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Sunken	litter	poses	a	severe	ecological	challenge,	threatening	marine	life	and	
global	ecosystems.	Plastic	litter	is	particularly	concerning	as	it	could	disrupt	
the	food	chain,	impacting	the	biodiversity	and	ecosystem.	Over	time,	without	
intervention,	this	issue	poses	a	severe	threat	to	global	food	security,	economic	
stability	 in	 coastal	 communities,	 and	 overall	 environmental	 balance.	
Addressing	this	problem	requires	effective	monitoring	systems	for	detection.	
This	study	enhances	the	YOLOv10	architecture	with	a	novel	Dual	Receptive	
Excitation	(DRE)	module	to	improve	sunken	litter	detection.	The	DRE	module	
uses	 a	 dynamic	 dual-kernel	 approach	 to	 balance	 spatial	 and	 channel-wise	
processing	 in	 Convolutional	 Neural	 Networks,	 adaptively	 adjusting	 the	
receptive	field,	and	capturing	critical	patterns	across	scales.	Evaluations	on	
the	challenging	Trash-ICRA19	dataset,	sourced	from	J-EDI,	demonstrate	the	
model's	 robustness	 under	 diverse	 underwater	 conditions.	 The	 proposed	
system	 achieves	 a	mean	 average	 precision	 (mAP)	 of	 47.4%	 and	 processes	
19.60	frames	per	second,	outperforming	other	studies.	
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A. Introduction	
Sunken	litter	management	has	become	a	major	challenge,	especially	with	

the	growing	amount	of	litter	in	the	oceans.	Around	1.15	to	2.41	million	tons	of	plastic	
litter	enter	the	oceans	through	rivers	yearly,	making	them	a	key	source	of	pollution	
[1].	 Sunken	 litter	 poses	 threats	 by	 endangering	 marine	 and	 terrestrial	 species	
through	entanglement,	ingestion,	and	starvation	[2].	Over	time	these	particles	can	
accumulate	 in	 the	 food	web,	 ultimately	 affecting	 human	 health	 through	 seafood	
consumption.	 They	 also	 contribute	 to	 the	 degradation	 of	 marine	 ecosystems,	
impacting	 biodiversity	 and	 reducing	 the	 ocean's	 ability	 to	 regulate	 the	 climate.	
Without	 intervention	 this	 issue	 poses	 a	 severe	 threat	 to	 global	 food	 security,	
economic	stability	in	coastal	communities,	and	overall	environmental	balance.	The	
measures	of	detection	of	sunken	litter	are	critical	for	protecting	marine	ecosystems	
because	a	small	fraction	of	plastic	litter	could	eventually	rival	the	number	of	fish	[3].	
The	 effort	 focused	 on	 surface-level	 plastic	 litter,	while	 advanced	 technologies	 to	
address	plastic	litter	on	the	ocean	floor	remain	limited.	The	monitoring	system	for	
marine	litter	can	help	to	detect	sunken	litter.	It	could	become	a	preventive	measure	
to	reduce	ocean	litter	[4].	

The	need	for	monitoring	requires	a	system	to	detect	sunken	litter	[5].	Object	
detection	technology	based	on	artificial	intelligence	with	deep	learning	algorithms	
[6],	has	proven	effective	in	identifying	and	counting	litter	objects	in	both	aquatic	and	
coastal	 locations	 in	 real-time.	 Real-time	 detection	 introduces	 additional	
complexities	when	deployed	in	natural	environments	such	as	oceans	and	beaches.	
Problems	such	as	unstable	network	connections,	limited-capability	mobile	devices,	
and	high	energy	consumption	for	data	transmission	underscore	the	importance	of	
localized	and	energy-efficient	processing	[7].	Research	shows	that	object	detection	
systems	 can	 replace	 some	 of	 manual	 work	 required	 in	 marine	 surveys,	 thus	
speeding	up	the	data	collection	process	and	reducing	labor	costs	[8].	Furthermore,	
using	diverse	datasets,	these	systems	can	recognize	various	types	of	litter,	though	
detection	accuracy	may	vary	depending	on	the	object	type.	Nonetheless,	issues	like	
changes	 in	 lighting,	 wave	 interference,	 and	 natural	 litter	 continue	 to	 impact	
performance	in	complex	marine	environments	[9].	

To	overcome	these	challenges,	Convolutional	Neural	Networks	(CNNs)	have	
been	essential	in	extraction	features,	advancing	object	detection	[10].	Models	like	
VGG	[11]	and	ResNet	[12]	achieve	high	accuracy	by	identifying	complex	features	but	
require	 significant	 computational	 resources,	 limiting	 their	 use	 in	 resource-
constrained	 settings.	 More	 efficient	 CNNs	 have	 been	 developed	 to	 achieve	 high	
performance	 on	 mobile	 and	 edge	 devices,	 which	 is	 crucial	 for	 localized	 litter	
detection	systems	[13].	The	YOLO	series,	recognized	for	 its	combination	of	speed	
and	 accuracy,	 has	 become	 a	 popular	 choice	 for	 real-time	 applications	 such	 as	
robotics,	 environmental	monitoring,	 and	 litter	 detection.	 Among	 these,	 YOLOv10	
[14]	 shows	 great	 potential	 for	 enhancing	 sunken	 litter	 detection.	 YOLOv10	 is	 a	
highly	effective	model	for	real-time	object	detection,	particularly	suitable	for	sunken	
litter	 detection.	 Removing	 non-maximum	 suppression	 (NMS)	 and	 using	 a	 dual	
assignment	 strategy,	 improves	 speed,	 accuracy,	 and	 efficiency.	 Features	 such	 as	
decoupled	downsampling,	rank-guided	block	design,	large-kernel	convolution,	and	
partial	 self-attention	 enhance	 its	 performance	 with	 minimal	 additional	 cost.	
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Additionally,	 integrating	 attention	 mechanisms	 can	 improve	 performance	 by	
allowing	the	model	to	focus	on	the	most	critical	features	[15].	

Attention	mechanisms	 [16]	 are	 vital	 in	modern	 deep	 learning,	 dynamically	
highlighting	important	information	while	suppressing	less	useful	details.	In	object	
detection,	 they	 enhance	 accuracy	 by	 improving	 the	 model's	 ability	 to	 prioritize	
relevant	 features	 across	 spatial	 and	 channel	 dimensions.	 This	 capability	 is	
particularly	 beneficial	 in	 underwater	 environments,	where	 variations	 in	 lighting,	
waves,	and	object	sizes	can	hinder	detection.	One	notable	 implementation	of	 this	
approach	 is	 the	 Selective	 Kernel	 Convolution	 [17]	 (SKConv),	 which	 adapts	 the	
receptive	 field	sizes	of	neurons	through	a	dynamic	process.	SKConv	achieves	this	
using	 three	 steps:	 splitting	 features	 into	 multiple	 scales,	 fusing	 them	 to	 form	 a	
comprehensive	representation,	and	selecting	the	most	relevant	features	using	soft	
attention.	In	this	work,	we	propose	a	novel	sunken	litter	detection	system	utilizing	
an	 improved	YOLOv10-nano	model	with	an	additional	 enhanced	 receptive	block.	
This	block	enhances	detection	precision	by	distinguishing	essential	 features	from	
irrelevant	 information.	 It	 discriminates	 features	 using	 two	 distinct	 spatial	 areas,	
allowing	 for	 a	 comparative	 analysis	 of	 spatial	 information.	 Furthermore,	 this	
module	effectively	boosts	feature	extraction	performance.	The	contributions	of	this	
work	can	be	summarized	as	follows:	

1. This	work	 introduces	 litter	detection	 in	underwater	environments	using	
deep	learning	models,	addressing	challenges	unique	to	this	domain.	

