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Facial	 recognition	 technology	 serves	 as	 an	 integral	 component	 of	 security,	
access	 management,	 and	 identification	 systems.	 This	 study	 addresses	 the	
challenges	 this	 technology	 faces	 due	 to	 makeup	 and	 varying	 facial	
expressions,	 which	 can	 lead	 to	 misidentification.	 We	 investigate	 the	
effectiveness	 of	 five	 deep	 learning	 models—ResNet,	 InceptionV3,	
EfficientNet,	 Xception,	 and	 SENet—in	 recognizing	 faces	 with	 makeup	 and	
diverse	 emotional	 expressions.	 Using	 five	 publicly	 accessible	 datasets,	
including	 KDEF,	 CelebA,	 and	 UTKFace,	 we	 measure	 performance	 with	
metrics	 such	 as	 accuracy,	 precision,	 recall,	 F1	 score,	 and	 ROC-AUC.	 Our	
analysis	evaluates	the	benefits	of	transfer	learning	with	pre-trained	models	
and	 their	 robustness	 against	 new	data.	We	 find	 that	 InceptionV3	 achieves	
peak	 accuracy	 of	 85.2%	 on	 CelebA	 with	 high	 performance	 across	 all	
datasets,	 with	 an	 average	 accuracy	 of	 79.8%.	 These	 results	 highlight	 how	
makeup	 and	 emotional	 expressions	 affect	 recognition	 accuracy	 and	
emphasize	 the	 need	 for	 improving	 facial	 recognition	 technologies	 for	
security	and	accessibility	applications.	
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A. Introduction	
The	 past	 few	 years	 have	 witnessed	 a	 dramatic	 increase	 in	 the	

development	 and	 utilization	 of	 technologies	 related	 to	 facial	 recognition,	
detection,	and	analysis.	Presently,	around	80%	of	countries	across	the	globe	
employ	 facial	 analysis	algorithms	 [1].	This	 technological	 advancement	has	
redefined	applications,	ranging	from	security	systems	and	access	control	to	
filters	used	in	social	media	platforms	[2].	Nevertheless,	several	factors	that	
change	 facial	 appearance,	 notably	 makeup,	 can	 severely	 impair	 the	
performance	 of	 these	 systems.	 The	 application	 of	 makeup	 alters	 critical	
features	 such	as	 skin	 texture	and	contrast	 around	 the	eyes	and	mouth,	 as	
well	as	the	perceived	shape	of	the	face.	

Consequently,	 facial	 recognition	 systems	may	encounter	difficulties	
in	recognizing	individuals	who	use	makeup,	 leading	to	potential	 false	non-
matches.	 The	 backbone	 of	 facial	 recognition	 technology	 is	 grounded	 in	
machine	 learning	 frameworks,	 particularly	 in	 deep	 learning	 (DL)—a	
specialized	branch	of	machine	learning	that	 is	part	of	artificial	 intelligence	
[3].	Deep	learning	has	garnered	attention	for	its	applications	across	various	
fields,	 including	 healthcare,	 visual	 recognition,	 text	 processing,	 and	
cybersecurity.	 The	 effectiveness	 of	 differing	 machine	 learning	
methodologies	varies	based	on	the	stage	of	the	facial	recognition	process	in	
which	 they	 are	 implemented.	 This	 variance	 is	 highlighted	 by	 the	 unique	
challenges	 inherent	 in	 image	 analysis,	 computer	 vision,	 and	 cybersecurity	
due	to	the	dynamic	characteristics	of	human	facial	features.	

Notably,	 there	are	expected	discrepancies	 in	 classifier	performance	
when	applied	 to	diverse	 facial	datasets,	particularly	 those	containing	both	
made-up	and	bare	 faces.	Makeup	has	become	a	routine	practice	 for	many,	
altering	individuals'	 facial	characteristics	and	creating	challenges	for	facial	
recognition	 technologies.	Furthermore,	 facial	expressions	compound	these	
challenges,	 introducing	 further	 variability	 [4].	 The	 widespread	 use	 of	
makeup	 complicates	 the	 task	 of	 achieving	 accurate	 and	 dependable	 facial	
recognition,	 as	 it	 can	 significantly	 change	 facial	 attributes	 such	 as	 color,	
texture,	 and	 shape,	 negatively	 impacting	 the	 effectiveness	 of	 recognition	
algorithms	[5].	

Various	 publicly	 accessible	 datasets	 featuring	 faces	 adorned	 with	
makeup	have	emerged,	frequently	focused	on	measuring	or	enhancing	facial	
attractiveness.	 Makeup	 application	 can	 be	 delineated	 by	 intensity;	 light	
makeup	may	be	relatively	unnoticeable	as	the	colors	typically	mimic	natural	
skin	tones,	whereas	heavy	makeup	is	more	conspicuous,	featuring	elements	
like	bold	lip	colors	or	heavily	applied	eye	makeup.	Such	stylistic	differences	
can	result	 in	profound	changes	 in	 facial	appearance	and	serve	as	effective	
means	 of	 evading	 recognition	 systems,	 as	 evidenced	 by	 findings	 that	
makeup	usage	can	sharply	decrease	face-matching	accuracy	[6].	In	a	study	
by	 [7],	 it	 was	 determined	 that	 recognition	 accuracy	 for	 both	 commercial	
and	 academic	 face	 recognition	 techniques	 could	 drop	 as	much	 as	 76.21%	
due	 to	 the	 presence	 of	 makeup.	 Motivated	 by	 the	 persistent	 challenges	
confronting	 facial	 classification	 algorithms	 despite	 advancements,	 various	
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studies	 have	 sought	 to	 scrutinize	 the	 performance	 of	 different	 classifiers	
[8].	

Facial	 expressions	 introduce	 an	 additional	 layer	 of	 complexity	 as	
they	 can	 also	 influence	 the	 performance	 of	 classifiers.	 The	 suitability	 of	 a	
facial	database	is	crucial	for	any	classifier’s	success	[9].	This	raises	essential	
questions	about	the	transparency	and	accountability	of	the	algorithms.	As	a	
result,	 ongoing	 research	 endeavors	 seek	 to	 determine	 which	 facial	
classifiers	are	most	effective	considering	the	datasets	employed.	This	study	
focuses	 specifically	 on	 evaluating	 the	 robustness	 of	 facial	 recognition	
classifiers	against	modifications	caused	by	makeup	application	and	varying	
facial	expressions,	utilizing	popular	facial	datasets.	

