTSO framework's 

efficacy and performance. These simulations are designed to replicate real-world 

spectrum environments, where effective wireless communication is hampered by 

fluctuating spectrum usage, interference, and heavy network traffic. RTSO tackles these 

challenges by combining dynamic interference mitigation techniques, machine learning-

driven prediction models, and real-time spectrum monitoring. 

A critical component of the simulation environment involved real-world data collected 

through the Council for Scientific and Industrial Research (CSIR) in South Africa. CSIR 

provided extensive support by supplying spectrum occupancy data captured using their 

advanced spectrum monitoring sensors, including mobile and fixed radio-frequency 

sensors capable of real-time spectrum scanning. These sensors offered high-resolution 

measurements across multiple frequency bands, ensuring that the simulation inputs 

closely reflected actual spectrum dynamics. The integration of CSIR’s precise and high-

fidelity spectrum data significantly enhanced the realism and reliability of the RTSO 

simulation results. 

 
5.3.1 System Architecture 
The RTSO framework implementation is structured into four key layers: 
 
a. Sensor and Data Acquisition Layer 

 
• 8 sensors deployed to monitor spectrum activity, interference levels, and 

network conditions. 
• SDRs continuously scan radio frequencies to detect available spectrum. 
• Sensors communicate via MQTT protocol, which provides lightweight, low-

latency communication. 
 

b. Edge Processing and MQTT Communication Layer 
 

• The MQTT broker runs on the CSIR computer to handle real-time data 
transmission. 

• Edge computing devices preprocess sensor data before sending it to the 
RTSO framework. 
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• Topic-based MQTT communication ensures sensors only publish relevant 
data to specific subscribers. 
 

c. AI-Based RTSO Framework Layer 
 

• The DRL algorithm processes real-time spectrum data and predicts the best 
available channels. 

• Interference mitigation algorithms dynamically adjust frequency allocation 
to avoid collisions. 

• The RTSO model continuously learns from historical data to optimize future 
decisions. 
 

d. Real-Time Monitoring and Visualization Layer 
 

 
 

Figure 3. 

Figure 3 shows a box plot comparing interference mitigation performance between the 

Baseline system and the proposed RTSO (Real-Time Spectrum Optimization) 

framework. 

• Y-axis (Interference Level %): Lower values mean better interference 

mitigation (i.e., less interference remaining in the network). 

• Baseline System: 

o The interference levels mostly range from 30% to about 47%. 

o The red line (median) is around 39% interference. 

o The baseline shows higher average interference and wider variability, 

meaning interference is both more common and more unpredictable. 

• RTSO Framework: 

o The interference levels mostly range from about 14% to 29%. 

o The median interference (red line) is around 22%. 

o This shows that RTSO significantly lowers interference levels compared 

to the baseline and also achieves a more consistent performance 

(narrower spread). 
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• RTSO reduces interference levels by nearly half compared to the traditional 

baseline approach. 

• RTSO is more stable, showing less variation in interference compared to 

baseline methods. 

This result demonstrates that integrating DRL, multi-agent coordination, and edge 

intelligence into RTSO leads to more effective and consistent interference mitigation in 

real-time wireless environments. 

 
 

5.4 A decision-making process for querying a Geo-Location Spectrum 
Database (GLSDB) 

 
The integration of a decision-making process for querying a Geo-Location Spectrum 
Database (GLSDB) with the Real-Time Spectrum Optimization (RTSO) framework 
creates a robust solution for dynamic spectrum management. The decision-making 
process within the GLSDB ensures accurate and efficient querying of available White 
Space (WS) frequencies by leveraging location and regulatory compliance data. 
When combined with the RTSO framework, which dynamically adapts to spectrum 
conditions through real-time analysis and optimization, this approach enhances 
spectrum utilization while mitigating interference. Together, these systems enable 
proactive WS prediction and adaptive spectrum allocation, fostering a seamless and 
intelligent environment for wireless communication in dynamic networks. 
 
This flowchart outlines a decision-making process for querying a Geo-Location 
Spectrum Database (GLSDB) and determining the occupancy of communication 
channels, possibly for spectrum sensing or White Space (WS) utilization. Figure 4  is 
a step-by-step explanation of the flow: 
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Figure 4. decision-making process for querying a Geo-Location Spectrum 

Database (GLSDB) 
 

1. Start and Query the GLSDB: 
 

1. The process begins with querying the Geo-Location Spectrum 
Database (GLSDB). This database likely provides information about 
protected or reserved channels to avoid interference with primary 
users. 