2. Performance	improvements	are	achieved	by	integrating	a	selective	kernel	
convolutional	module	 into	 the	 primary	 feature	 extractor	 and	 transition	
block.	 This	 module	 enables	 the	 network	 to	 robustly	 capture	 essential	
features	while	suppressing	less	relevant	information.	

3. A	 comprehensive	 mean	 average	 precision	 (mAP)	 evaluation	 was	
conducted	 using	 the	 Trash-ICRA19	 dataset.	 The	 results	 demonstrate	
improved	precision	over	the	original	YOLOv10-nano	model	and	superior	
performance	compared	to	previous	approaches.	

	
B. Related	Works	

The	 YOLO	 algorithm,	 introduced	 by	 Redmon	 et	 al.,	 [18]	 as	 one	 of	 the	
foundations	 for	 real-time	 object	 detection	 by	 directly	 regressing	 target	 boxes.	
YOLOv5	was	later	developed	using	Pytorch	which	is	more	accessible	and	flexible	for	
the	 research	 community	 than	 the	 previous	 version	 using	 Darknet.	 YOLOv5	
improved	 efficiency	 with	 the	 addition	 of	 the	 C3	 lightweight	 feature	 extraction	
framework	using	variants—S,	M,	L,	and	X—to	adapt	with	different	hardware	and	
performance	 needs	 [19].	 However,	 the	 use	 of	 anchor-based	 prediction	 methods	
creates	 redundant	 boxes,	 making	 them	 not	 suitable	 for	 lightweight	 computing.	
YOLOv8	launched	in	2023	to	incorporate	the	C2f	structure	to	improve	gradient	flow	
and	adopted	an	anchor-free	approach,	reducing	computational	time	and	resources	
[20].	 Despite	 these	 improvements,	 post-processing	 steps	 were	 still	 required.	 To	
overcome	this,	Wang	et	al.	[14]	introduced	YOLOv10,	which	eliminates	the	need	for	
post-processing	 by	 using	 a	 dual	 assignment	 strategy,	 achieving	 faster	 detection	
speeds.	 YOLOv10	 has	 been	 applied	 in	 various	 detection	 tasks.	 For	 example,	 a	
YOLOv10-based	algorithm,	combined	with	FasterNet,	was	used	to	detect	dead	fish,	
a	 significant	 source	 of	 ocean	 pollution,	 while	 reducing	 model	 complexity	 [21].	
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Underwater	 object	 detection	 using	 UM-YOLOv10	 that	 used	 residual	 attention	
module	 R-AM	 [22].	 Another	 application	 of	 YOLOv10	 focuses	 on	 small	 object	
detection	using	drones,	where	a	modified	YOLOv10	model,	LD-YOLOv10,	integrates	
RGLAN.	 This	 feature	 uses	 re-parameterized	 convolutions	 and	 the	 Conv-Tiny	
structure	 for	 efficiency	 [23].	 Another	 modification	 using	 BGF-YOLOv10	 by	
incorporating	BotNet	and	GhostConv	to	enhance	detection	performance	for	small	
objects	[24].	

Study	 by	 [25]	 explores	 underwater	 image	 processing	 and	 object	 detection	
using	 Convolutional	 Neural	 Networks	 (CNNs)	 to	 improve	 detection	 accuracy	 in	
degraded	underwater	images	for	robots.	Similarly,	A	work	[26]	presents	a	two-stage	
framework	combining	object	detection	and	image	quality	restoration	for	unmanned	
underwater	 vehicles	 (UUVs).	 This	 method	 addresses	 challenges	 such	 as	 power	
constraints	 and	 visual	 distortions	 caused	 by	 underwater	 light	 conditions.	
Additionally	 [27],	 enhanced	 the	 Faster	 R-CNN	 algorithm	 for	 underwater	 object	
detection,	including	species	like	holothurians	and	starfish,	by	replacing	the	network	
backbone	with	Res2Net101,	improving	the	receptive	field’s	expressive	capability.	

The	demand	for	efficient	plastic	litter	detection	in	waterways	has	also	driven	
advances	 in	computer	vision	 [9].	Niu	et	al	 [28].	 improved	sunken	 litter	detection	
models	by	integrating	attention	mechanisms	and	architectural	changes,	resulting	in	
better	 performance	 than	 previous	 approaches.	 Harada	 [29]	 et	 al.	 focused	 on	
lightweight	models	for	real-time	edge-device	use,	incorporating	GhostBlockNeck	to	
reduce	 computational	 overhead	 without	 sacrificing	 accuracy	 in	 sunken	 litter	
detection.	Zhu	[9]	et	al.	 improved	sunken	litter	detection	accuracy	by	introducing	
the	 C2f-Faster	 module	 and	 Efficient	 Multiscale	 Attention,	 achieving	 a	 5%	
improvement	in	mean	average	precision	on	the	TRASH-ICRA19	dataset.	Fulton	[18]	
et	 al.	 evaluated	 various	 convolutional	 neural	 network	models	 using	 the	 TRASH-
ICRA19	dataset,	providing	important	benchmarks	for	sunken	litter	detection.	These	
studies	highlight	the	effectiveness	of	model	improvements	and	dataset	utilization	in	
boosting	 detection	 accuracy	 and	 efficiency,	 laying	 the	 groundwork	 for	 future	
advancements.	

	
C. Research	Method	

Sunken	 Litter	 detection	 is	 a	 critical	 technology	 in	 oceanic	 exploration.	
However,	 the	challenges	posed	by	 the	complex	underwater	environment	and	 the	
presence	of	numerous	small	targets	often	hinder	the	effectiveness	of	conventional	
detection	 systems.	 These	 systems	 frequently	 fail	 to	 meet	 desired	 performance	
standards	 and	 are	 often	 too	 large	 in	 model	 size,	 making	 them	 unsuitable	 for	
deployment	on	ROVs	with	limited	memory	capacity.	To	overcome	these	issues,	we	
have	designed	and	enhanced	a	real-time	underwater	target	detection	model	based	
on	YOLOv10,	which	outperforms	existing	 technologies	 in	 terms	of	both	detection	
speed	and	accuracy.	The	proposed	model	 incorporates	backbone	and	neck	 layers	
specifically	optimized	for	underwater	conditions,	alongside	C2f	modules	tailored	for	
improved	performance.	This	modified	YOLOv10	algorithm	excels	in	detecting	small	
underwater	 objects,	 achieving	 exceptional	 accuracy	 while	 meeting	 the	 real-time	
detection	requirements.	Additionally,	the	optimized	model	incorporates	a	dynamic	
selection	mechanism	 in	 its	CNN	architecture,	 enabling	each	neuron	 to	adaptively	
adjust	 its	 receptive	 field	 size	based	on	multiple	 scales	 of	 input	 information.	This	
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innovation	enhances	the	model's	ability	to	capture	diverse	feature	representations,	
improving	 its	 compatibility	 with	 lightweight	 detection	 systems	 and	 underwater	
wireless	sensor	platforms.	In	this	work,	we	will	discuss	the	following	components	
of	the	proposed	method	in	detail:	

Research	methods	can	be	supplemented	by	tables,	graphs	(pictures),	and/or	
charts.	The	table	does	not	contain	vertical	(upright)	lines.	Horizontal	(flat)	lines	in	
the	 table	 are	 only	 found	 at	 the	 beginning	 and	 end	of	 the	 table.	 Example	 of	 table	
format:	
1. Backbone	

Backbone	 is	 fundamental	 in	 distinguishing	 meaningful	 features	 from	
irrelevant	ones,	forming	the	core	of	object	detection	networks.	
	