Previous	 research	 has	 examined	 how	 makeup	 influences	 facial	
recognition	 accuracy	 and	 explored	 various	 classifiers’	 effectiveness	 [5]	
[10][11].	 Nevertheless,	 the	 limited	 availability	 of	 makeup-specific	 public	
datasets	 constrains	 the	 ability	 to	 train	 and	 evaluate	 robust	 makeup	
recognition	 models.	 Prior	 analyses	 have	 typically	 employed	 controlled	
expressions	 which	 may	 not	 adequately	 capture	 real-world	 dynamics	
characterized	by	varying	emotional	expressions.	Additionally,	the	potential	
benefits	 of	 leveraging	 pre-trained	 models	 on	 extensive	 facial	 recognition	
datasets	 in	 the	 context	 of	 makeup	 recognition	 are	 yet	 to	 be	 thoroughly	
investigated	[12]	[13]	[14].	

The	 choice	 of	 database	 is	 critical;	 the	 success	 of	 a	 technique	 for	 a	
particular	 problem	 relies	 on	 the	 determination	 of	 an	 appropriate	 dataset.	
When	 contrasting	 outcomes	 generated	 by	 different	 methodologies	
addressing	similar	issues,	consistency	in	dataset	usage	is	crucial.	Currently,	
while	many	face	databases	exist	for	public	use,	few	are	explicitly	focused	on	
makeup-related	 research	 [15]	 [16]	 [17]	 [18]	 [19]	 [20].	 This	 research	
intends	to	bridge	these	gaps	by	systematically	assessing	five	deep	learning	
models	aimed	at	makeup	recognition	across	diverse	 facial	expressions.	By	
identifying	 the	 most	 effective	 model	 architectures	 and	 evaluating	 their	
performance	through	various	metrics,	this	study	aspires	to	provide	valuable	
insights	into	the	capacity	of	deep	learning	models	to	manage	the	combined	
effects	of	makeup	and	emotional	expression	on	facial	recognition.	

This	paper	underscores	 the	 significance	of	makeup	application	and	
facial	 expressions	 in	 the	 realm	 of	 facial	 recognition	 technologies,	
emphasizing	 the	 necessity	 for	 advanced,	 adaptable	 algorithms.	 By	
scrutinizing	 the	 performance	 of	 five	 deep	 learning	 models,	 the	 research	
aims	 to	 yield	 insights	 regarding	performance	metrics	 that	 could	 influence	
future	 advancements	 in	 security	 applications,	 along	 with	 proposing	
potential	 enhancements	 to	 existing	 algorithms	 to	 bolster	 their	 efficacy	 in	
practical	scenarios.	
	
B. Diverse	Makeup	Techniques	

Makeup	application	can	significantly	transform	facial	characteristics,	
creating	 substantial	 challenges	 for	 facial	 recognition	 systems.	 The	 use	 of	
cosmetics	 can	 alter	 the	 shape	 and	 color	 of	 features	 such	 as	 eyebrows,	
eyelashes,	 eyes,	 lips,	 and	 overall	 skin	 tone	 [9].	 These	 modifications	
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interrupt	 the	 extraction	 of	 consistent	 facial	 features,	 which	 traditional	
recognition	algorithms	depend	upon.	For	instance,	eyeliner	application	can	
enhance	 and	 elongate	 the	 appearance	 of	 eyelashes,	 thereby	 changing	 the	
shape	of	the	eye	region.	Similarly,	lipstick	can	dramatically	change	the	size	
and	shape	of	 the	 lips.	As	a	result,	 these	variations	can	 lead	to	pronounced	
mismatches	 when	 comparing	 makeup-altered	 faces	 against	 enrolled	
templates	captured	without	makeup	[21].	

In	 addition	 to	 makeup,	 facial	 expressions	 contribute	 to	 dynamic	
changes	 in	 facial	 features,	 presenting	 further	 challenges	 to	 recognition	
systems.	When	individuals	express	emotions,	their	facial	muscles	engage	in	
a	process	of	contraction	and	relaxation,	which	produces	wrinkles,	furrows,	
and	 changes	 in	 the	 placements	 of	 critical	 landmarks	 such	 as	 the	 eyes,	
eyebrows,	 and	 mouth	 corners.	 These	 variations	 can	 drastically	 alter	 the	
appearance	of	specific	facial	regions,	complicating	the	ability	of	recognition	
algorithms	to	match	a	neutral	face	template	with	an	image	taken	during	an	
expressive	moment	[22].	

Lighting	conditions	are	another	significant	factor	that	can	affect	how	
facial	 features	 appear,	 ultimately	 impacting	 recognition	performance	 [23].	
Variations	 in	 lighting	 intensity,	 direction,	 and	 color	 can	 cast	 shadows	 or	
create	 highlights	 on	 the	 facial	 surface,	 affecting	 the	 perceived	 depth	 and	
shape	of	individual	features.	Many	traditional	facial	recognition	algorithms	
struggle	 to	 adapt	 to	 these	 lighting	 changes,	which	 can	 lead	 to	 recognition	
errors,	 particularly	 when	 there	 are	 considerable	 differences	 between	
lighting	conditions	during	enrollment	and	recognition.	

Head	pose	variations	further	exacerbate	the	problem	by	introducing	
occlusions	 and	 distortions,	 making	 the	 recognition	 process	 more	
challenging	 [24].	 When	 individuals	 tilt	 their	 heads	 or	 change	 their	 gaze,	
certain	 facial	 regions	 may	 become	 occluded	 or	 distorted	 due	 to	 altered	
perspectives.	 This	 variability	 can	 significantly	 limit	 the	 amount	 of	 usable	
information	 available	 for	 recognition,	 ultimately	 leading	 to	 decreased	
performance.	

	
C. Makeup	Options	Datasets	

To	 tackle	 the	 challenges	 of	 achieving	 accurate	 facial	 recognition	 in	
real-world	 scenarios,	 it	 is	 imperative	 for	 researchers	 to	 develop	 deep	
learning	 models	 capable	 of	 effectively	 managing	 variations	 caused	 by	
makeup.	 Several	 notable	 datasets,	 including	 CelebA,	 KDEF	 (Karolinska	
Directed	 Emotional	 Faces),	 and	 UTKFace,	 are	 essential	 resources	 for	
training	and	validating	these	models.	

The	 CelebA	 dataset	 contains	 over	 200,000	 images	 of	 celebrities,	
annotated	 with	 40	 distinct	 facial	 descriptors.	 This	 expansive	 collection	
allows	 researchers	 to	 investigate	 different	 makeup	 styles	 and	 their	
influence	 on	 recognition	 accuracy	 [25].	 The	 KDEF	 dataset,	 on	 the	 other	
hand,	 offers	 a	 robust	 compilation	 of	 emotional	 expressions,	 facilitating	
inquiries	 into	how	emotions	 correlate	with	 recognition	performance	 [26].	
Meanwhile,	 UTKFace	 presents	 a	 diverse	 range	 of	 demographic	
representations,	 which	 is	 crucial	 for	 the	 development	 of	 inclusive	 and	
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equitable	 facial	 recognition	 technologies	 [27].	 Integrating	 these	 varied	
datasets	is	vital	for	constructing	adaptive	facial	recognition	algorithms	that	
sustain	 accuracy	 across	 different	 demographic	 groups,	 emotional	
expressions,	and	makeup	styles.	
	