2. Check GLSDB Protected Channels: 
 

1. If the GLSDB indicates that the channel is protected (M=1), it is 
considered an occupied channel (M=1, S=X). 

2. If not protected (M=0), the process continues to spectrum sensing. 
 

3. Spectrum Sensing at the Channel: 
 

1. A spectrum sensing mechanism checks whether the channel is 
occupied by any signal. 
 

4. Spectrum Sensing Threshold Request: 

https://doi.org/10.33022/ijcs.v14i4.4878
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1. If spectrum sensing is active, the system checks for a threshold 

request. This is the sensitivity level used to determine signal presence. 
5. Device Senses at Threshold: 

1. Devices measure the channel at the given threshold to detect signal 
activity. 

6. Channel Sense at Threshold: 
 

1. If the device detects a signal at the threshold, the next step is to 
evaluate whether the signal exceeds the threshold value. 
 

7. Signal Sense Above Threshold: 
 

1. If the signal is above the threshold, the channel is marked as occupied 
(M=0, S=1). 

2. If the signal does not exceed the threshold, the channel is considered 
unoccupied (M=0, S=X). 
 

8. Occupied Channel (Final Decision): 
 

1. Channels are categorized based on the detection results:  
1. M=1, S=X: GLSDB-protected, occupied channel. 
2. M=0, S=1: Spectrum-sensed, occupied channel. 
3. M=0, S=X: Unoccupied channel. 

 
9. Stop Querying the GLSDB: 

 
1. The process ends after determining the status of the channel. 

 
Notations: 
 

• M: Indicates whether the GLSDB protects the channel (1 for protected, 0 for 
not protected). 

• S: Represents the sensing state of the channel (1 for signal detected, 0 for no 
signal, or X for unoccupied). 

This process is relevant for managing White Space spectrum by ensuring that 
protected channels are avoided and unoccupied channels are identified for 
secondary use, enhancing spectrum efficiency while avoiding interference. 
 
5.5 Advantages of the RTSO Framework 
 
The RTSO framework offers several advantages over existing spectrum 
management systems: 

• Real-time Responsiveness: Unlike traditional frameworks, RTSO adapts to 
rapid changes in spectrum usage, ensuring reliable performance in dynamic 
environments. 
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• Integrated Functionality: By combining spectrum sensing, prediction, and 
interference mitigation, RTSO provides a holistic solution for spectrum 
management. 

• Enhanced Efficiency: The framework reduces spectrum wastage and 
interference, resulting in improved Quality of Service (QoS) for both primary 
and secondary users. 

The proposed RTSO framework represents a significant advancement in spectrum 
management, addressing the limitations of existing methods and offering a robust 
solution for real-time optimization of spectrum usage. 
 
5.6  Performance Evaluation Discussion 
 
The performance evaluation of the Real-Time Spectrum Optimization (RTSO) 
framework demonstrates its capability to optimize spectrum utilization while 
mitigating interference and maintaining high efficiency in dynamic environments. 
This section discusses the results of simulations and real-time testing conducted to 
validate the framework’s effectiveness. Key metrics evaluated include spectrum 
occupancy, interference levels, and spectrum efficiency. 
 
5.6.1 Spectrum Occupancy Analysis 
 
The RTSO framework was tested across a frequency range of 470 MHz to 694 MHz, 
where the goal was to identify and classify active and idle channels accurately [8, 13, 
15]. The system’s ability to predict and allocate spectrum resources dynamically 
was compared against traditional static allocation methods. As shown in Figure 5 
below, the RTSO framework significantly improves the identification of spectrum 
holes. The average spectrum occupancy detection accuracy was measured at 94%, 
compared to 81% for static methods. This improvement highlights the effectiveness 
of the hybrid approach combining real-time spectrum sensing with predictive 
modelling. 