	
	

Figure	1.	Proposed	Architecture	Module	Attention	DRE	as	an	Improved	Model	of	
YOLOv10	:	Backbone	of	YOLOv10	by	replacing	C2f	to	C2f-DRE	on	P2	and	

P3(a),	Neck	of	YOLOv10	by	replacing	C2f	to	C2f	DRE	on	P16	and	P19(b),	Head	
on	YOLOv10(c).	

	
This	process	relies	on	convolutional	layers,	which	efficiently	extract	and	refine	

essential	 patterns	 while	 discarding	 noise.	 By	 leveraging	 multi-kernel	 weighting,	
these	 layers	effectively	 focus	on	 target	 information.	During	 training,	 the	network	
iteratively	 updates	 the	 weights	 of	 its	 filters	 to	 ensure	 precise	 and	 reliable	
predictions.	 Our	 proposed	 architecture	 was	 an	 improved	 model	 from	 YOLOv10	
architecture,	and	the	feature	extraction	layers,	referred	to	as	the	backbone	in	Figure	
1(a),	were	designed	to	hierarchically	process	input	data	to	generate	low-level,	mid-
level,	and	high-level	features.	These	hierarchical	features	are	critical	to	the	detection	
process,	 as	 they	 enable	 the	 model	 to	 identify	 objects	 of	 varying	 sizes	 and	
complexities.	The	backbone’s	architecture	is	tailored	to	support	the	three	detection	
heads,	which	operate	at	different	scales.	This	setup	ensures	that	small	objects	are	
detected	in	fine-grained	low-level	features,	while	larger	and	more	complex	objects	
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are	captured	using	high-level	contextual	features.	By	organizing	the	backbone	in	this	
manner,	our	proposed	architecture	achieves	robust	multi-scale	detection	with	high	
accuracy	and	efficiency.	
2. C2f	

The	C2f	block	in	the	YOLOv10	architecture	is	designed	to	extract	rich	feature	
representations	 from	 input	 images	 while	 maintaining	 computational	 efficiency,	
contributing	to	a	balance	between	speed	and	accuracy.	However,	a	key	limitation	of	
the	original	C2f	block	in	Figure	2(a)	is	its	relatively	straightforward	structure,	which	
lacks	additional	mechanisms	to	enhance	feature	refinement	and	focus	on	important	
regions.	Specifically,	after	the	concatenation	step,	the	output	directly	passes	through	
the	final	convolutional	 layer	without	further	enhancement,	which	may	restrict	 its	
ability	to	capture	fine-grained	details	and	complex	patterns	in	challenging	tasks.	
	

	
	

Figure	2.	C2f	Block	in	YOLOv10(a),	Modified	C2f	Block	using	module	DRE	after	the	
process	of	C2f	to	enhance	performance(b).	

	
To	 address	 this	 weakness,	 the	 proposed	 C2f-DRE	 block	 in	 Figure	 2(b)	

introduces	a	more	advanced	structure	by	 integrating	an	additional	 convolutional	
layer	 and	 the	 Dual	 Receptive	 Excitation	 (DRE)	 module	 immediately	 after	 the	
concatenation	step.		

The	DRE	module	is	strategically	designed	to	amplify	feature	representation	by	
emphasizing	 critical	 regions	 and	 incorporating	multi-scale	 information,	 enabling	
the	model	 to	 capture	more	 nuanced	 details	 and	 handle	 complex	 scenarios	more	
effectively.		

Furthermore,	while	the	original	C2f	relies	on	two	simple	paths—one	through	
the	Bottleneck	block	and	another	direct	bypass—for	basic	 feature	extraction,	 the	
C2f-DRE	 expands	 these	 capabilities	 with	 the	 DRE	 module,	 offering	 a	 more	
sophisticated	and	comprehensive	approach	to	feature	extraction.	This	improvement	
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leads	 to	 enhanced	 performance	 and	 better	 detection	 accuracy,	 particularly	 in	
scenarios	requiring	deeper	and	more	complex	feature	representations.	
3. SPPF	

The	 Spatial	 Pyramid	 Pooling	 Fast	 (SPPF)	 block	 is	 an	 advanced	 technique	
utilized	in	the	YOLOv10	model,	representing	an	improvement	over	the	traditional	
Spatial	Pyramid	Pooling	(SPP)	method.	It	is	designed	to	address	challenges	related	
to	 scaling	 and	 computational	 efficiency	 when	 handling	 objects	 of	 varying	 sizes	
within	an	image.	

The	process	begins	with	a	1×1	convolution,	followed	by	the	concatenation	of	
three	 stacks	of	2D	max	pooling	operations	with	kernel	 sizes	of	5,	 9,	 and	13.	The	
pyramid-shaped	arrangement	of	the	kernel	sizes	in	the	max	pooling	stacks	aims	to	
achieve	 a	 broader	 receptive	 field	 for	 both	 local	 and	 global	 features	 without	
compromising	speed.	This	versatility	enables	the	SPPF	block	to	effectively	adapt	to	
objects	of	different	sizes	across	various	scenarios.	
4. PSA	

The	Partial	Self-Attention	(PSA)	module	in	YOLOv10	is	introduced	to	enhance	
the	model's	global	representation	learning	ability	while	maintaining	computational	
efficiency.	 PSA	 is	 an	 optimized	 self-attention	mechanism	 tailored	 for	 CNN-based	
object	detection	tasks.	In	YOLOv10,	PSA	represents	a	significant	enhancement	to	the	
model's	 architecture	 by	 incorporating	 global	 modeling	 capabilities	 without	
imposing	heavy	computational	demands.	By	strategically	designing	and	placing	PSA,	
YOLOv10	 achieves	 better	 accuracy-efficiency	 trade-offs	 compared	 to	 earlier	
versions.	