D. Deep	Learning	for	Facial	Recognition	in	Makeup	

Deep	 learning	 for	 makeup-aware	 face	 recognition	 improves	 the	
accuracy	 of	 facial	 recognition	 systems	 when	 individuals	 wear	 makeup,	
which	 significantly	 changes	 their	 appearance.	 Advanced	 neural	 network	
architectures	 enable	 these	 systems	 to	 recognize	 and	 adapt	 to	 variations	
introduced	by	different	makeup	styles.	Techniques	such	as	transfer	learning	
and	 data	 augmentation	 enhance	 model	 performance,	 allowing	 models	 to	
generalize	 better	 across	 diverse	 makeup	 applications	 and	 real-world	
conditions.	Additionally,	 integrating	 emotional	 expression	analysis	 further	
refines	recognition	accuracy.	Despite	challenges	 like	variability	 in	makeup	
and	 the	 need	 for	 comprehensive	 datasets,	 applying	 deep	 learning	
techniques	shows	great	promise	for	developing	more	effective	and	reliable	
makeup-aware	face	recognition	systems	in	various	fields,	including	security	
and	social	media.	
	
1. InceptionV3	

InceptionV3	is	a	deep	convolutional	neural	network	that	effectively	
captures	 various	 features	 through	 its	 unique	 architecture,	which	 includes	
multiple	 convolutional	 paths	 within	 each	 Inception	 module.	 This	 design	
allows	for	varied	kernel	sizes	(1x1,	3x3,	and	5x5)	to	simultaneously	extract	
features	at	different	scales	while	maintaining	computational	efficiency.	For	
a	single	Inception	block,	the	output	can	be	expressed	as	shown	in	equations	
1	to	5:	
	
(i) Branch	1	(1x1	Convolution):		

B1	=		Conv(1×1,filters1)(X)	 	 	 (1)	
	
(ii) Branch	2	(1x1	followed	by	3x3	Convolution):		

B2	=	Conv(1×1,filters2)(X)→Conv(3×3,filters3)(B2)	 	 (2)	
	
(iii) Branch	3	(1x1	followed	by	5x5	Convolution):		

B3	=		Conv(1×1,filters4)(X)→Conv(5×5,filters5)(B3)	 	 (3)	
	
(iv) Branch	4	(Max	Pooling	followed	by	1x1	Convolution):		

B4	=	MaxPool(3×3)(X)→Conv(1×1,filters6)(B4)	 	 (4)	
	
(v) Final	Output	(Concatenation	of	all	branches):		

Y	=		Concat(B1,B2,B3,B4)	 	 (5)	
	
2.	 EfficientNets		

EfficientNet	 is	 a	 model	 family	 designed	 to	 optimize	 both	 accuracy	
and	 computational	 efficiency	 using	 a	 compound	 scaling	 approach.	 By	
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scaling	 the	 depth,	 width,	 and	 resolution	 of	 the	 network	 proportionally,	
EfficientNet	 achieves	 superior	 performance	 while	 maintaining	 a	 lower	
parameter	count.	The	scaling	of	EfficientNet	can	be	represented	as	equation	
(6):	

New	Size=Old	Size×ϕx	 	 (6)	
where	ϕ	is	a	scaling	factor,	and	xx	represents	the	dimensions	being	scaled	
(depth,	width,	or	resolution).		
	
3.	 ResNet	

ResNet	 (Residual	 Network)	 introduces	 skip	 connections	 that	 allow	
gradients	 to	 flow	 through	 the	 network	 more	 effectively,	 mitigating	 the	
vanishing	gradient	problem	in	deep	networks.	This	architecture	enables	the	
training	 of	 extremely	 deep	 networks	 without	 significant	 loss	 of	
performance.	 The	 basic	 building	 block	 of	 ResNet	 can	 be	 mathematically	
expressed	as	equation	7:	

Y=F(X,Wi)+X	 	 	 (7)	
where	F	represents	the	residual	function	(consisting	of	convolutional	
layers),	X	is	the	input,	and	Wi	are	the	weights	of	the	layers.	
	
4.	 SENet	

SENet	 (Squeeze-and-Excitation	 Network)	 enhances	 the	
representational	 capacity	of	neural	networks	by	 introducing	a	mechanism	
that	 recalibrates	 channel-wise	 feature	 responses.	 This	 is	 done	 through	
squeeze-and-excitation	 blocks	 that	 capture	 global	 information	 and	 adjust	
feature	 importance	 adaptively.	 The	 output	 of	 the	 squeeze-and-excitation	
block	can	be	expressed	as	equation	8:	

Z=σ(W⋅GlobalAvgPool(X))X		 	 (8)	
where	σ	is	the	sigmoid	activation	function,	W	represents	the	learned	
weights,	and	GlobalAvgPool(X)	computes	the	global	average	pooling	of	the	
input.	
	
5. Xception	

Xception	(Extreme	Inception)	builds	on	the	Inception	architecture	by	
replacing	 traditional	 Inception	 modules	 with	 depthwise	 separable	
convolutions,	 which	 separate	 spatial	 and	 channel-wise	 processing.	 This	
design	 significantly	 enhances	 model	 efficiency	 and	 performance	 in	
capturing	 complex	 spatial	 features.	 The	 depthwise	 separable	 convolution	
can	be	formulated	as	in	equation	9:	

Y=DepthwiseConv(X)	∗Wpointwise	 	 (9)	
Where	∗	denotes	the	pointwise	convolution	that	follows	the	depthwise	
convolution	applied	to	the	input	X.	
	
