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This	study	examines	the	comparative	performance	of	one-dimensional	(1D)	
and	 two-dimensional	 (2D)	 Convolutional	 Neural	 Networks	 (CNNs)	 in	
processing	 sequential	 data	 for	 sentiment	 analysis,	 using	 Spotify	 music	
reviews	as	a	case	study.	Leveraging	a	custom	dataset	from	Kaggle,	the	study	
examines	 the	 effectiveness	 of	 CNN	 architectures	 in	 extracting	 meaningful	
patterns	 from	 text	 input.	 The	 study	 integrates	 PyTorch	 and	 TorchText	 for	
efficient	data	preprocessing	and	model	deployment.	Both	architectures	are	
evaluated	 based	 on	 classification	 accuracy,	 computational	 efficiency,	 and	
ability	 to	 handle	 sequential	 dependencies.	 The	 results	 highlight	 the	
strengths	 and	 limitations	 of	 each	 method,	 providing	 insight	 into	 their	
suitability	 for	 similar	 tasks	 in	 text-based	 sentiment	 analysis.	This	 research	
provides	 valuable	 guidance	 for	 researchers	 and	 practitioners	 working	 on	
sequential	 data	 tasks,	 emphasizing	 the	 role	 of	 architectural	 design	 in	
achieving	optimal	performance.	
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A. Introduction	
Sentiment	analysis	is	a	critical	aspect	of	natural	language	processing	(NLP)	to	

understand	 and	 interpret	 people’s	 opinions,	 emotions,	 and	 attitudes	 about	 a	
certain	product,	or	service,	or	entity.	In	recent	years,	sentiment	analysis	has	been	
accepted	by	various	businesses,	governments,	and	organisations	 to	analyse	user-
generated	content	and	derive	actionable	 insights	 [1],	 [2].	The	exponential	 rise	of	
user-generated	 content	 on	 platforms	 like	 Spotify	 has	 improved	 sentiment	
analysis's	use	to	analyse	sentiments	in	music	reviews	[3].		

This	 study	 examines	 the	 application	 of	 one-dimensional	 (1D)	 and	 two-
dimensional	(2D)	convolutional	neural	network	(CNN)	architectures	for	sentiment	
analysis	 in	 sequential	 data,	 focusing	 on	 Spotify	 music	 reviews	 as	 a	 case	 study.	
While	CNNs	are	primarily	employed	for	image	data	processing,	their	versatility	in	
handling	text	data	has	enabled	robust	performance	on	various	NLP	tasks,	including	
sentiment	 analysis.	 CNN	 applies	 convolutional	 filters	 that	 automatically	 learn	
features	suitable	for	the	given	task,	such	as	sentiment	indicators,	key	phrases,	and	
contextual	features	[4].	CNN	may	be	implemented	in	either	1D	or	2D,	depending	on	
how	input	data	is	processed	[5].	For	example,	1D	is	commonly	used	in	NLP	and	text	
processing,	while	2D	 is	more	common	 in	 image	processing	but	can	be	applied	 to	
text	in	specific	cases	[6].		

Despite	 the	widespread	use	of	CNNs	 in	sentiment	analysis,	 the	comparative	
performance	of	1D	and	2D	CNN	architectures	for	sentiment	analysis	on	sequential	
data,	 particularly	 in	 emotionally	 rich	 and	 context-dependent	 domains	 such	 as	
music	 reviews,	 remains	underexplored.	Music	 reviews	present	unique	challenges	
due	 to	 their	 subjective	 and	 emotional	 nature,	 often	 characterised	 by	 abstract	
descriptors	 such	 as	 “soulful”	 or	 “melancholic,”	 which	 differ	 from	 functional	
language	 found	 in	 product	 or	 move	 reviews	 [7],	 [8].	 	 This	 study,	 therefore,	
addresses	 this	gap	by	evaluating	 the	performance	of	1D	and	2D	CNNs	on	Spotify	
music	 reviews	 to	 identify	 the	 strengths	 and	 weaknesses	 of	 each	 architecture	 in	
capturing	the	nuanced	sentiments	in	this	domain.	

Sentiment	analysis	(SA),	also	known	as	opinion	mining,	is	a	field	of	study	that	
investigates	 people's	 sentiments	 on	 things,	 including	 events,	 subjects,	 people,	
problems,	 services,	 goods,	 organizations,	 and	 their	 characteristics	 [9],	 [10].	
Sentiment	analysis	is	a	fundamental	technique	in	NLP.	It	classifies	text	as	positive,	
negative,	 or	 neutral.	 Sentiment	 analysis	 has	 been	 applied	 in	 various	 fields,	
including	 marketing,	 stock	 market	 prediction,	 politics,	 healthcare,	 and	 religious	
organisations	 [9],	 [11],	 [12],	 [13],[14].	 Traditional	 approaches	 to	 sentiment	
analysis,	 such	 as	 rule-based	 and	 lexicon-based	 methods,	 have	 limitations	 in	
handling	complex	language	constructs	like	sarcasm,	irony,	and	context-dependent	
expressions	 [9],	 [15].	 Machine	 learning	 approaches,	 such	 as	 Naïve	 Bayes	 and	
Support	Vector	Machines,	have	improved	sentiment	classification	but	often	require	
large	datasets	and	careful	feature	engineering	[9].			