The	PSA	in	YOLOv10	is	designed	to	improve	the	model's	ability	to	learn	global	
representations,	which	has	been	a	limitation	in	CNN-based	architectures.	This	PSA	
mechanism	allows	the	model	to	capture	global	relationships	between	features	in	an	
image	without	adding	excessive	computational	costs.	With	this	approach,	YOLOv10	
enhances	object	detection	capabilities,	especially	in	handling	complex	contexts	or	
objects	 of	 varying	 sizes.	 The	 strategic	 placement	 of	 PSA	within	 the	 architecture	
ensures	 the	 model	 can	 effectively	 utilize	 attention	 mechanisms,	 achieving	 an	
optimal	balance	between	accuracy	and	efficiency	compared	to	previous	versions.	
5. Proposed	Module	

In	 Figure	 3,	 The	 proposed	 module	 was	 named	 Dual	 Receptive	 Excitation	
Module	(DRE	Block)	as	 it	 introduces	a	dynamic	dual-kernel	approach	to	enhance	
feature	extraction	in	convolutional	neural	networks	(CNNs).	This	module	leverages	
the	 complementary	 properties	 of	 1	 ×	 1	 and		 3	 ×	 3	 kernels,	 effectively	 balancing	
spatial	and	channel-wise	information	processing.	By	adopting	a	dynamic	selection	
mechanism,	the	module	allows	neurons	to	adaptively	adjust	their	receptive	field	size	
based	on	 input	 features,	 ensuring	 that	 critical	 patterns	 across	 varying	 scales	 are	
captured	effectively.		

The	 combination	 of	 these	 kernels	 allows	 the	 proposed	 module	 to	 process	
multi-scale	information	efficiently	while	maintaining	a	low	computational	footprint.	
The	dynamic	selection	mechanism	ensures	that	the	module	prioritizes	features	most	
relevant	 to	 the	 task,	 enhancing	 both	 accuracy	 and	 efficiency.	 This	 module	 is	
seamlessly	 integrated	 into	 the	 network's	 architecture,	 contributing	 to	 improved	
detection	performance,	particularly	in	scenarios	requiring	the	recognition	of	small	
and	intricate	objects.	
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Figure	3.	DRE	Block	for	balancing	spatial	and	channel	wise	processing(a),	
Convolution-BatchNorm-ReLu(CBR)	Block	to	extract	and	normalize	features	

while	ensuring	robustness	with	non	linear	activation(b).	
	

In	 Equation	 1,	 the	 input	 feature	map	X	 is	 processed	 through	 two	 separate	
convolution	 layers	with	kernels	of	 receptive	 field	 size	1×1	and	3×3,	 respectively.	
Each	convolution	operation	is	followed	by	the	application	of	an	activation	function	
σ,	specifically	the	ReLU	function,	which	introduces	non-linearity	to	the	model.	The	
output	of	the	activation	function	is	then	normalized	using	Batch	Normalization	(BN)	
to	stabilize	training,	improve	generalization,	and	ensure	consistent	feature	scaling	
across	different	layers.	σ	

	
𝑅! = 𝐵𝑁(𝜎(𝐶𝑜𝑛𝑣!×!(𝑋)), 		𝑅# = 𝐵𝑁(𝜎(𝐶𝑜𝑛𝑣$×$(𝑋)).                      (1)	

	
Equation	 2	 computes	 the	 intermediate	 feature	 representation	 𝑅% 	 by	

combining	 the	 outputs	𝑅!	 and	𝑅#	 using	 element-wise	 addition	⊕,	 followed	 by	 a	
Global	 Average	 Pooling	 (𝐺𝐴𝑃)	 operation	 to	 aggregate	 spatial	 information	 into	 a	
channel-wise	 descriptor.	 The	 pooled	 features	 are	 then	 scaled	 using	 a	 learnable	
weight	matrix	 	𝑊&_()/+ 	where	𝑊&_()	 is	Fully	Connected	operation	with	the	channel	
same	as	the	input,	and	r		is	a	reduction	ratio	by	2	that	controls	the	dimensionality	of	
the	 channel,	 reducing	 computational	 complexity	 and	 emphasizing	 channel-wise	
dependencies.	

	
𝑅% = 	𝑊!"#

$
6𝐺𝐴𝑃(𝑅!⊕𝑅#)7.                                            (2)	

	
In	equation	3,	the	compressed	feature	descriptor	RT	is	transformed	into	two	

separate	sets	of	weights	𝑅,!	and	𝑅,#	through	learnable	weight	matrices	𝑊.	These	
weights	are	used	to	modulate	the	importance	of	the	respective	feature	maps	𝑅!	and	
𝑅#,	enabling	the	model	to	adaptively	select	and	emphasize	features	across	different	
kernel	sizes.	
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𝑅,! 	= 	𝑊&_()(𝑅%), 		𝑅,# = 𝑊&_()(𝑅%).																																									 (3)	

	
Equation	 4	 applies	 attention	weights	 to	 the	 feature	maps	𝑅-!	 and	𝑅-#.	 The	

weights	𝑅,!	and	𝑅,#	are	normalized	by	their	sum	to	generate	soft	attention	masks.	
These	 masks	 are	 then	 applied	 to	𝑅!	 and	𝑅#	 via	 element-wise	 multiplication	⊗,	
dynamically	scaling	the	feature	maps	based	on	their	relevance	to	the	input.	

	
𝑅-! 	= 	

.%&'

.%&'/	.%&(
	⨂	𝑅!,		𝑅-# 	= 	

.%&(

.%&'/	.%&(
	⨂	𝑅#.																												(4)	

	
Finally	 in	 equation	 5,	 the	 scaled	 feature	maps	𝑅-!	 and	𝑅-#	 are	 fused	 using	

element-wise	 addition	 ⊕	 to	 produce	 the	 final	 output	 feature	 map	 𝐷𝑅𝐸.	 This	
combination	enables	the	model	 to	 leverage	complementary	 information	captured	
by	 different	 kernel	 sizes,	 enhancing	 its	 ability	 to	 represent	 multi-scale	 features	
effectively.	

	
𝐷𝑅𝐸	 = 	𝑅-!⊕𝑅-#.																																																													(5)	

	
By	incorporating	the	design	principles	of	our	proposed	module	and	refining	its	

implementation	with	a	 focus	on	efficient	kernel	utilization,	 the	proposed	module	
provides	 a	 robust	 solution	 for	 adaptive	 feature	 extraction,	 aligning	 with	 the	
demands	 of	 real-time	 object	 detection	 applications,	more	 importantly	 in	 sunken	
litter	detection.	
6. Neck	

The	neck	part	 of	 the	deep	 learning	architecture	 shown	 in	Figure	1(b)	 is	 an	
important	component	that	processes	and	combines	features	from	different	levels	of	
the	backbone.	In	this	diagram,	the	neck	uses	several	mechanisms	like	the	Conv	layer,	
C2f	layer,	C2f-DRE	layer,	C2f-CIB	layer,	Upsample,	Concat,	and	SCDown	to	organize	
information	from	high	to	 low	resolution.	The	purpose	of	 this	structure	 is	 to	align	
spatial	 and	 contextual	 information,	 resulting	 in	 rich	 features	 for	 the	 detection	
process	in	the	head	model.	The	main	advantage	of	the	neck	design	in	Figure	1(b)	is	
its	 flexibility	 in	 efficiently	 combining	 multi-resolution	 features.	 With	 different	
pathways	 that	 blend	 features	 from	 small	 to	 large	 scales,	 the	 model	 can	 better	
understand	objects	of	various	sizes.	This	is	especially	important	in	tasks	like	object	
detection,	where	objects	can	appear	at	different	scales	within	the	same	image.	The	
combination	of	these	elements	creates	highly	optimized	feature	representations	for	
use	by	the	head	in	the	final	detection	process.	
7. Detection	Layer	and	Loss	