E. Research	Methodology	

This	 study	 examines	 the	 performance	 of	 five	 leading	 classifiers:	
ResNet,	 InceptionV3,	 EfficientNet,	 Xception,	 and	 SENet,	while	 utilizing	 the	
CelebA,	UTKFace,	and	KDEF	datasets,	which	balanced	representation	across	
various	 makeup	 styles,	 facial	 expressions,	 ethnicities,	 genders,	 and	 age	
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groups,	acknowledging	 that	data	quality	plays	a	crucial	 role	 in	 the	study's	
outcomes.	 We	 categorize	 the	 facial	 datasets	 into	 three	 classes	 to	 ensure	
diverse	 data	 for	 makeup	 recognition.	 The	 Primary	 Class	 (i.e.	 	 CelebA)	
consists	 of	 wild	 datasets	 that	 include	 annotations	 for	 makeup	 and	 facial	
expressions,	 capturing	 a	 wide	 range	 of	 styles	 and	 emotions.	 When	 these	
datasets	lack	sufficient	diversity,	the	study	turns	to	the	Secondary	Class	(i.e.	
KDEF),	which	incorporates	wild	datasets	with	facial	expression	annotations	
alongside	controlled	datasets	showcasing	makeup	variations.	The	UTKFace	
dataset	 can	 be	 categorized	 as	 both	 primary	 class	 and	 secondary	 class.	 It	
contains	 facial	expression	annotations	and	can	 include	makeup	variations,	
depending	 on	 the	 specific	 subset	 used.	 To	 evaluate	 the	 classifiers'	
robustness	against	changes	induced	by	makeup	and	emotional	expressions,	
we	 apply	 a	 comprehensive	 set	 of	 evaluation	 metrics,	 including	 accuracy,	
precision,	 recall,	F1-score,	ROC-AUC,	specificity,	and	Matthews	Correlation	
Coefficient	(MCC).	These	metrics	offer	a	nuanced	understanding	of	how	well	
each	 classifier	 maintains	 recognition	 performance	 under	 different	
conditions.	
	
1.		 Research	Model	

This	methodology	incorporates	Biologically	Inspired	Features	(BIFs)	
for	 makeup	 detection,	 enhancing	 overall	 facial	 recognition	 accuracy.	 The	
approach	draws	from	the	hierarchical	structure	of	the	human	visual	cortex	
[28].	

The	 BIF	 model	 employs	 a	 structured	 approach	 to	 extract	 relevant	
features	for	makeup	detection:	
(i) S1	 (Simple	 Cell):	 Following	 Rasti	 et	 al.	 (2018),	 the	 study	 applies	 the	

Discrete	 Stationary	Wavelet	 Transform	 (DWT)	 on	 grayscale	 images	 to	
capture	 directional	 selectivity.	 The	 model	 achieves	 translation	
invariance	 through	 the	magnitude	 response	 of	 the	 S1	 layer's	 complex	
coefficients	(W).	The	study	applies	four	DWT	levels	(S1,	C1,	S2,	and	C2)	
on	 grayscale	 images,	 using	 a	 fixed	 window	 size	 (e.g.,	 144x128	 pixels)	
across	 CelebA,	 UTKFace,	 and	 KDEF	 datasets.	 Each	 level	 generates	 six	
band-pass	sub-images	at	six	orientations	(±15°,	±45°,	±75°),	resulting	in	
three	 sub-images	 per	 spectral	 quadrant.	 This	 S1	 layer	 forms	 a	 3D	
feature	 pyramid	 structure	 that	 undergoes	 subsampling	 for	 makeup	
detection.	 The	 representation	 of	 the	 S1	 layer	 output	 involves	 the	
magnitude	response	of	complex	coefficientsas	shown	in	equation	10	:	

	
(x,y)	=	f(d,s)(5)(x,	y)	=	f(d,	s)	\quad	(5)(x,y)=f(d,s)	 	 (10)	

	
where	'd'	denotes	direction	and	's'	denotes	scale	at	position	(x,	y).	
	
(ii) C1	 (Complex	 Cell):	 This	 layer	 extracts	 local	 maximum	 values	 to	

highlight	features	critical	for	makeup	detection.	A	max	pooling	operator	
with	 a	 2x2	window	 size	 operates	 on	 the	 S1	 layer	 output,	 isolating	 the	
most	significant	activation	of	the	C1	units.	
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(iii) S2	(Composite	Feature	Cell):	The	S2	layer	filters	image	patches	
across	various	orientations	derived	 from	the	C1	 layer.	The	selection	of	
filter	bands	relies	on	the	C1	layer's	base	band	and	undergoes	filtering	by	
N	 previous	 patches	 through	 template	 matching.	 The	 learning	 process	
determines	the	optimal	value	of	N,	resulting	in	one	S2	layer	per	C1	band	
and	patch.	

	
(iv) C2	(Complex	Composite	Cell):	A	global	max	pooling	operation	

occurs	across	the	positions	of	each	S2	layer,	generating	a	feature	vector	
for	training	the	makeup	detection	model.	

	
2.		 Optimizing	Feature	Sets	for	Makeup	and	Expressions	

The	 study	 explores	 optimizing	 feature	 sets	 by	 evaluating	
combinations	 of	 S1,	 C1,	 S2,	 and	 C2	 across	 CelebA,	 UTKFace,	 and	 KDEF	
datasets.	 The	 study	 calculates	 accuracy	 rates	 for	 each	 combination	 to	
identify	 the	 most	 informative	 feature	 set	 for	 makeup	 detection	 across	
diverse	 facial	 expressions.	 AST	 ((Advanced	 Statistical	 Traits)	 features	
extracted	from	S2	levels	appear	as	represented	in	equation	11:	
	

ASTd	=	mean(S2d),	std(S2d),	entropy(S2d)	 (11)	
	
where	 the	 components	 represent	 mean,	 standard	 deviation,	 and	 entropy	
from	 the	 S2	 layer.	All	 C2	 feature	 sets	maintain	 the	 same	 sequential	 set	 of	
AST	+	HOG	vectors	while	evoking	makeup	components.	A	sample	C2	layer	
for	optimal	BIF	feature	extraction	is	represented	as	equation	12:	
	

C2:	[AST1,…,	AST4,	HOG1,…,	HOG4]	 	 	(12)	
	
3.		 Feature	Set	Combinations	

The	 study	 systematically	 evaluates	 combinations	 of	 S1,	 C1,	 and	 S2	
layers	 to	 determine	 the	 optimal	 BIF	 feature	 set	 for	 makeup	 recognition	
under	diverse	facial	expressions:	
(i) Combination	1	(Baseline):	Utilize	only	the	C2	layer's	HOG	features.	
(ii) Combination	2:	Include	the	C1	layer's	output	along	with	HOG	features	

(C1	+	HOG).	
(iii) Combination	3:	 Integrate	all	BIF	stages	(S1,	C1,	and	S2)	with	AST	and	

HOG	features	(Full	BIF	+	AST	+	HOG).	
	
4.		 Training	Datasets	

This	 study	 adopts	 three	 pre-processed	datasets—CelebA,	UTKFace,	
and	 KDEF—to	 enhance	 training	 and	 validation	 processes	 for	 a	 facial	
recognition	 model	 aimed	 at	 detecting	 makeup	 and	 corresponding	 facial	
expressions.	Each	dataset	provides	a	rich	source	of	labeled	images,	offering	
a	comprehensive	foundation	for	model	training	and	real-world	application	
evaluation.	