The	 coming	 of	 deep	 learning	 has	 transformed	 sentiment	 analysis,	 making	
models	 automatically	 learn	 and	 extract	 complex	 data	 patterns.	 Deep	 learning	
architectures,	 like	 CNN,	 Recurrent	 Neural	 Networks	 (RNNs),	 Long	 Short-Term	
Memory	(LSTM),	and	Gated	Recurrent	Units	(GRUs),	have	demonstrated	superior	
performance	in	capturing	context	nuances	and	handling	multilingual	applications	
([16],	[17].		However,	each	architecture	has	some	weaknesses.	For	instance,	RNNs	
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and	LSTMs	struggle	with	long-range	dependencies	and	noisy	data,	while	GRUs	face	
challenges	in	interpretability	and	computational	efficiency	[18],	[19].	CNNs,	on	the	
other	hand,	offer	computational	efficiency	and	the	ability	to	capture	local	features,	
making	them	particularly	suitable	for	text-based	sentiment	analysis	[20],	[21].	

In	 the	music	 industry,	 sentiment	 analysis	 is	 crucial	 as	 it	 helps	 understand	
audience	preferences,	predict	song	popularity,	and	structure	marketing	strategies	
[22].	 	 However,	 music	 reviews'	 emotionally	 rich	 and	 context-dependent	 nature	
poses	 unique	 challenges	 for	 sentiment	 analysis,	 necessitating	 domain-specif	
approach	 reviews	 [7],	 [8].	 The	 study	 addresses	 several	 gaps	 in	 the	 literature:	 (i)	
limited	 comparisons	 of	 1D	 and	 2D	 CNN	 for	 sequential	 data,	 particularly	 in	 the	
context	 of	 sentiment	 analysis;	 (ii)	 the	 lack	 of	 research	 on	 Spotify	 reviews	 as	 a	
dataset,	 which	 presents	 a	 unique	 challenge	 because	 of	 emotionally	 rich	 and	
context-dependent	 language;	 and	 (iii)	 the	 need	 for	 a	 thorough	 performance	
evaluation	 framework	 to	 evaluate	 CNN	 models	 in	 sentiment	 analysis	 tasks	 in	 a	
systematic	manner	[9].		

This	study	bridges	these	gaps	by	comparing	1D	and	2D	CNNs	for	sentiment	
analysis	 on	 Spotify	 music	 reviews,	 providing	 insights	 into	 their	 strengths	 and	
limitations.	 Addressing	 these	 gaps	 contributes	 to	 the	 broader	 understanding	 of	
CNN	 architectures	 for	 sequential	 data	 and	 offers	 practical	 implications	 for	
sentiment	analysis	in	domain-specific	applications.		 	

The	 rest	 of	 the	 paper	 is	 structured	 as	 follows:	 Section	 B	 discusses	 the	
methodology	 adopted,	 Section	 C	 presents	 the	 results	 and	 discusses	 the	 findings,	
and	Section	D	concludes	the	paper.	
	
B. Research	Method	

The	 researchers	 used	 the	 CRISP-DM	 (Cross-Industry	 Standard	 Process	 for	
Data	Mining)	methodology	to	structure	the	data	mining	process	in	this	study.	This	
framework	 comprises	 six	 main	 phases:	 business	 understanding,	 data	
understanding,	data	preparation,	modelling,	 evaluation,	 and	deployment	 [23].	By	
adopting	 this	 methodology,	 the	 study	 ensured	 a	 systematic	 and	 organized	
approach	 to	 data	 mining,	 enabling	 effective	 project	 management	 and	 efficient	
resource	allocation.	

The	researchers	utilized	a	dataset	titled	“Spotify	User	Reviews,”	sourced	from	
Kaggle,	 a	 publicly	 accessible	 database	 for	 datasets	 [24].	 The	 dataset	 comprises	
51,473	music	reviews,	with	55.83%	classified	as	negative	and	44.17%	as	positive.	
It	 includes	 two	 columns:	 Review	 (containing	 the	 review	 content)	 and	 Label	
(indicating	the	sentiment	label)	[25].	Figure	1	shows	the	distribution	of	class	labels	
before	and	after	the	dataset	was	balanced.	
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Figure	1.	Data	distribution	in	the	original	dataset	

	
Figure	1	shows	the	data	distribution	in	the	original	dataset	and	the	adjusted	

distribution	 after	 balancing	 the	 labels,	 particularly	 addressing	 the	
underrepresented	 positive	 reviews.	 Post-balancing,	 each	 class	 comprises	 23,279	
paired	examples	of	 reviews	with	 their	 respective	 sentiment	 labels.	Balancing	 the	
dataset	is	crucial	for	classification	tasks	because	an	imbalanced	dataset	can	lead	to	
biased	model	performance	and	reduced	model	generalization,	where	the	classifier	
becomes	 skewed	 towards	 the	 majority	 class,	 making	 classification	 accuracy	 an	
unreliable	 measure	 of	 model	 performance	 [26].	 This	 bias	 can	 result	 in	 poor	
generalization	to	minority	classes,	thereby	affecting	the	overall	performance	of	the	
model	 [27].	 Recent	 studies	 have	 emphasized	 the	 importance	 of	 addressing	 class	
imbalance	to	improve	model	robustness	and	ensure	fair	evaluation	metrics	[28].	