The	 head	 part	 shown	 in	 Figure	 1(c)	 consists	 of	 a	 classification	 head	 that	
identifies	the	class	of	each	object	while	estimating	the	probability	for	each	class	with	
a	 total	of	 the	 sum	of	probabilities	 is	one	and	a	 regression	head	 that	predicts	 the	
bounding	 box	 coordinates	 for	 detected	 objects	 including	 the	 center	 coordinates,	
width	and	height	while	providing	a	confidence	score.	The	heads	are	using	Dual	label	
assignment	 that	 is	 composed	 of	 One-To-Many	 Head	 that	 retains	 the	 original	
structure	and	optimization	objective	of	the	model	to	make	several	predictions	and	
One-to-One	Head	that	uses	a	matching	strategy	for	label	assignment,	ensuring	each	
ground	 truth	 is	 matched	 with	 a	 single	 prediction.	 Both	 heads	 were	 used	
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simultaneously	during	inference,	allowing	the	backbone	and	neck	of	the	model	to	
leverage	 the	 comprehensive	 supervision	 from	 the	 one-to-many	 assignments	 that	
improved	model’s	learning	and	accuracy.	

This	 model	 utilizes	 CIoU	 loss,	 which	 enhances	 bounding	 box	 accuracy	
compared	 to	 the	 standard	 IoU.	 The	 key	 factors	 in	 CIoU	 include	 the	 area	 overlap	
between	ground	truth	boxes,	the	Euclidean	distance	between	the	center	points	of	
the	 predicted	 and	 ground	 truth	 boxes,	 and	 the	 aspect	 ratio,	which	measures	 the	
similarity	 between	 the	 height-to-width	 ratios	 of	 the	 predicted	 and	 ground	 truth	
boxes,	 thereby	 improving	 the	 alignment	 and	 reducing	 the	 loss.	 Additionally,	 the	
model	employs	classification	loss	to	evaluate	errors	in	classifying	objects	within	the	
predicted	bounding	boxes,	 and	distributive	 focal	 loss	 to	handle	 small	or	hard-to-
classify	objects	by	predicting	a	distribution	of	confidence	scores.	
	
D. Implementation	Setup	

To	evaluate	the	proposed	method,	we	prepared	the	implementation	setup	and	
dataset	 to	achieve	optimal	performance	while	balancing	computational	efficiency	
and	 accuracy	 of	 the	 model.	 The	 experiments	 were	 conducted	 using	 a	 high-
performance	 computing	 environment	 to	 ensure	 reproducibility	 and	 scalability.	
Specific	 configurations	 and	 datasets	 were	 carefully	 selected	 to	 align	 with	 the	
research	objectives	and	optimize	the	training	process.	Details	of	the	implementation	
will	be	explained	in	the	section	below.	
1. Training	and	Testing	Configuration	

As	 shown	 in	 Table	 1	 the	 training	 phase	 of	 the	 proposed	 research	 was	
implemented	using	the	Kaggle	platform,	which	provides	an	accessible	and	efficient	
environment	 for	 deep	 learning	 experiments.	 The	 training	 was	 performed	 on	
Kaggle's	GPU,	specifically	the	G100	model,	which	offers	substantial	computational	
power	 for	handling	 complex	models.	The	 input	 images	were	 resized	 to	640×640	
pixels	 to	 maintain	 a	 balance	 between	 computational	 efficiency	 and	 retaining	
important	spatial	features.	

	
Table	1.	Training	and	Testing	Configuration	

Parameters	 Setup	
Platform/device	 Kaggle	
GPU	 P100	
Image	Size	 640	x	640	pixels	
Epochs	 300	
Batch	Size	 32	
Optimizer	 Stochastic	Gradient	Descent	(SGD)	
Learning	Rate	 0,01	

	
The	 training	 process	 spanned	 300	 epochs,	 ensuring	 that	 the	 model	 was	

provided	 with	 sufficient	 iterations	 to	 converge.	 A	 batch	 size	 of	 16	 was	 chosen,	
balancing	 memory	 constraints	 with	 training	 stability.	 The	 Stochastic	 Gradient	
Descent	 (SGD)	 optimizer	 was	 employed	 due	 to	 its	 robustness	 and	 efficiency	 in	
handling	large	datasets.	The	learning	rate	was	initialized	at	0.01	to	achieve	a	steady	
convergence	rate	without	overshooting	the	minima.		
	

https://doi.org/10.33022/ijcs.v14i2.4635


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i2.4635	 	 2310	

Table	2.	Inference	Configuration	
Parameters	 Setup	

Operation	System	 Ubuntu	
Compiler	 Python	3.9.20	
Network	construction	method	 Pytorch	2.0	
CPU	 AMD	Ryzen	5	4500	6-Core	
Image	Size	 640	x	640	pixels	

	
For	the	Inference	phase,	the	model	inference	and	evaluation	were	performed	

on	a	local	machine	using	a	CPU	setup.	This	approach	allows	for	testing	the	model’s	
deployment	capabilities	in	environments	with	limited	computational	resources.	
2. Datasets	

The	 dataset	 utilized	 for	 this	 research	 is	 the	 Trash-ICRA19	 dataset,	 sourced	
from	the	J-EDI	marine	litter	dataset,	as	described	by	Fulton	et	al.	[30]	This	dataset	
provides	a	diverse	set	of	5,720	training	data	images,	820	validation	data	images,	and	
1145	testing	data	images	as	shown	in	Table	3	extracted	from	real-world	underwater	
video	footage,	which	varies	significantly	in	quality,	depth,	and	lighting	conditions.	
Each	image	is	annotated	with	bounding	boxes	to	label	instances	of	litter,	biological	
objects	(e.g.,	plants	and	animals),	and	remotely	operated	vehicles	(ROVs).	

	
Table	3.	Dataset	Configuration	

Parameters	 Setup	
Training	Data	 5.720	images	
Validation	Data	 820	images	
Testing	Data	 1145	images	

	
The	dataset	reflects	challenging	real-world	conditions,	such	as	varying	states	

of	decay,	occlusion,	and	overgrowth	of	objects,	as	well	as	changes	in	water	clarity	
and	 light	 quality	 between	 videos.	 This	 variability	makes	 the	 dataset	 particularly	
suitable	for	developing	robust	detection	models.	The	ultimate	goal	of	this	dataset	is	
to	 facilitate	 research	 in	 autonomous	 litter	 detection	 and	 removal,	 a	 critical	 step	
toward	addressing	sunken	litter	issues.	

	

	
	

Figure	4.	Sample	Sunken	Litter	from	dataset	Trash	ICRA-19	that	shows	the	litters	
under	diverse	underwater	conditions.	
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The	 variety	 and	 configuration	 of	 the	 images	 make	 the	 dataset	 ideal	 for	
evaluating	 the	 performance	 of	 adaptive	methods	 such	 as	 the	 proposed	model.	 A	
sample	of	the	dataset	is	shown	in	Figure	4.	
	