The	 CelebA	 dataset,	 created	 by	 [25],	 comprises	 over	 200,000	
celebrity	images,	each	annotated	with	40	different	facial	attributes	such	as	
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"makeup,"	 "smiling,"	 "gender,"	 and	 "glasses."	 The	 diverse	 nature	 of	 the	
dataset	allows	for	robust	model	training	as	it	includes	variations	in	lighting,	
poses,	and	occlusions.	The	wealth	of	annotations	enables	the	model	to	learn	
not	 only	 to	 identify	 the	 presence	 of	 makeup	 but	 also	 to	 recognize	 it	 in	
conjunction	 with	 various	 facial	 expressions	 and	 non-makeup	 related	
features.	 CelebA's	 large	 size	 and	 diversity	 make	 it	 an	 ideal	 resource	 for	
developing	 algorithms	 capable	 of	 handling	 real-life	 complexities	
encountered	in	facial	recognition	tasks.	

The	 UTKFace	 dataset,	 introduced	 by	 [27],	 offers	 a	 more	 focused	
approach	by	including	more	than	20,000	facial	images	annotated	with	three	
key	 demographic	 attributes:	 age,	 gender,	 and	 ethnicity.	 This	 dataset	
emphasizes	 the	 intersection	 of	 demographic	 factors	 and	 facial	 features,	
which	 is	particularly	relevant	 for	understanding	how	makeup	applications	
might	 vary	 across	 different	 demographic	 groups.	 The	 dataset	 provides	
labels	 categorizing	 age	 into	 ranges	 (e.g.,	 0-10,	 11-20,	 etc.),	 facilitating	
advanced	 analysis	 on	 how	 facial	 appearance	 changes	 with	 age	 alongside	
makeup	use.	The	emphasis	on	demographic	diversity	allows	models	trained	
with	 this	 dataset	 to	 generalize	 better	 across	 various	 groups,	 making	 it	 a	
valuable	 component	 in	 achieving	 fairness	 and	 reducing	bias	 in	 automated	
facial	recognition	systems.	

The	Karolinska	Directed	Emotional	Faces	(KDEF)	dataset,	developed	
by	 [26],	 consists	 of	 4,030	 images	of	 individuals	displaying	 seven	different	
emotions:	happiness,	sadness,	anger,	fear,	surprise,	disgust,	and	neutrality.	
The	KDEF	dataset	 focuses	on	emotional	expression,	which	 is	crucial	when	
examining	 how	 makeup	 affects	 perceived	 emotions	 in	 individuals.	 By	
incorporating	 this	dataset,	 the	 study	enriches	 its	 framework	 to	assess	not	
only	 the	 technical	 skill	 of	 makeup	 application	 but	 also	 its	 psychological	
impact	and	effectiveness	in	conveying	emotions.	KDEF	provides	controlled	
variables	 such	 as	 lighting	 and	 backgrounds,	 further	 aiding	 the	 model's	
ability	to	focus	solely	on	the	facial	features	without	extraneous	influences.	

Overall,	 the	 combination	 of	 these	 datasets—the	 vast	 and	 diverse	
CelebA,	 the	 demographic-focused	 UTKFace,	 and	 the	 emotion-centric	
KDEF—creates	 a	 well-rounded	 training	 schema.	 This	 diverse	 range	 of	
labeled	 images	 ensures	 the	 developed	model	 can	 learn	 complex	 patterns	
associated	 with	 makeup	 detection	 and	 emotional	 expression	 while	
considering	 factors	 such	 as	 age	 and	 gender	 variations.	 Thus,	 the	 chosen	
datasets	 significantly	 enhance	 the	 model's	 robustness	 and	 reliability	 in	
practical	applications	across	various	populations.	
	
5.	 Training	Process	

In	 this	 segment,	we	detail	 the	 training	methodology	utilized	 in	 this	
study,	 which	 involves	 five	 pre-trained	 classifier	 architectures:	 ResNet,	
InceptionV3,	 EfficientNet,	 	 Xception,	 and	 SENet,	 These	 architectures	 serve	
as	 feature	 extractors	 specifically	 for	 the	 task	 of	 makeup	 recognition,	
adapted	by	 replacing	 their	 final	 layers	with	a	 customized	BIF	 (Behavioral,	
Intentional,	and	Functional)	 feature	set.	This	process	aims	to	fine-tune	the	
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networks	 to	 better	 accommodate	 the	 complexity	 of	 makeup	 detection	
across	varying	facial	expressions.	

The	 decision	 to	 employ	 pre-trained	models	 is	 underpinned	 by	 the	
concept	 of	 transfer	 learning,	 which	 capitalizes	 on	 the	 extensive	 feature	
extraction	capabilities	these	networks	possess	from	being	trained	on	large	
datasets.	This	pre-training	dramatically	expedites	the	training	process	and	
enhances	 performance	 on	 specific	 tasks	 such	 as	 recognizing	 makeup	
characteristics.	
	
a) ResNet	(Residual	Networks):	ResNet	is	renowned	for	its	ability	to	
train	 very	 deep	 networks	 through	 the	 incorporation	 of	 skip	
connections.	This	feature	allows	gradients	to	flow	more	freely	through	
the	 network	 during	 training,	 making	 it	 particularly	 effective	 for	
distinguishing	the	subtle	differences	between	made-up	and	non-made-
up	facial	features,	even	under	diverse	emotional	conditions.	

	
b) InceptionV3:	 The	 InceptionV3	 model	 stands	 out	 for	 its	 ability	 to	
process	 features	 at	multiple	 scales	 simultaneously	 through	 its	 unique	
modular	design.	This	enables	the	capture	of	diverse	makeup	styles	and	
their	 effects	 on	 facial	 appearance,	 making	 it	 highly	 effective	 for	
emotion-variable	recognition.	

	
c) EfficientNet:	 Designed	 for	 both	 accuracy	 and	 efficiency,	 EfficientNet	
employs	 a	 novel	 scaling	 method	 to	 optimize	 performance	 without	
inflating	 model	 size.	 Its	 ability	 to	 deliver	 high	 classification	 accuracy	
with	a	lightweight	architecture	is	particularly	advantageous	for	makeup	
recognition	tasks,	especially	in	resource-constrained	environments.	

	
d) Xception:	Xception	enhances	performance	by	employing	depthwise	
separable	 convolutions,	 pushing	 the	 boundaries	 of	 traditional		
architectures.	This	capability	allows	for	a	refined	extraction	of	features	
relevant	to	understanding	the	subtleties	of	makeup,	making	it	a	strong	
contender	for	varied	expression	recognition.	

	
e) SENet	 (Squeeze-and-Excitation	 Networks):	 The	 integration	 of	
attention	 mechanisms	 in	 SENet	 empowers	 the	 model	 to	 focus	
selectively	 on	 important	 features,	 heightening	 its	 sensitivity	 to	 the	
nuances	 of	 makeup.	 This	 is	 particularly	 relevant	 in	 evaluating	 how	
different	 makeup	 applications	 can	 affect	 perceived	 emotional	
expressions.	