After	balancing	the	dataset	based	on	the	minority	class,	the	dataset	was	split	
into	four	subsets:	training,	testing,	validation,	and	inference.	While	it	is	common	in	
machine	 learning	 to	 split	 datasets	 into	 three	 subsets	 (training,	 testing,	 and	
validation),	the	researchers	introduced	an	additional	inference	set	to	enhance	the	
model's	 practical	 applicability.	 The	 training	 set	was	 used	 to	 train	 the	model,	 the	
validation	 set	was	 used	 to	 fine-tune	 hyperparameters	 and	 validate	 performance	
during	 training,	 and	 the	 testing	 set	 was	 used	 to	 evaluate	 the	 model's	 final	
performance	after	training.	The	inference	set,	a	unique	addition,	was	reserved	for	
making	 predictions	 using	 the	 best-trained	 model,	 simulating	 real-world	
deployment	 scenarios	 [25],	 [29].	 Figure	 2	 shows	 the	 distribution	 of	 examples	
across	these	subsets	using	pie	charts.	
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Figure	2.	Distribution	of	labels	in	each	of	the	4	subsets	

	
Figure	2	shows	how	the	samples	were	distributed	in	each	set	after	splitting	

the	dataset	 into	4	 subsets.	After	 splitting,	 the	 training	dataset	 consists	 of	 14,993	
negative	 and	 14,803	 positive	 reviews.	 The	 testing	 set	 contains	 4,140	 positive	
reviews	 and	 4,240	 negative	 reviews,	 while	 the	 validation	 set	 includes	 3,760	
positive	 and	 3,690	 negative	 reviews.	 Lastly,	 the	 inference	 set	 comprises	 456	
negative	 reviews	 and	 476	 positive	 reviews.	 Dataset	 splitting	 is	 a	 critical	 step	 in	
machine	learning,	ensuring	the	model	can	generalize	to	unseen	data.	Researchers	
can	 prevent	 overfitting	 by	 separating	 data	 into	 training,	 validation,	 and	 testing	
sets,	where	a	model	performs	well	on	 training	data	but	poorly	on	new	data.	The	
training	 set	 allows	 the	model	 to	 learn	patterns,	 the	validation	 set	helps	optimize	
hyperparameters,	 and	 the	 testing	 set	 provides	 an	 unbiased	 evaluation	 of	 the	
model's	 performance	 [29].	 This	 structured	 approach	 ensures	 robustness	 and	
reliability	 in	 machine	 learning	 workflows.	 Figure	 3	 shows	 the	 fractions	 of	 each	
subset	in	the	entire	dataset.	

	
Figure	3.	Fraction	of	each	sunset	from	the	entire	dataset	

	
Figure	 3	 illustrates	 the	 distribution	 of	 examples	 across	 each	 subset.	 Most	

reviews	 belong	 to	 the	 training	 set	 (64%),	 followed	 by	 the	 testing	 set,	 which	
comprises	 18%	 of	 the	 dataset.	 The	 validation	 set	 accounts	 for	 16%,	 while	 the	
remaining	 fraction	 was	 allocated	 to	 the	 inference	 set.	 Before	 cleaning	 and	
normalizing	the	text	reviews,	researchers	analysed	the	most	frequently	occurring	
words	 in	 the	music	 reviews.	Figure	4	 shows	a	visualization	of	 the	most	 common	
words	appearing	in	each	subsets	using	a	word	cloud	plot.	
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Figure	4.	Most	common	words	before	text	cleaning	

	
Figure	4	shows	the	most	common	words	in	the	dataset	before	text	cleaning.	It	

was	 observed	 that	 the	 most	 frequently	 occurring	 words	 in	 the	 reviews	 were	
stopwords,	such	as	“the”,	“to”	and	“is”.	Stopwords	are	common	words	in	a	language	
that	 carry	 little	 to	 no	meaningful	 information	 for	 text	 analysis	 or	modeling	 [30].	
These	 stopwords	 were	 removed	 from	 each	 review	 as	 part	 of	 the	 text-cleaning	
process.	 Stopwords	 like	 “the”,	 “to”,	 and	 were	 among	 the	 most	 prevalent	 in	 the	
dataset	 but	 did	 not	 contribute	 significantly	 to	 the	model's	 understanding	 of	 the	
text's	sentiment	or	context.	Removing	stopwords	is	a	crucial	preprocessing	step	in	
NLP	 because	 it	 helps	 reduce	 noise	 in	 the	 data	 and	 improves	 computational	
efficiency.	Stopwords	do	not	provide	meaningful	 insights	 for	tasks	 like	sentiment	
analysis	or	topic	modelling,	and	their	removal	allows	the	model	to	focus	on	more	
informative	words,	 enhancing	 its	 performance	 and	 accuracy	 [31].	 This	 step	 also	
reduces	the	dimensionality	of	the	dataset,	making	it	easier	for	the	model	to	process	
and	learn	from	the	data.	Figure	5	shows	the	most	common	words	that	appeared	in	
the	 reviews	 after	 the	 reviews	 were	 cleaned	 by	 removing	 stop	 words	 and	 some	
punctuation.		