 
Figure 5. The RTSO framework significantly improves the identification of 

spectrum holes 
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5.6.2 Interference Mitigation Efficiency 
Figure 6 below compares the bandwidth efficiency achieved by the RTSO framework 
and a baseline approach. The RTSO framework demonstrates a higher bandwidth 
efficiency of approximately 87%, compared to 72% for the baseline method. This 
improvement reflects the effectiveness of RTSO in employing advanced interference 
mitigation strategies, such as adaptive filtering and frequency hopping, to optimize 
spectrum utilization. By dynamically allocating channels and managing interference 
in real time, the RTSO framework enhances Quality of Service (QoS) for both 
primary and secondary users. The significant increase in spectrum efficiency 
highlights the framework’s ability to maximize bandwidth utilization under varying 
spectrum conditions. 

 
Figure 6. The RTSO framework compared to conventional methods. 

 
5.6.3 Latency Performance 

The latency associated with spectrum sensing and decision-making processes 
was also evaluated. The RTSO framework’s decision-making latency averaged 15 
ms, which is significantly lower than the 40 ms observed with static allocation 
systems. This reduction in latency, shown in Figure 7, ensures timely allocation of 
spectrum resources, particularly in high-demand scenarios. The RTSO framework 
demonstrates a significant improvement with a detection accuracy of 94%, 
compared to 81% for static methods. This highlights the effectiveness of the hybrid 
approach. 
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Figure 7. Spectrum Occupancy Detection Accuracy. 

 
Figure 8 below compares dynamic and static spectrum allocation strategies in terms 
of efficiency and interference management as spectrum demand rises. The dynamic 
allocation model (blue curve) demonstrates greater efficiency, maintaining optimal 
spectrum utilization and minimizing interference through real-time adaptability. In 
contrast, the static allocation model (red dashed curve) shows a steeper decline in 
efficiency, reflecting its inflexibility and higher susceptibility to interference under 
growing demand. This comparison underscores the advantages of dynamic 
allocation in optimizing spectrum usage, particularly in high-demand situations, 
positioning it as a more effective approach for modern spectrum management. 

 
Figure 8. Compares dynamic and static spectrum allocation strategies in 

terms of efficiency and interference management. 
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Figure 9 below illustrates the impact of an interference mitigation strategy, 

labelled as RTSO, on normalized interference levels over five-time intervals. The red 
dashed curve represents interference levels before implementing RTSO, showing 
consistently higher values and fluctuations, indicating suboptimal mitigation. In 
contrast, the green solid curve represents interference levels after RTSO, which are 
significantly lower and more stable across the same time intervals. This 
demonstrates the effectiveness of RTSO in reducing interference, leading to 
improved spectrum efficiency and network performance. The results highlight the 
value of advanced mitigation techniques in maintaining consistent and minimized 
interference levels over time. 

 
Figure 9. A line graph showing interference levels before and after applying 

RTSO. 
5.7 Discussion 

The results highlight the superiority of the RTSO framework over traditional 
static methods. The integration of real-time spectrum monitoring, machine 
learning-based prediction, and dynamic interference mitigation ensures efficient 
and reliable spectrum usage. The framework’s ability to adapt to rapid changes in 
spectrum conditions makes it suitable for deployment in complex and dynamic 
wireless communication environments. 

While the RTSO framework demonstrates significant improvements, challenges 
remain. These include computational overhead due to real-time processing and the 
need for high-quality spectrum sensing equipment to ensure accurate data 
collection. Future work will focus on addressing these challenges by optimizing the 
computational efficiency of the framework and exploring cost-effective sensing 
technologies. 
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E. Conclusion 
The proposed framework provides a comprehensive solution for dynamic 

spectrum management, integrating advanced techniques to optimize spectrum 
utilization while minimizing interference. By leveraging tools like Geo-Location 
Spectrum Databases (GLSDs) and reactive spectrum sensing, the framework 
enhances network reliability and supports real-time decision-making for efficient 
spectrum allocation. Its practical applications extend to improving connectivity in 
various scenarios, from urban environments with high spectrum demand to rural 
and underserved regions where traditional infrastructure is lacking. Looking ahead, 
the development of enhanced algorithms for predictive analytics will further refine 
spectrum allocation processes, enabling even greater adaptability and precision. 
Additionally, the broader adoption of this framework in rural and underserved 
areas promises to bridge connectivity gaps, fostering equitable access to wireless 
communication and supporting digital inclusion initiatives. 
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