	
6.	 Customizing	with	BIF	Feature	Set	

To	 adapt	 these	 powerful	 architectures	 for	 the	 specific	 task	 of	
makeup	 recognition,	 we	 replace	 the	 final	 layers	 of	 each	 classifier	 with	 a	
proposed	 BIF	 (Behavioral,	 Intentional,	 and	 Functional)	 feature	 set.	 This	
custom	 feature	 set	 focuses	 on	 capturing	 the	 nuances	 of	 how	 makeup	
interacts	 with	 facial	 expressions	 and	 characteristics.	 The	 fine-tuning	
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process	involves	re-training	the	modified	networks	on	the	makeup	dataset,	
allowing	the	models	to	 learn	from	the	specific	contexts	represented	 in	the	
training	images.	

We	denote	the	model	parameters	as	θ	and	the	loss	function	as	L.	The	
fine-tuning	can	be	expressed	as	equation	13:	
	

θ′=	arg 		 	
	
where	X	represents	the	input	images	with	makeup,	and	Y	represents	the	
corresponding	labels.	

By	 maintaining	 the	 pre-trained	 weights	 while	 adjusting	 the	 final	
layers,	 the	 model	 fine-tunes	 its	 parameters,	 specifically	 learning	 how	 to	
optimize	 feature	 extraction	 for	 the	 presence	 of	 makeup	 under	 various	
emotional	states.	This	can	be	represented	as	equation	14:	
	

Featuresmakeup=f(BIF(X),θ′)	 	 (14)	
	

The	 integration	 of	 these	 pre-trained	 architectures,	 along	 with	 the	
innovative	 BIF	 feature	 set,	 ensures	 that	 the	 training	 process	 results	 in	
robust	models	capable	of	reliably	detecting	makeup	even	in	the	presence	of	
diverse	 facial	 expressions.	 This	 ultimately	 enhances	 the	 overall	
performance	 of	 makeup	 recognition	 systems,	 which	 we	 quantify	 with	
performance	 metrics	 such	 as	 accuracy	 A	 and	 F1	 score	 	 expressed	 in	
equations	15	and	16	respectively:	
	

	
	
	

	
	

where	TP	denotes	true	positives	and	FP	denotes	false	positives.	
	
7.	 Evaluation	Metrics	

In	 the	presented	study,	 evaluation	metrics	play	an	essential	 role	 in	
determining	 the	 efficacy	 of	 each	 classifier	 architecture	 when	 applied	 to	
makeup	 recognition	 tasks.	 The	 metrics	 employed	 include	 accuracy,	
precision,	 recall,	 and	 the	 F1-score,	 and	 these	 are	 critical	 for	 providing	 a	
nuanced	understanding	of	the	model's	performance.	

Accuracy	is	calculated	as	the	proportion	of	correct	predictions	out	of	
the	 total	 number	 of	 predictions	 made	 (see	 equation	 17).	 While	 a	 useful	
statistic	 for	 initial	 assessments,	 accuracy	 can	 sometimes	 mislead,	
particularly	 in	datasets	with	skewed	class	distributions;	 thus,	 it	 should	be	
interpreted	in	conjunction	with	other	metrics.	
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where	TPTP	(True	Positives)	represents	the	number	of	instances	correctly	
predicted	 as	 positive,	 TNTN	 (True	 Negatives)	 represents	 the	 number	 of	
instances	correctly	predicted	as	negative,	FPFP	(False	Positives)	represents	
the	instances	incorrectly	predicted	as	positive,	and	FNFN	(False	Negatives)	
represents	the	instances	incorrectly	predicted	as	negative.	

Precision	 quantifies	 the	 accuracy	 of	 positive	 predictions,	 giving	 a	
more	 focused	 view	 of	 the	 model's	 performance	 in	 recognizing	 makeup	
instances	accurately.	 It	 is	calculated	as	the	number	of	true	positive	results	
divided	by	the	sum	of	 true	positives	and	false	positives	(see	equation	18),	
making	 it	 vital	 for	 ensuring	 that	 the	 makeup	 images	 identified	 by	 the	
system	are	indeed	accurate.	
	

	
	

Recall	 reflects	 the	model's	 ability	 to	 identify	 all	 relevant	 instances	
within	the	dataset.	It	is	determined	by	calculating	the	ratio	of	true	positive	
outcomes	 to	 the	 total	 number	 of	 actual	 positive	 instances	 (true	 positives	
plus	false	negatives	as	represented	in	equation	19).	High	recall	is	critical	in	
contexts	 where	 missing	 a	 makeup	 instance	 could	 lead	 to	 significant	
oversights	in	real-world	applications.	
	

	
	

F1-score	 is	 particularly	 informative	 as	 it	 harmonizes	 precision	 and	
recall	 into	a	single	metric,	enabling	a	balanced	perspective	on	the	model's	
capabilities.	It	is	particularly	beneficial	for	tasks	where	both	false	positives	
and	 false	negatives	carry	weight,	 such	as	makeup	recognition,	where	both	
makeup	presence	and	absence	need	to	be	clearly	delineated	(see	equation	
20).	
	

	
	
	

ROC-AUC	metric	evaluates	the	model's	ability	to	distinguish	between	
classes	 across	 different	 thresholds,	 where	 a	 higher	 AUC	 indicates	 better	
performance	(see	equation	21).	

	

	
	
	where	TPR	is	True	Positive	Rate	and	FPR	is	False	Positive	Rate.	
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Specificity	 measures	 the	 proportion	 of	 actual	 negatives	 correctly	

identified	as	represented	in	equation	22:	

	
	

	Matthews	Correlation	Coefficient	(MCC)	metric	provides	a	balanced	
measure	 that	 accounts	 for	 all	 four	 confusion	 matrix	 categories	 as	
represented	in	equation	23:	
	

	
	

The	 performance	 of	 the	 "Full	 BIF	 +	 AST	 +	 HOG"	 combination	 of	
features	 is	 analyzed	 against	 two	 contrasting	 configurations:	 the	 baseline	
that	 utilizes	 only	 HOG	 features	 and	 an	 alternative	 featuring	 "C1	 +	 HOG."	
This	 comparison	 aims	 to	 elucidate	 the	 effectiveness	 of	 the	 BIF-based	
approach	 in	 improving	 makeup	 recognition	 performance.	 Insights	 gained	
from	 assessing	 these	 metrics	 will	 elucidate	 the	 relative	 strengths	 and	
weaknesses	 of	 the	 different	 architectural	 configurations	 and	 feature	 sets,	
thus	contributing	 to	advancements	 in	 the	 field	of	makeup	recognition	and	
informing	future	research	endeavors.	
	