	

	
Figure	5.	Most	common	words	after	text	cleaning	

	
Figure	 5	 shows	 the	 distribution	 of	 most	 common	 words	 in	 the	 training,	

testing	and	validation	sets	after	stop	words	was	removed	and	after	the	review	text	
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were	 cleaned	 and	 normalized.	 It	 can	 be	 observed	 that	 the	 most	 frequently	
occurring	 words	 in	 the	 reviews	 include	 “music,”	 “app,”	 “songs,”	 and	 “Spotify,”	
among	others.	This	supports	the	hypothesis	that	the	reviews	relate	to	the	Spotify	
music	 app.	 After	 cleaning	 the	 reviews,	 the	 text	 was	 tokenized	 using	 the	 spaCy	
English	 tokenizer	 model	 to	 prepare	 for	 vocabulary	 creation.	 A	 vocabulary	 is	 a	
word-to-integer	mapping	 that	acts	as	a	 lookup	dictionary,	 assigning	each	word	a	
unique	integer	value.	This	step	is	critical	because	machine	learning	models	cannot	
process	 raw	 text	directly;	 they	 require	numerical	 inputs	 [32].	During	vocabulary	
creation,	a	minimum	frequency	threshold	of	2	was	set,	meaning	words	appearing	
fewer	 than	 twice	 in	 the	 dataset	 were	 replaced	with	 an	 unknown	 token	 (“unk”).	
Using	 the	 torchtext	 vocab	 function,	 a	 vocabulary	 was	 generated	 based	 on	 the	
training	 data,	 with	 four	 special	 tokens:	 “unk”	 (unknown),	 “pad”	 (padding),	 “sos”	
(start	of	sequence),	and	“eos”	(end	of	sequence).	The	resulting	vocabulary	size	was	
7,514,	representing	the	number	of	unique	words	in	the	corpus	[31],	[33].	

The	 textual	 labels	 in	 the	 dataset	 were	 converted	 into	 numerical	 values	 by	
creating	 a	 labels	 dictionary,	 where	 0	 represented	 positive	 reviews,	 and	 1	
represented	 negative	 reviews.	 Pretrained	 word	 embeddings	 were	 utilized	 to	
enhance	the	model's	performance.	Specifically,	the	GloVe.6B.50d	embeddings	were	
downloaded—a	 50-dimensional	 GloVe	model	 trained	 on	 approximately	 6	 billion	
words	[34].	An	embedding	matrix	was	 then	constructed	to	align	the	downloaded	
embeddings	with	the	vocabulary,	ensuring	compatibility	with	the	vocabulary	size	
of	 7,514.	 Finally,	 the	 Spotify	Reviews	 dataset	was	 organized	 into	 batches	 of	 128	
samples	each,	preparing	it	for	input	into	the	CNN	model	[29],	[35].	

The	models	were	developed	using	the	PyTorch	library	in	Python,	employing	
the	 same	 base	 architecture	 but	 varying	 the	 number	 of	 CNN	 layers	 to	 enable	
performance	comparison.	CNNs	are	widely	used	in	text	classification	tasks	because	
they	 capture	 data's	 local	 patterns	 and	 hierarchical	 features	 [31].	 Figure	 6	
illustrates	the	general	architecture	of	the	CNN	models	created	in	this	study.	

	

 
Figure	6.	CNN	Models'	general	architecture	
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Figure	6	illustrates	the	general	architecture	of	the	two	models.	The	first	layer	
in	both	models	is	an	embedding	layer	with	an	embedding	size	of	50,	corresponding	
to	 the	 dimensionality	 of	 the	 pre-trained	 GloVe	 word	 embeddings	 used	 in	 this	
study.	This	embedding	 layer	 is	encapsulated	within	a	Sequential	 layer.	Following	
this,	 another	 Sequential	 layer,	 wrapped	 within	 a	 ModuleList,	 contains	 six	 CNN	
layers	with	 filter	 sizes	 of	 [3,	 3,	 5,	 7,	 7,	 7],	 respectively.	 These	 layers	 are	 stacked	
sequentially	to	extract	hierarchical	features	from	the	input	data.	The	final	layer	of	
the	 neural	 network	 is	 a	 fully	 connected	 layer	 with	 an	 output	 dimension	 of	 1,	
suitable	for	the	binary	classification	task	at	hand	[31].	

The	 output	 from	 the	 embedding	 layer	 is	 passed	 through	 the	 CNN	 layers,	
where	a	ReLU	activation	function	is	applied	to	introduce	non-linearity.	The	outputs	
of	 the	 CNN	 layers	 are	 then	 pooled	 using	 the	 max_pool_1D	 function	 to	 reduce	
dimensionality	 and	 retain	 the	 most	 salient	 features.	 A	 dropout	 layer	 with	 a	
probability	of	0.67789	is	applied	to	the	pooled	output	to	mitigate	overfitting	before	
it	is	forwarded	to	the	output	layer	during	the	forward	pass	[36].	Once	the	models	
were	 created	 and	 initialized,	 they	 were	 transferred	 to	 a	 GPU	 device	 on	 Google	
Colab	 for	 training.	 The	 total	 number	 of	 trainable	 parameters	 for	 each	 model	
architecture	 was	 calculated,	 and	 Table	 1	 summarizes	 these	 parameters	 for	
comparison.	