E. Result	and	Discussion	

This	section	provides	a	detailed	evaluation	of	the	proposed	underwater	object	
detection	model.	The	analysis	is	divided	into	three	key	aspects:	the	Ablation	Study,	
which	investigates	the	impact	of	individual	components	of	the	model	architecture	
on	 its	performance;	 the	Evaluation	on	Datasets,	which	demonstrates	 the	model's	
detection	accuracy	and	reliability	under	real-world	underwater	conditions;	and	the	
Runtime	Efficiency,	which	assesses	the	computational	speed	and	suitability	of	the	
model	 for	 real-time	 applications.	 These	 evaluations	 collectively	 highlight	 the	
effectiveness	 and	 practicality	 of	 the	 proposed	model	 in	 addressing	 challenges	 in	
underwater	object	detection.	
1. Ablation	Study	

An	ablation	study	 is	a	crucial	step	 in	evaluating	the	effectiveness	of	specific	
improvements	 in	 a	model.	 By	 analyzing	 the	 impact	 of	 individual	 components	 or	
modifications,	researchers	can	confirm	which	changes	lead	to	better	performance.	
This	 ensures	 that	 the	 proposed	 model's	 enhancements	 are	 meaningful	 and	 not	
coincidental.	

	
Table	4.	Ablation	Table	with	related	works	using	dataset	Trash-ICRA19	
			Model	 				GFLOPS	 Parameter	 mAP	50%	
YOLOv10n	 8.4	 2,7	 			46.3	

YOLOv10	C2f-DRE	
(Ours)	

								11.2	 3,1	 						47.4	 	

	
In	Table	4,	a	comparison	between	the	YOLOv10n	and	the	proposed	YOLOv10	

C2f-DRE	model	 is	provided,	showcasing	the	effectiveness	of	the	 latter	 in	terms	of	
computational	efficiency	and	detection	accuracy.	The	metrics	used	include	GFLOPS	
(measuring	 computational	 complexity),	 the	 number	 of	 parameters	 (indicating	
model	 size),	 and	mAP@50%	 (mean	 average	 precision	 at	 50%	 Intersection	 over	
Union).	These	metrics	highlight	the	trade-off	between	computational	efficiency	and	
accuracy.	

From	the	table,	it	can	be	observed	that	the	proposed	YOLOv10	C2f_DRE	model	
achieves	 better	 detection	 accuracy,	 with	 an	 mAP@50%	 of	 47.4%,	 compared	 to	
46.3%	for	the	YOLOv10n	model.	While	the	proposed	model	requires	slightly	more	
computational	 power	 and	 has	 a	 higher	 parameter	 count,	 the	 improvement	 in	
accuracy	demonstrates	the	value	of	the	modifications.	
	

Table	5.	Comparison	Table	with	related	works	using	dataset	Trash-ICRA19	
			Model	 				GFLOPS	 Parameter	 mAP	50%	

YOLOv5-ghost	[8]	 1.5	 1,5	 46.6	
YOLOv8[9]	 8.1	 3,01	 45.5	

YOLOv8–C2f	Faster	EMA	[9]	 6.5	 -	 47.2	
YOLOv10	C2f-DRE	

(Ours)	
								11.2	 3,1	 					47.4	 	
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As	for	Table	5,	it	presents	the	performance	of	the	proposed	YOLOv10	C2f-DRE	

model	 compared	 to	 other	models	 using	 the	 Trash-ICRA19	 dataset.	 The	 YOLOv5-
ghost	model	achieves	an	mAP@50%	of	46.6%,	showing	solid	performance	among	
the	earlier	models.	YOLOv8,	however,	records	a	slightly	lower	mAP@50%	of	45.5%.	
The	 YOLOv8-C2f	 Faster	 EMA	 improves	 detection	 accuracy	 further,	 achieving	 an	
mAP@50%	of	47.2%.	

On	the	other	hand,	our	proposed	model	achieves	an	accuracy	of	47.4	mAP	at	
50%,	which	is	higher	than	that	of	previous	models	at	best	with	YOLOv8-C2f	Faster	
EMA[9]	with	gap	0.2	at	mAP	50%	with	4,7	GFLOPS	increased.	This	result	highlights	
the	 model’s	 effectiveness	 in	 accurately	 detecting	 sunken	 litter	 in	 complex	
environments,	outperforming	all	other	models.	

	
2. Evaluation	on	Datasets	

The	 performance	 evaluation	 of	 using	 the	 proposed	 model	 on	 the	 Testing	
Dataset,	as	illustrated	in	Figure	5,	demonstrates	notable	improvements	in	detection	
precision	 and	 reliability	 compared	 to	 the	 original	 YOLOv10	 model.	 In	 (a),	 the	
original	 YOLOv10	 encounters	 challenges	 in	 accurately	 detecting	 plastic	 objects,	
especially	small	or	partially	obscured	items.	Some	objects	are	either	missed	entirely	
or	 not	 clearly	 localized,	 which	 compromises	 the	 model's	 ability	 to	 perform	
effectively	 in	 underwater	 environments	 characterized	 by	 cluttered	 backgrounds	
and	varying	object	scales.	

In	 contrast,	 (b)	 highlights	 the	 superior	 detection	 precision	 of	 the	 proposed	
model.	 It	consistently	 identifies	objects	with	clearer	and	more	accurate	bounding	
boxes,	ensuring	better	 localization	of	small	and	partially	visible	plastic	 litter.	The	
proposed	 model	 also	 shows	 greater	 resilience	 in	 differentiating	 objects	 from	
complex	underwater	backgrounds,	reducing	missed	detections	and	improving	the	
overall	detection	quality.	
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Figure	5.	Comparison	of	sunken	litter	detection	models	:	YOLOv10	original	

detection	shows	lack	of	detection	in	several	objects(a),	Proposed	Model	
detection	shows	capabilities	to	detect	various	objects	of	sunken	litters(b).	

	
These	observations	underscore	the	capability	of	the	proposed	model	to	detect	

sunken	litter	with	greater	precision,	particularly	in	scenarios	involving	small	targets	
and	 challenging	 environmental	 conditions.	 This	 improvement	 enhances	 its	
suitability	 for	 real-time	 underwater	monitoring	 and	 environmental	 conservation	
tasks.	

	
3. Runtime	Efficiency	

Runtime	efficiency	 is	a	critical	metric	 in	evaluating	the	practical	usability	of	
object	 detection	 models,	 particularly	 for	 applications	 requiring	 real-time	
performance	 on	 resource-limited	 devices,	 such	 as	 edge	 computing	 or	 mobile	
platforms.	 It	primarily	measures	how	effectively	a	model	balances	computational	
demands	with	inference	speed,	typically	represented	by	metrics	such	as	latency	and	
frames	per	second	(FPS).	Table	6	provides	a	comparative	analysis	of	 the	runtime	
efficiency	 of	 YOLOv10n	 and	 the	 proposed	 YOLOv10	 C2f-DRE	 (Ours)	 models,	
evaluated	using	a	CPU.	