F.	 Results	and	Discussion	

This	 section	 analyzes	 makeup	 recognition	 performance	 using	
various	 deep	 learning	 classifiers	 across	 three	 datasets:	 CelebA,	 UTKFace,	
and	 KDEF.	 Each	 table	 presents	 different	 aspects	 of	 model	 performance,	
enhancing	our	understanding	of	the	methodologies	employed.	The	findings	
from	each	 table,	underscore	 their	 significance	 in	 relation	 to	 recent	works,	
and	draw	conclusions	based	on	the	results.	
	

Table	1:	Overall	Performance	Metrics	for	Each	Classifier	

Model	 Feature	
Set	

CelebA	
Accurac

y	

UTKFac
e	

Accurac
y	

KDEF	
Accurac

y	

Precisio
n	

Reca
ll	

F1-
Scor
e	

ROC
-

AUC	

Specifici
ty	

MC
C	

ResNet	

HOG	
Features	
(Baselin
e)	

81.2%	 76.8%	 79.0%	 80.1%	 82.8
%	

81.4
%	 0.87	 0.78	 0.6

0	

Inception
V3	

HOG	
Features	
(Baselin
e)	

82.4%	 78.3%	 81.0%	 80.8%	 83.2
%	

82.0
%	 0.88	 0.79	 0.6

1	

EfficientN
et	

HOG	
Features	
(Baselin
e)	

79.7%	 71.9%	 75.0%	 77.2%	 81.5
%	

79.3
%	 0.80	 0.75	 0.5

5	
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Model	 Feature	
Set	

CelebA	
Accurac

y	

UTKFac
e	

Accurac
y	

KDEF	
Accurac

y	

Precisio
n	

Reca
ll	

F1-
Scor
e	

ROC
-

AUC	

Specifici
ty	

MC
C	

Xception	

HOG	
Features	
(Baselin
e)	

80.1%	 75.2%	 78.0%	 78.0%	 82.1
%	

80.0
%	 0.82	 0.76	 0.5

7	

SENet	

HOG	
Features	
(Baselin
e)	

79.0%	 72.4%	 74.5%	 76.8%	 81.2
%	

78.9
%	 0.76	 0.74	 0.5

3	

	
Table	1	summarizes	key	performance	metrics—accuracy,	precision,	

recall,	F1-score,	ROC-AUC,	specificity,	and	Matthews	Correlation	Coefficient	
(MCC)—for	 each	 classifier	 across	 the	 three	 datasets.	 InceptionV3	
outperforms	 the	others,	 achieving	 the	highest	accuracy	across	CelebA	and	
UTKFace,	which	 aligns	with	 [29]	who	 noted	 the	 advantages	 of	 Inception-
based	 architectures	 in	 complex	 recognition	 tasks.	 The	 evaluation	metrics	
highlight	 the	 robustness	 and	 generalization	 ability	 of	 each	 classifier,	
offering	a	comparative	benchmark	for	future	research.	
	

Table	2:	Performance	Metrics	by	Dataset	
Model	 Dataset	 Accuracy	Precision	Recall	F1-Score	ROC-AUC	Specificity	MCC	

ResNet	 CelebA	 81.2%	 80.1%	 82.8%	81.4%	 0.87	 0.78	 0.60	
ResNet	 UTKFace	76.8%	 75.1%	 78.0%	76.5%	 0.80	 0.75	 0.54	
ResNet	 KDEF	 74.0%	 72.5%	 75.0%	73.7%	 0.76	 0.71	 0.46	
InceptionV3	CelebA	 82.4%	 80.8%	 83.2%	82.0%	 0.88	 0.79	 0.61	
InceptionV3	UTKFace	78.3%	 76.4%	 80.6%	78.4%	 0.81	 0.76	 0.56	
InceptionV3	KDEF	 80.0%	 78.5%	 81.0%	79.7%	 0.85	 0.77	 0.59	
EfficientNet	 CelebA	 79.7%	 77.2%	 81.5%	79.3%	 0.80	 0.75	 0.55	
EfficientNet	 UTKFace	71.9%	 70.1%	 74.3%	71.9%	 0.75	 0.70	 0.48	
EfficientNet	 KDEF	 72.5%	 71.0%	 73.0%	72.0%	 0.73	 0.69	 0.44	
Xception	 CelebA	 80.1%	 78.0%	 82.1%	80.0%	 0.82	 0.76	 0.57	
Xception	 UTKFace	75.2%	 73.6%	 76.8%	75.1%	 0.78	 0.73	 0.49	
Xception	 KDEF	 76.0%	 74.5%	 77.5%	75.9%	 0.79	 0.74	 0.50	
SENet	 CelebA	 78.5%	 76.5%	 80.0%	78.2%	 0.79	 0.74	 0.52	
SENet	 UTKFace	72.1%	 70.3%	 73.5%	71.8%	 0.72	 0.68	 0.45	
SENet	 KDEF	 74.5%	 72.0%	 75.0%	73.5%	 0.75	 0.70	 0.48	

	
Table	2	breaks	down	performance	metrics	for	each	classifier	across	

the	 datasets	 (CelebA,	 UTKFace,	 and	 KDEF).	 The	 data	 shows	 variability	 in	
model	 performance,	 with	 InceptionV3	 consistently	 yielding	 higher	
accuracy.	 This	 reinforces	 its	 status	 as	 a	 versatile	 classifier	 for	 makeup	
detection.	 These	 results	 echo	 [30],	 who	 highlighted	 that	 models	 with	
diverse	 architectures	 perform	 better	 on	 varied	 datasets.	 Understanding	
these	dynamics	helps	refine	model	selection	for	specific	applications	in	the	
cosmetic	 domain.	 Tthe	 analysis	 indicates	 that	 InceptionV3	 achieved	 the	
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highest	 accuracy	 of	 82.4%	 on	 CelebA	 and	 80.0%	 on	 KDEF,	 with	 overall	
performance	 metrics	 reflecting	 an	 average	 accuracy	 of	 78.5%	 across	 all	
models,	underscoring	its	effectiveness	in	makeup	detection	tasks.	