	
Table	1.	Models'	Parameters	

CNN	MODEL	 TOTAL	PARAMETERS	 TRAINABLE	PARAMETERS	
1D	 451	301	 451	301	
2D	 451	301	 451	301	

	
Table	1	 indicates	 that	 the	1D	and	2D	Convolutional	Neural	Network	 (CNN)	

models	possess	an	equal	number	of	parameters,	 totalling	451,301,	encompassing	
both	 trainable	 and	 non-trainable	 parameters.	 Specific	 initialization	 functions	
enhanced	 training	 efficiency	 instead	 of	 randomly	 initializing	 weights.	 For	 layers	
classified	as	Linear,	weights	were	initialized	using	the	Xavier	Normal	distribution,	
defined	as:	

	 	 	 	 	 	 	 	  

Here,	n_in		represents	the	number	of	input	neurons	to	the	layer.	This	method	
aims	 to	 maintain	 a	 consistent	 variance	 of	 activations	 across	 layers,	 thereby	
preventing	issues	related	to	vanishing	or	exploding	gradients	during	training	[37].	
Biases	 in	 these	 layers	 were	 initialized	 to	 zero.	 For	 Convolutional	 layers,	 biases	
were	similarly	set	to	zero,	while	weights	were	initialized	using	the	Kaiming	Normal	
distribution:	

	 	 	 	 	 	 	 	 	
This	 approach	 is	 particularly	 effective	 for	 layers	 utilizing	 ReLU	 activation	

functions,	 as	 it	 accounts	 for	 the	 non-linearity	 introduced	 by	ReLU,	 ensuring	 that	
the	variance	of	activations	remains	stable	throughout	the	network	[38].	Pretrained	
embedding	 matrices	 were	 utilized	 to	 avoid	 random	 initialization	 for	 the	
embedding	 layers	 in	 all	 models,	 thereby	 leveraging	 prior	 knowledge	 and	

(1)	

(2)	
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potentially	 enhancing	model	 performance	 [33].	 Each	model	was	optimized	using	
the	Adam	optimizer	with	default	parameters,	including	the	learning	rate.	The	loss	
function	employed	was	Binary	Cross	Entropy	with	Logits	Loss,	suitable	for	binary	
classification	tasks	where	the	output	layer	lacks	an	activation	function	like	Sigmoid	
Sigmoid	 [25].	 The	 training	was	 conducted	 over	 10	 epochs,	with	 training	metrics	
recorded	for	subsequent	evaluation	in	the	results	section.	

	
C. Result	and	Discussion	

All	models	were	trained	for	10	epochs,	during	which	time	and	metrics	were	
tracked.	This	method	made	 it	 easier	 to	 compare	 the	 two	architectures	 regarding	
overall	 training	 time,	model	 accuracy	 per	 epoch,	 and	model	 loss	 per	 epoch.	 The	
performance	of	 the	models	was	 then	assessed	using	 the	 test	dataset.	Monitoring	
these	 measures	 to	 comprehend	 model	 behaviour	 and	 guarantee	 convergence	
throughout	 training	 is	 essential.	 Learning	 curves	 are	 useful	 tools	 in	 this	 context	
that	plot	model	performance	over	iterations	[39].	Table	2	shows	the	total	model’s	
training	summary	in	terms	of	time	for	10	training	iterations.	

	
Table	2.	Models'	Training	Time	and	Last	Saved	Epoch	

CNN	MODEL	 TOTAL		 LAST	SAVED		 TOTAL	TRAINING	TIME	

1D	 10	 7	 1min	41.89sec	

2D	 10	 4	 4min	11.73sec	

	
The	CNN	model	using	a	2D	convolutional	architecture	(CNN2D)	took	 longer	

to	 finish	 the	 training	 process	 over	 10	 rounds,	 according	 to	 Table	 2.	On	 a	 typical	
GPU,	it	finished	training	in	4	minutes	and	11.73	seconds.	The	entire	training	time	
for	each	model	per	epoch	is	shown	in	Figure	7.	

	

	
Figure	7.	CNN	Models'	general	architecture	

	
Figure	 7	 shows	 that,	 in	 comparison	 to	 the	 CNN1D	model	 architecture,	 the	

CNN2D	model	 architecture	 took	 longer	 to	 finish	 each	 training	 epoch.	 The	higher	
computational	 cost	 of	 2D	 convolution	 processes	 is	 the	 reason	 for	 this	 longer	
training	period.	Figure	8	shows	the	model	 training	metrics,	such	as	accuracy	and	
loss	trends	over	epochs,	that	were	captured	during	the	training	phase.	
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Figure	8.	Models'	epoch	training	and	validation	losses	

	
Effective	learning	is	demonstrated	by	Figure	8,	which	shows	that	the	training	

loss	 for	 both	 models	 progressively	 dropped	 from	 the	 first	 to	 the	 last	 epoch.	
However,	before	the	models	started	to	overfit	around	epoch	6,	the	validation	loss	
decreased	 over	 the	 first	 4	 epochs.	 This	 implies	 that	 rather	 than	 generalising	 to	
previously	 unknown	 data,	 the	models	 began	 to	memorise	 the	 training	 data.	 The	
training	and	validation	accuracies	over	the	ten	training	epochs	are	shown	in	Figure	
9.	

	

	
Figure	9.	Models'	epoch	training	and	validation	accuracies	

	
While	 both	 models'	 training	 accuracies	 rose	 quickly	 from	 the	 first	 epoch,	

Figure	 9	 demonstrates	 that	 the	 CNN1D	 architecture	 began	 with	 less	 than	 80%	
accuracy.	 Both	 models	 started	 to	 overfit	 the	 training	 data	 as	 the	 validation	
accuracies	 improved	 until	 epoch	 4,	 which	 suggests	 a	 decreased	 capacity	 to	
generalise	to	new	examples.	