	
Table	6.	Speed	Table	by	CPU	

Model	 GFLOPS	 Latency/ms	 FPS	
YOLOv10n	 8.4	 66.2		 15.22	

YOLOv10	C2f-DRE	(Ours)	 11.2	 51.4	 19.60	
	

As	 observed	 in	 Table	 6,	 the	 YOLOv10	 C2f-DRE	 demonstrates	 significant	
improvements	 in	 runtime	 efficiency	 compared	 to	 YOLOv10n.	 Despite	 a	 slight	
increase	in	computational	complexity,	as	reflected	by	a	rise	in	GFLOPS	from	8.4	to	
11.2,	 the	proposed	model	achieves	a	remarkable	reduction	 in	 latency,	decreasing	
from	66.2	ms	to	51.4	ms.	This	improvement	translates	into	a	higher	inference	speed,	
with	 the	 FPS	 increasing	 from	 15.22	 to	 19.60.	 These	 results	 indicate	 that	 the	
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enhancements	introduced	in	YOLOv10	C2f-DRE,	such	as	the	integration	of	the	DRE	
module,	not	only	improve	detection	accuracy	but	also	optimize	processing	speed,	
making	it	better	suited	for	real-time	applications	while	maintaining	computational	
efficiency.	
	
F. Conclusion	

In	this	study,	we	proposed	an	advanced	sunken	litter	detection	system	based	on	
the	YOLOv10	architecture,	enhanced	with	the	C2f-DRE	module	and	selective	kernel	
convolution.	 The	 system	 demonstrated	 significant	 improvements	 in	 detection	
accuracy	and	efficiency	for	underwater	environments,	as	evaluated	on	the	TRASH-
ICRA19	dataset.	The	integration	of	dynamic	receptive	fields	and	optimized	feature	
extraction	 techniques	allowed	 the	model	 to	effectively	handle	 challenges	 such	as	
occlusion,	 variable	 lighting,	 and	 complex	 backgrounds.	 The	 proposed	 model	
achieved	a	notable	mean	average	precision	(mAP)	of	47.4%,	outperforming	prior	
models	 such	as	YOLOv8-C2f	Faster	EMA	by	a	margin	of	0.2%,	and	demonstrated	
exceptional	 runtime	 efficiency	 with	 a	 frame	 processing	 rate	 of	 19.60	 FPS,	
significantly	 higher	 than	 YOLOv10n's	 15.22	 FPS.	 Our	 results	 indicate	 that	 the	
proposed	 model	 achieves	 superior	 performance	 compared	 to	 existing	 methods,	
with	 improvements	 in	 mean	 average	 precision	 (mAP)	 and	 processing	 speed,	
validating	its	suitability	for	real-time	applications.	These	advancements	contribute	
to	 the	 broader	 goal	 of	 environmental	 monitoring	 and	 marine	 conservation	 by	
providing	 a	 robust	 tool	 for	 detecting	 sunken	 litter.	 Future	 work	 could	 focus	 on	
integrating	the	system	with	autonomous	underwater	vehicles	for	litter	removal	and	
extending	 its	 capabilities	 to	 identify	 additional	 types	 of	 marine	 pollutants.	 This	
research	highlights	the	potential	of	deep	learning	in	addressing	critical	ecological	
challenges	and	underscores	the	importance	of	continued	innovation	in	underwater	
detection	technologies.	
	
G. Acknowledgment	

Special	 thanks	 to	 all	 members	 of	 the	 AIVision	 research	 group	 for	 their	
contributions	in	making	this	work	possible.	
	
H. References	
[1] L.	C.	M.	Lebreton,	 J.	van	der	Zwet,	 J.-W.	Damsteeg,	B.	Slat,	A.	Andrady,	and	J.	

Reisser,	"River	plastic	emissions	to	the	world’s	oceans,"	Nat.	Commun.,	vol.	8,	
p.	15611,	2017.	

[2] D.	Parasar,	S.	R.	Vadalia,	S.	S.	Chavan,	K.	R.	Bhere,	F.	Nabi,	and	A.	Z.	Patel,	"Waste	
detection	 and	 water	 quality	 assessment	 in	 aquatic	 environments:	 A	
comprehensive	study	using	YoloV8	and	XGBoost,"	2024.	

[3] N.	Maximenko,	A.	P.	Palacz,	L.	Biermann,	J.	Carlton,	L.	Centurioni,	M.	Crowley,	
and	C.	Zabin,	"An	integrated	observing	system	for	monitoring	marine	debris	
and	biodiversity,"	Oceanography,	vol.	34,	no.	4,	pp.	52-59,	2021.	

[4] A.	Redmond,	"Real-time	detection	of	marine	debris	using	YOLOv3,"	Journal	of	
Marine	Science	and	Engineering,	vol.	8,	no.	5,	pp.	345-356,	2020.	

[5] K.	M.	Raju,	S.	Banuri,	H.	S.	Abdussami,	S.	Kowdi,	M.	S.	Mashkour,	Manjunatha,	
N.	 Singh,	 and	 A.	 Kumar,	 "IoT-based	 smart	 garbage	 monitoring	 system	 and	

https://doi.org/10.33022/ijcs.v14i2.4635


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i2.4635	 	 2315	

advanced	disciplinary	approach,"	E3S	Web	of	Conferences,	vol.	507,	no.	01031,	
pp.	1–7,	2024.	doi:	10.1051/e3sconf/202450701031.	

[6] J.	Redmon,	S.	Divvala,	R.	Girshick,	and	A.	Farhadi,	"You	Only	Look	Once:	Unified,	
Real-Time	 Object	 Detection,"	 *arXiv	 preprint	 arXiv:1506.02640v5	 [cs.CV]*,	
May	9,	2016.	[Online].	

[7] S.	 Rajput	 and	 T.	 Sharma,	 "Benchmarking	 Emerging	 Deep	 Learning	
Quantization	 Methods	 for	 Energy	 Efficiency,"	 2024	 IEEE	 21st	 International	
Conference	 on	 Software	 Architecture	 Companion	 (ICSA-C),	 Hyderabad,	 India,	
2024,	pp.	238-242,	doi:	10.1109/ICSA-C63560.2024.00049.	

[8] R.	 Johnson	 and	 L.	 Wang,	 "Application	 of	 deep	 learning	 for	 marine	 debris	
detection,"	Environmental	Monitoring	and	Assessment,	vol.	192,	no.	4,	pp.	245-
258,	2020.	

[9] J.	Zhu,	T.	Hu,	L.	Zheng,	N.	Zhou,	H.	Ge,	and	Z.	Hong,	"YOLOv8-C2f-Faster-EMA:	
An	improved	underwater	trash	detection	model	based	on	YOLOv8,"	Sensors,	
vol.	24,	no.	8,	pp.	2483,	Apr.	2024.	doi:	10.3390/s24082483	

[10] M.	Córdova,	A.	Pinto,	C.	C.	Hellevik,	S.	A.-A.	Alaliyat,	I.	A.	Hameed,	H.	Pedrini,	
and	 R.	 da	 S.	 Torres,	 "Litter	 Detection	 with	 Deep	 Learning:	 A	 Comparative	
Study,"	Sensors,	vol.	22,	no.	2,	p.	548,	Jan.	2022.	