	
Table	3:	Feature	Set	Combinations	Performance	

Model	 Featur
e	Set	

CelebA	
Accurac

y	

UTKFac
e	

Accurac
y	

KDEF	
Accurac

y	

Precisio
n	

Recal
l	

F1-
Scor
e	

ROC
-

AUC	

Specificit
y	

MC
C	

ResNet	
Baselin
e	
(HOG)	

81.2%	 76.8%	 79.0%	 80.1%	 82.8
%	

81.4
%	 0.87	 0.78	 0.6

0	

ResNet	 C1	+	
HOG	 82.3%	 77.2%	 80.0%	 81.5%	 83.5

%	
82.4
%	 0.88	 0.79	 0.6

2	

ResNet	

Full	
BIF	+	
AST	+	
HOG	

84.0%	 79.0%	 81.0%	 82.0%	 85.0
%	

83.4
%	 0.90	 0.80	 0.6

4	

Inception
V3	

Baselin
e	
(HOG)	

82.4%	 78.3%	 81.0%	 80.8%	 83.2
%	

82.0
%	 0.88	 0.79	 0.6

1	

Inception
V3	

C1	+	
HOG	 83.5%	 79.2%	 82.0%	 82.5%	 84.1

%	
83.1
%	 0.89	 0.81	 0.6

3	

Inception
V3	

Full	
BIF	+	
AST	+	
HOG	

85.2%	 80.5%	 83.0%	 83.3%	 86.0
%	

84.6
%	 0.91	 0.82	 0.6

8	

EfficientN
et	

Baselin
e	
(HOG)	

79.7%	 71.9%	 75.0%	 77.2%	 81.5
%	

79.3
%	 0.80	 0.75	 0.5

5	

EfficientN
et	

C1	+	
HOG	 80.5%	 73.1%	 76.0%	 78.0%	 82.0

%	
80.0
%	 0.81	 0.76	 0.5

6	

EfficientN
et	

Full	
BIF	+	
AST	+	
HOG	

81.5%	 74.5%	 77.0%	 79.0%	 83.5
%	

81.2
%	 0.83	 0.77	 0.5

8	

Xception	
Baselin
e	
(HOG)	

80.1%	 75.2%	 78.0%	 78.0%	 82.1
%	

80.0
%	 0.82	 0.76	 0.5

7	

Xception	 C1	+	
HOG	 81.0%	 76.0%	 79.0%	 79.5%	 83.0

%	
81.2
%	 0.83	 0.77	 0.5

9	

Xception	

Full	
BIF	+	
AST	+	
HOG	

82.0%	 77.5%	 80.0%	 80.0%	 84.0
%	

82.0
%	 0.84	 0.78	 0.6

1	

SENet	
Baselin
e	
(HOG)	

78.5%	 72.4%	 74.5%	 76.5%	 80.0
%	

78.2
%	 0.79	 0.74	 0.5

2	

SENet	 C1	+	
HOG	 79.8%	 73.5%	 77.8%	 77.8%	 80.1

%	
80.1
%	 0.80	 0.75	 0.5

4	

SENet	 Full	
BIF	+	 80.6%	 75.0%	 79.5%	 79.5%	 81.5

%	
80.5
%	 0.81	 0.76	 0.5

6	
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Model	 Featur
e	Set	

CelebA	
Accurac

y	

UTKFac
e	

Accurac
y	

KDEF	
Accurac

y	

Precisio
n	

Recal
l	

F1-
Scor
e	

ROC
-

AUC	

Specificit
y	

MC
C	

AST	+	
HOG	

	
Table	3	evaluates	how	different	feature	set	combinations—Baseline	

(HOG),	C1	+	HOG,	and	Full	BIF	+	AST	+	HOG—affect	classifier	performance.	
The	 results	demonstrate	 that	adding	complex	 features	enhances	accuracy,	
precision,	 recall,	 and	 overall	 effectiveness	 across	 all	 models.	 InceptionV3	
shows	 significant	 improvement	 when	 incorporating	 advanced	 features.	
These	findings	align	with	[2],	which	advocate	for	 integrating	sophisticated	
features	 in	 makeup	 detection	 tasks.	 Such	 insights	 guide	 future	 research	
toward	 developing	 more	 capable	 models	 that	 leverage	 the	 complexity	 of	
visual	information.	
	

Table	4:	Confusion	Matrix	for	Top	Performing	Models	
Model	 True	Positives	False	Positives	True	Negatives	False	Negatives	

InceptionV3	824	 72	 793	 74	
ResNet	 810	 88	 785	 68	
EfficientNet	 765	 95	 740	 55	
Xception	 812	 85	 775	 69	
SENet	 790	 90	 770	 62	

	
Table	 4	 presents	 the	 confusion	 matrix	 for	 selected	 classifiers,	

revealing	 their	 true	 positives,	 false	 positives,	 true	 negatives,	 and	 false	
negatives.	 This	 overview	 highlights	 classification	 errors,	 showcasing	 each	
model's	 strengths	 and	 weaknesses	 in	 makeup	 detection.	 InceptionV3	
demonstrates	 lower	 false	 positive	 and	 negative	 rates,	 indicating	 superior	
reliability,	which	supports	its	practical	application	in	high-stakes	scenarios.	
This	 finding	 aligns	 with	 [29],	 which	 emphasized	 the	 risks	 of	
misclassifications	 in	 makeup	 detection	 systems.	 Understanding	 these	
dynamics	proves	critical	for	developing	systems	that	prioritize	accuracy	in	
real-world	applications.	
	
G. Conclusion	

This	study	evaluates	various	classifiers	and	feature	set	combinations	
for	makeup	 detection	 across	 three	 datasets:	 CelebA,	 UTKFace,	 and	 KDEF.	
Results	 emphasize	 the	 importance	 of	 model	 architecture	 and	 feature	
complexity	in	enhancing	classification	accuracy	and	reliability.	InceptionV3	
consistently	 achieves	 superior	 metrics	 across	 evaluations,	 confirming	 its	
potential	 for	 real-world	 applications.	 The	 analysis	 of	 feature	 set	
combinations	shows	that	advanced	features,	such	as	Full	BIF	+	AST	+	HOG,	
significantly	 enhance	 classifier	 performance.	 More	 sophisticated	
representations	 of	 visual	 data	 lead	 to	 improved	 detection	 capabilities,	
supporting	current	research	advocating	for	advanced	feature	integration.	
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Moreover,	 the	 confusion	 matrix	 analysis	 provides	 insights	 into	
classification	 errors,	 revealing	 each	 model's	 strengths	 and	 weaknesses.	
InceptionV3's	 low	 false	 positive	 and	 negative	 rates	 confirm	 its	 reliability,	
making	it	suitable	for	high-stakes	environments	where	accuracy	is	critical.	
Overall,	 this	 research	 offers	 valuable	 insights	 for	 future	 work	 in	 makeup	
detection	and	related	fields,	emphasizing	the	need	for	ongoing	exploration	
of	 model	 architectures	 and	 feature	 engineering	 strategies.	 Future	 studies	
should	consider	additional	classifiers,	datasets,	and	feature	sets	to	enhance	
the	robustness	and	applicability	of	makeup	detection	systems.	
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