The	best	models	were	 saved	during	model	 training	 if	 the	 validation	 loss	 at	
that	moment	was	less	than	the	validation	loss	that	had	been	previously	recorded.	
The	 model	 with	 the	 lowest	 validation	 loss	 is	 the	 best	 throughout	 the	 training	
phase.	This	method	is	known	as	model	checkpointing.	By	maintaining	the	state	of	
the	model	 that	 performs	 best	 on	 the	 validation	 data,	model	 checkpointing	 helps	
avoid	 overfitting	 and	 preserves	 the	 model's	 capacity	 for	 generalisation	 [40].	
Following	 training,	 the	 models	 were	 assessed	 using	 the	 test	 dataset,	 and	 the	
outcomes	are	shown	in	Table	3.		
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Table	3.	Best	models'	testing	losses	and	accuracies	
CNN	MODEL	 LOSS	 ACCURACY	(%)	
1D	 0.290	 88.20	
2D	 0.286	 88.41	

	
Table	 3	 shows	 that,	 in	 terms	 of	 test	 loss	 and	 accuracy,	 the	 CNN2D	model	

outperformed	 the	 CNN1D	model,	 achieving	 an	 accuracy	 of	 88.41%	 and	 a	 loss	 of	
0.286.	In	contrast,	the	CNN1D	model	achieved	an	accuracy	of	88.2%	and	a	loss	of	
0.29	 after	 being	 evaluated	 on	 the	 test	 data.	 Figure	 10	 shows	 a	 confusion	matrix	
plot	 for	 the	 best	 saved	 CNN1D	model	 after	 it	 has	 been	 evaluated	 on	 the	 testing	
data.	

	
Figure	10.	Best	CNN	1D	model's	confusion	matrix	on	the	testing	dataset	

	
The	CNN1D	model's	confusion	matrix	based	on	the	test	dataset	 is	shown	in	

Figure	10.	With	a	correct	classification	percentage	of	88.0%	for	negative	reviews,	
the	model	correctly	predicted	88.4%	of	the	total	reviews.	On	the	other	hand,	11.6%	
of	 positive	 reviews	were	 incorrectly	 labelled	 as	 negative,	 and	 12.0%	of	 negative	
reviews	were	incorrectly	classified	as	positive.	Figure	11	shows	a	confusion	matrix	
plot	 for	 the	 best	 saved	 CNN2D	model	 after	 it	 has	 been	 evaluated	 on	 the	 testing	
data.	 According	 to	 recent	 research,	 these	 findings	 highlight	 how	 well	 CNN	
architectures	perform	sentiment	analysis	tasks	[41].	

	

	
Figure	11.	Best	CNN	2D	model's	confusion	matrix	on	the	testing	dataset	
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Figure	 11	 shows	 the	 CNN2D	 model's	 confusion	 matrix	 based	 on	 the	 test	
dataset.	 With	 an	 accuracy	 rating	 of	 88.5%	 for	 negative	 reviews,	 the	 algorithm	
accurately	 predicted	 87.3%	 of	 all	 reviews.	 On	 the	 other	 hand,	 12.7%	 of	 positive	
reviews	were	incorrectly	labelled	as	negative,	and	10.5%	of	negative	reviews	were	
incorrectly	classified	as	positive.	These	results	are	consistent	with	recent	research	
that	examined	CNN	architecture	performance	in	sentiment	analysis	tasks	[42].	The	
CNN1D	model's	 classification	 report	 based	 on	 the	 testing	 dataset	 is	 displayed	 in	
Figure	12.	

	
Figure	12.	Best	CNN	1D	model's	classification	report	on	the	testing	dataset	
	
The	 CNN1D	model's	 classification	 report,	 which	 highlights	 its	 performance	

across	 important	evaluation	metrics,	 is	shown	 in	Figure	12.	The	model	produced	
an	excellent	overall	F1-score	with	precision	of	0.878	for	positive	reviews	and	0.866	
for	negative	reviews,	with	recall	values	of	0.884	and	0.88,	respectively.	The	dataset	
was	 balanced,	 as	 evidenced	 by	 the	 support	 value	 4,140	 for	 both	 positive	 and	
negative	evaluations,	which	shows	the	number	of	actual	 instances	per	class.	This	
equilibrium	 lowers	 the	 possibility	 of	 evaluation	 bias	 by	 guaranteeing	 that	 the	
performance	 measures	 are	 computed	 on	 adequate	 samples	 [43].	 The	 CNN2D	
model	architecture's	classification	report	is	shown	in	Figure	13.	

	

	
Figure	13.	Best	CNN	1D	model's	classification	report	on	the	testing	dataset	
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Figure	13	shows	the	CNN2D	model's	classification	report,	which	highlights	 its	

performance	across	important	evaluation	metrics.	The	model's	recall	values	were	
0.873	and	0.895,	 respectively,	and	 its	precision	was	0.890	 for	positive	and	0.878	
for	 negative	 reviews.	 Strong	 predictive	 performance	 was	 demonstrated	 by	 the	
total	 F1-score	 of	 0.882	 for	 positive	 reviews	 and	 0.887	 for	 negative	 reviews.	 The	
dataset	was	 balanced,	 as	 evidenced	 by	 the	 support	 value	 4,140	 for	 both	 classes,	
guaranteeing	 accurate	 performance	 assessment	 across	 all	 parameters.	 According	
to	 these	 results,	 the	 CNN2D	model	 showed	 somewhat	 greater	 consistency	 even	
though	 both	 models	 performed	 well,	 consistent	 with	 previous	 findings	 in	 deep	
learning	research.	

After	 training	 the	model,	 the	best	model	was	used	 to	make	predictions	using	
the	inference	subset.	Table	4	shows	the	inference	data	frame	for	the	first	10	music	
reviews	with	their	predicted	labels.	