[11] Y.	Zhou,	H.	Chang,	Y.	Lu,	X.	Lu	and	R.	Zhou,	"Improving	the	Performance	of	VGG	
Through	Different	Granularity	Feature	Combinations,"	 in	IEEE	Access,	vol.	9,	
pp.	26208-26220,	2021,	doi:	10.1109/ACCESS.2020.3031908.	

[12] C.	S.	Wickramasinghe,	D.	L.	Marino	and	M.	Manic,	"ResNet	Autoencoders	 for	
Unsupervised	 Feature	 Learning	 From	High-Dimensional	Data:	Deep	Models	
Resistant	 to	 Performance	 Degradation,"	 in	 IEEE	 Access,	 vol.	 9,	 pp.	 40511-
40520,	2021,	doi:	10.1109/ACCESS.2021.3064819.	

[13] S.-A.	Bergies,	P.	T.-T.	Nguyen,	and	C.-H.	Kuo,	 "Cleaning	Robot	Vision	System	
Based	 on	 RGBD	 Camera	 and	 Deep	 Learning	 YOLO-based	 Object	 Detection	
Algorithm,"	International	Journal	of	iRobotics,	vol.	4,	no.	4,	pp.	23-29,	Dec.	2021.	

[14] Wang,	A.;	Chen,	H.;	Liu,	L.;	Chen,	K.;	Lin,	Z.;	Han,	J.;	Ding,	G.	YOLOv10:	Real-Time	
End-to-End	Object	Detection.	arXiv	2024,	arXiv:2405.14458.	

[15] T.	 Shi,	W.	 Zhu	 and	Y.	 Su,	 "Improved	 Light-Weight	 Target	Detection	Method	
Based	 on	 YOLOv5,"	 in	 IEEE	 Access,	 vol.	 11,	 pp.	 38604-38613,	 2023,	 doi:	
10.1109/ACCESS.2023.3267965.	

[16] G.	Brauwers	and	F.	Frasincar,	"A	General	Survey	on	Attention	Mechanisms	in	
Deep	Learning,"	in	IEEE	Transactions	on	Knowledge	and	Data	Engineering,	vol.	
35,	no.	4,	pp.	3279-3298,	1	April	2023,	doi:	10.1109/TKDE.2021.3126456.	

[17] X.	Li,	W.	Wang,	X.	Hu,	and	J.	Yang,	"Selective	Kernel	Networks,"	in	Proceedings	
of	 the	 IEEE/CVF	 Conference	 on	 Computer	 Vision	 and	 Pattern	 Recognition	
(CVPR),	2019,	pp.	510–519.	

[18] Redmon,	J.;	Divvala,	S.;	Girshick,	R.;	Farhadi,	A.	You	Only	Look	Once:	Unified,	
Real-Time	Object	Detection.	In	Proceedings	of	the	Computer	Vision	&	Pattern	
Recognition,	Las	Vegas,	NV,	USA,	27–30	June	2016.	

[19] Jocher,	G.;	Stoken,	A.;	Borovec,	J.;	Chaurasia,	A.;	Changyu,	L.;	Hogan,	A.;	Hajek,	
J.;	Diaconu,	L.;	Kwon,	Y.;	Defretin,	Y.	Ultralytics/Yolov5:	V5.	0-YOLOv5-P6	1280	
Models,	AWS,	Supervise.	Ly	and	YouTube	Integrations.	Zenodo	2021.	

[20] Jocher,	 G.	 Ultralytics	 YOLOv8:	 V6.	 Available	 online:	
https://Github.Com/Ultralytics/Ultralytics	(accessed	on	23	October	2023).	

https://doi.org/10.33022/ijcs.v14i2.4635


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i2.4635	 	 2316	

[21] Q.	Tian,	Y.	Huo,	M.	Yao,	and	H.	Wang,	"A	method	for	detecting	dead	fish	on	large	
water	surfaces	based	on	improved	YOLOv10,"	arXiv	preprint	arXiv:2409.00388,	
2024.	

[22] J.	Wang	and	R.	Mai,	"Um-Yolov10:	An	Underwater	Object	Detection	Algorithm	
for	Marine	Environment	Based	on	Yolov10	Model,"	SSRN.	

[23] X.	Qiu,	Y.	Chen,	W.	Cai,	M.	Niu,	and	 J.	Li,	 "LD-YOLOv10:	A	 lightweight	 target	
detection	algorithm	for	drone	scenarios	based	on	YOLOv10,"	Electronics,	vol.	
13,	no.	16,	p.	3269,	2024.	

[24] Mei	 and	 W.	 Zhu,	 "BGF-YOLOv10:	 Small	 Object	 Detection	 Algorithm	 from	
Unmanned	Aerial	Vehicle	Perspective	Based	on	Improved	YOLOv10,"	Sensors,	
vol.	24,	no.	21,	pp.	6911,	2024.	

[25] Underwater	Object	Detection	Method	Based	on	Improved	Faster	RCNN.	Appl.	
Sci.	2023,	13,	2746.	https://	doi.org/10.3390/app13042746	Academic	Editor:	
Sungho	Kim	Received:	24	January	2023	Revised:	11	February	2023	Accepted:	
15	February	2023	Published:	20	February	2023.	

[26] Sheezan	Fayaz,	S.	A.	Parah,	G.	J.	Qureshi,	J.	Lloret,	J.	Del	Ser,	and	K.	Muhammad,	
"Intelligent	 Underwater	 Object	 Detection	 and	 Image	 Restoration	 for	
Autonomous	Underwater	Vehicles,"	IEEE	Trans.	Veh.	Technol.,	vol.	73,	no.	2,	pp.	
Feb.	2024.	

[27] H.	 Wang	 and	 N.	 Xiao,	 "Underwater	 Object	 Detection	 Method	 Based	 on	
Improved	Faster	RCNN,"	Applied	Sciences,	vol.	13,	no.	4,	p.	2746,	Feb.	2023.	

[28] Jinxing	 Niu,	 Shaokui	 Gu,	 Junmin	 Du,	 Yongxing	 Hao,	 "Underwater	 Waste	
Recognition	 and	 Localization	 Based	 on	 Improved	 YOLOv5,"	 Tech	 Science	
Press,	2023.	Available:TSP_CMC_40489.pdf	(techscience.cn).	

[29] R.	Harada,	T.	Oyama,	K.	Fujimoto,	T.	Shimizu,	M.	Ozawa,	J.	S.	Amar,	and	M.	Sakai,	
"Trash	detection	algorithm	suitable	for	mobile	robots	using	improved	YOLO,"	
J.	 Adv.	 Comput.	 Intell.	 Intell.	 Inform.,	 vol.	 27,	 no.	 4,	 pp.	 622-631,	 2023,	 doi:	
10.20965/jaciii.2023.p0622.	

[30] M.	Fulton,	J.	Hong,	M.	J.	Islam,	and	J.	Sattar,	"Robotic	detection	of	marine	litter	
using	 deep	 visual	 detection	 models,"	 2019	 International	 Conference	 on	
Robotics	and	Automation	(ICRA),	Montreal,	Canada,	2019,	pp.	5752-5758.	doi:	
10.1109/ICRA.2019.8794182.	

	

https://doi.org/10.33022/ijcs.v14i2.4635