	
Table	4.	Best	models'	testing	losses	and	accuracies	

Text	 Label	 Conv1D	
Prediction	

Conv1D	
Probability	

Conv2D	
Prediction	

Conv2D	
Probability	

We	love	Spotify.	We	can	find	
almost	anything	w…	

positive	 positive	 0.852	 positive	 0.801	

I	really	do	enjoy	the	amount	
of	music	this	app…	

negative	 negative	 0.988	 negative	 0.978	

Very	good	music	apps,	even	
though	I'm	new	to	us…	

positive	 positive	 0.932	 positive	 0.930	

Why	do	I	pay	for	premium	if	
I	don’t	even	have	…	

negative	 negative	 0.967	 negative	 0.968	

This	app	is	useless,	unless	
not	being	able	to	…	

negative	 negative	 0.975	 negative	 0.976	

There's	some	issue	in	the	
new	version	I	suppos…	

negative	 negative	 0.999	 negative	 0.999	

An	amazing	app	but	if	you	
don’t	have	a	sort	of…	

positive	 positive	 0.510	 positive	 0.627	

It	looks	pretty	but	it	won’t	
let	me	do	anythin…	

negative	 negative	 0.934	 negative	 0.914	

This	is	a	great	music	app,	
my	only	problem	is	…	

negative	 negative	 0.874	 negative	 0.886	

Doing	well	 positive	 positive	 0.845	 positive	 0.867	
	
Table	 4	 represents	 prediction	 DataFrame	 presents	 a	 comparative	 analysis	 of	

sentiment	 classification	 results	 from	 two	 different	 CNN	 models:	 CNN1D	 and	
CNN2D.	Each	row	in	the	table	corresponds	to	a	text	sample,	displaying	the	actual	
sentiment	 label	 (label),	 the	 predicted	 sentiment	 by	 CNN1D	 (conv1d_pred)	 and	
CNN2D	 (conv2d_pred),	 along	 with	 their	 respective	 confidence	 scores	
(conv1d_probability	and	conv2d_probability).	

From	 the	 dataset,	 most	 predictions	 align	 correctly	 with	 the	 actual	 labels,	
demonstrating	 the	 effectiveness	 of	 both	 CNN	models	 in	 sentiment	 classification.	
For	 example,	 in	 row	0,	 both	models	 correctly	 classify	 the	 text	 as	 “positive”,	with	
CNN1D	 having	 a	 probability	 of	 0.852	 and	 CNN2D	 at	 0.801.	 However,	 there	 are	
misclassifications,	 such	as	 in	 row	6,	where	CNN1D	 incorrectly	predicts	 “positive”	
for	 a	 “negative”	 labelled	 text	 with	 a	 0.510	 probability,	 while	 CNN2D	 correctly	
classifies	it	as	“negative”	with	a	0.627	probability.	Similarly,	in	row	8,	both	models	
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incorrectly	classify	a	 “positive”	 text	as	 “negative”,	 though	their	probability	scores	
are	relatively	high.		

The	 probability	 values	 indicate	 the	 models'	 confidence	 in	 their	 predictions.	
Generally,	higher	probability	values	close	to	1.0	suggest	stronger	model	certainty,	
as	seen	in	row	5,	where	CNN1D	and	CNN2D	classify	a	“negative”	review	with	0.999	
confidence.	 The	 prediction	 variation	 highlights	 the	 differences	 in	 model	
architecture	and	 learning	patterns	between	CNN1D	and	CNN2D.	This	aligns	with	
prior	 research	 suggesting	 that	 2D	 convolutional	 models	 can	 leverage	 spatial	
relationships	 better	 than	 1D	 models,	 often	 improving	 performance	 in	 certain	
classification	 tasks	 [25].	 However,	 the	 misclassification	 cases	 suggest	 that	 CNN	
models	 might	 still	 struggle	 with	 nuanced	 language	 interpretation,	 a	 challenge	
commonly	 addressed	using	 hybrid	 deep	 learning	 approaches	 such	 as	 CNN-LSTM	
[24].	

The	 results	 of	 comparing	 one-dimensional	 (1D)	 and	 two-dimensional	 (2D)	
CNNs	for	sentiment	analysis	of	Spotify	music	evaluations	are	thoroughly	discussed	
in	 this	 section.	Model	 performance	 is	 discussed	 in	 terms	 of	 precision,	 recall,	 F1-
score,	 training	 duration,	 training	 accuracy,	 validation	 accuracy,	 testing	 accuracy,	
and	prediction	results.	

According	to	the	examination	of	the	two	CNN	architectures,	the	CNN2D	model	
fared	marginally	 better	 in	 classification	 accuracy	 than	 the	CNN1D	model.	With	 a	
loss	 of	 0.290,	 the	 CNN1D	 model's	 testing	 accuracy	 was	 88.20%,	 whereas	 the	
CNN2D	model's	 accuracy	was	 88.41%	with	 a	 smaller	 loss	 of	 0.286.	 In	 line	with	
findings	by	Kim	and	 Jeong	 [4],	who	highlighted	 that	2D	CNN	architectures	might	
more	successfully	utilize	spatial	linkages	in	classification	tasks,	these	results	show	
that	 the	 CNN2D	 model	 showed	 superior	 generalization	 capabilities	 when	
compared	to	the	CNN1D	model.	

Both	models	showed	an	improvement	in	accuracy	and	a	reduction	in	loss	over	
epochs	during	the	training	phase.	However,	around	the	sixth	epoch,	overfitting	was	
noticed,	as	seen	in	Figures	8	and	9,	and	training	accuracy	kept	getting	better	while	
validation	accuracy	started	to	plateau.	This	implies	that	instead	of	generalising	to	
unknown	 examples,	 a	 common	 problem	 in	 deep	 learning	 models,	 both	 models	
began	memorising	training	data	[10].	

More	information	on	the	classification	performance	of	the	CNN1D	and	CNN2D	
models	 may	 be	 found	 in	 their	 confusion	 matrices.	 While	 the	 CNN2D	 model	
achieved	a	slightly	higher	classification	accuracy,	successfully	categorising	87.3%	
of	 positive	 reviews	 and	 88.5%	 of	 negative	 reviews,	 the	 CNN1D	model	 correctly	
classified	 88.4%	 of	 positive	 reviews	 and	 88.0%	 of	 negative	 reviews.	 CNN2D	
misclassified	 somewhat	 more	 positive	 reviews	 than	 CNN1D,	 although	 having	 a	
stronger	recall	 for	negative	reviews,	according	 to	both	models'	 false	positive	and	
false	negative	rates.	This	result	is	consistent	with	an	earlier	study	by	Yildirim	[42],	
which	 indicates	 that	2D	CNNs	may	be	better	at	capturing	spatial	 information	but	
still	have	trouble	classifying	text	nuancedly.	

The	 precision,	 recall,	 and	 F1-score	 of	 the	 classification	 reports	 for	 the	 two	
models	 were	 similar.	 With	 recall	 values	 of	 0.884	 and	 0.880,	 respectively,	 the	
CNN1D	model	 obtained	 a	 precision	 of	 0.878	 for	 positive	 and	 0.866	 for	 negative	
reviews.	With	recall	values	of	0.873	and	0.895,	respectively,	and	precision	of	0.890	
for	 positive	 and	 0.878	 for	 negative	 reviews,	 the	 CNN2D	 model	 performed	
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marginally	better	 than	 the	CNN1D	model.	Better	sensitivity	 to	detecting	negative	
attitudes	is	indicated	by	CNN2D's	stronger	recall	for	unfavourable	reviews.	Diwan	
and	Tembhurne's	 [16]	 findings,	which	 pointed	 out	 that	 CNN-based	 architectures	
frequently	have	significant	predictive	power	 in	sentiment	classification	tasks,	are	
consistent	with	this.	

The	 two	 models'	 training	 times	 differed	 significantly	 from	 one	 another.	 The	
CNN2D	model	took	4	minutes	and	11.73	seconds	to	train,	while	the	CNN1D	model	
took	1	minute	 and	41.89	 seconds.	According	 to	Park,	 Lee,	 and	Sim	 [5],	 the	 extra	
computational	 complexity	 involved	 in	 two-dimensional	 convolution	 processes	 is	
the	 reason	 behind	 CNN2D's	 longer	 training	 time.	 CNN2D	 showed	 marginally	
improved	 performance	 despite	 the	 increased	 computational	 cost,	 suggesting	 a	
trade-off	between	accuracy	and	economy.	

With	 a	 few	misclassifications,	 the	 inference	 results	 showed	 that	 both	models	
did	well	 in	sentiment	categorisation.	For	example,	CNN2D	properly	categorised	a	
negative	 review	 with	 a	 probability	 of	 0.627,	 whereas	 CNN1D	misclassified	 it	 as	
positive	with	 a	 chance	 of	 0.510.	 These	 variations	 in	 prediction	 confidence	 imply	
that	 CNN2D	 was	 somewhat	 more	 adept	 at	 understanding	 context-dependent	
sentiment	subtleties.	The	minor	 increase	 in	CNN2D'S	prediction	accuracy	may	be	
explained	by	 the	 fact	 that	2D	CNNS	are	better	 at	 capturing	 intricate	 correlations	
between	textual	elements	than	1D	CNNS	[42].	

	
D. Conclusion	
The	CNN1D	and	CNN2D	architectures	 for	 sentiment	analysis	of	 Spotify	music	

evaluations	were	compared	in	this	work.	The	findings	show	that	CNN2D	performs	
somewhat	 better	 than	 CNN1D	 in	 terms	 of	 accuracy	 and	 recall	 but	 at	 the	 cost	 of	
increased	training	 time	and	computational	complexity.	CNN2D	has	better	 feature	
extraction	 capabilities,	 especially	 for	 complicated	 sentiment	 patterns,	 although	
CNN1D	 is	 still	 a	 good	 choice	 for	 efficiency.	 To	 strike	 a	 compromise	 between	
accuracy	and	computing	economy,	future	studies	should	investigate	hybrid	models	
and	 optimisation	 strategies.	 This	 work	 offers	 important	 new	 information	 about	
sentiment	analysis	using	deep	learning,	especially	in	music	review	datasets.	

Future	research	could	examine	hybrid	architectures	like	CNN-LSTMs,	which,	as	
proposed	by	Islam	et	al.	[17],	combine	the	sequential	memory	capacities	of	LSTMs	
with	 the	 spatial	 feature	 extraction	 of	 CNNs.	 Model	 performance	 may	 also	 be	
improved	 by	 adjusting	 hyperparameters,	 expanding	 the	 dataset,	 and	 utilising	
transfer	learning	strategies.	
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