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The XYZ Climatology Station faces challenges in improving the accuracy of 
decadal rainfall forecasts, with an average achievement of 57.4% in 2022 
and 58.8% in 2023, below the organizational performance target of 70% 
accuracy as set in its strategic objectives. This study aims to develop machine 
learning-based predictive models for 16 climate zones to enhance forecast 
accuracy. Five regression algorithms—Multiple Linear Regression, Support 
Vector Regression, Extra Trees Regression, Random Forest Regression, and 
Decision Tree Regression—were tested under two scenarios: input variable 
variations (VR) and time series data length (TS). Results showed that the VR 
scenario increased average accuracy to 71.7% (2022) and 69.4% (2023), 
while the TS scenario achieved 73.1% (2022) and 72.6% (2023). Support 
Vector Regression and Extra Trees Regression demonstrated the best 
performance in most zones. These models are expected to be operationalized 
to improve climatological information services and better meet public and 
stakeholder needs. 
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A. Introduction 
Indonesia, located along the equator and surrounded by the Indian and 

Pacific Oceans, experiences a complex climate shaped by global phenomena such 
as the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), the 
Asia-Australia monsoon circulation, the Intertropical Convergence Zone (ITCZ), 
and its diverse topography [1]. To address these challenges, the Indonesian 
government established an institution tasked with delivering high-quality 
climatological services to support public safety and welfare [2]. Among these 
institutions, the XYZ Climatology Station set a target forecast accuracy of 70% for 
rainfall predictions in 2022 and 2023 [3]. However, the station faced significant 
challenges due to climate variability, exacerbated by anomalous climate events 
such as El Niño and La Niña during these years [4], [5]. To mitigate these 
challenges, XYZ Climatology Station employs multiple climate models and 
integrates their outputs. This approach aims to reduce the uncertainties and errors 
typically associated with single-model limitations and the complexity of climate 
variability [6], [7]. By combining forecasts from various models, each with its own 
strengths and weaknesses, this ensemble method seeks to improve the accuracy of 
climate predictions [6], [8], [9]. Traditional ensemble techniques, such as the 
Average Ensemble or Weighted Average Ensemble, have been used, but these 
methods have yielded suboptimal results at XYZ Climatology Station in practice. An 
evaluation of rainfall forecasts, comparing predicted values with actual 
observational data using the Proportion of Correct (PC) metric, revealed that in 
2022 and 2023, many zones did not meet the accuracy target. The average 
accuracy across all zones was 57.4% in 2022 and 58.8% in 2023, significantly 
below the target set. 

Research on ensemble methods using outputs from different climate models 
to produce more accurate climate forecasts has been widely conducted, yet often 
using different ensemble techniques, such as regression via machine learning 
algorithms. Machine learning is effective for addressing complex problems that 
traditional methods struggle to solve, as it can uncover relevant insights [10], [11]. 
The use of appropriate algorithms for decision-making has been increasingly 
developed, enhancing autonomy and control [12]. Additionally, these algorithms 
improve the accuracy of rainfall data analysis, resulting in more accurate forecasts 
[13]. Explorations of machine learning with 21 datasets from global models (NEX-
GDDP) and 13 CMIP6 models using algorithms such as Multiple Linear Regression 
(MLR), Support Vector Machine (SVM), Extra Tree Regressor (ETR), Random 
Forest (RF), and Long Short-Term Memory (LSTM) have successfully reduced 
prediction uncertainties and enhanced the accuracy of climate models at local 
scales. Li et al. [14] compared ensemble strategies using the average arithmetic 
mean (AM) and linear regression among ensemble members, with RF modeling. 
Their study found that RF in multi-model ensemble processing produced more 
accurate climate projections, improving the precision of rainfall and temperature 
predictions and identifying spatial differences in greater detail. Other studies 
proposed multi-model ensemble techniques to improve climate projection 
accuracy by combining 36 outputs from General Circulation Models (GCMs) using 
algorithms such as Artificial Neural Networks (ANN), K-Nearest Neighbour (KNN), 
SVM, and Relevance Vector Machine (RVM), which significantly enhanced climate 
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projection accuracy. In general, machine learning algorithms can correct errors 
and improve the accuracy of rainfall data analysis, particularly through optimized 
regression models, thus yielding more accurate forecasts [13].  

Building on previous studies and addressing the challenges in climatological 
information services, particularly at Climatology Stations, this research aims to 
explore several machine learning-based regression algorithms through various 
experimental scenarios applied to climate model forecast datasets. The objective is 
to develop an optimal predictive model that enhances rainfall forecast accuracy 
across 16 climate zones at XYZ Climatology Station. This study is expected not only 
to help achieve organizational targets by improving forecast accuracy but also to 
provide more reliable decadal rainfall data for each zone, thereby offering 
significant value to the public and stakeholders who depend on this information. 

 
B. Research Method 

This research focuses on the exploration of various machine learning-based 
regression algorithms, combined with different experimental scenarios applied to 
climate model forecast datasets. The aim is to obtain an optimal configuration that 
produces the best predictive model, capable of improving rainfall forecast accuracy 
across the 16 zones under the responsibility of XYZ Climatology Station. In 
developing this predictive model, several research instruments are required, 
including: 

 
1. Data 

This study utilizes two categories of climate parameter data: rainfall 
observation data, which is historical rainfall data obtained from direct 
measurements, and data from eight climate models, consisting of historical 
outputs from multiple model forecasts developed and used in operational 
settings, covering the period from 1991 to 2023. These two datasets will be 
used for training the regression models, with each serving as the target and 
input variables, as shown in Table 1. 
 

Table 1. Main Variable Data  
No Category Type Description 

1 Rainfall Observation Data 
Numeric Daily precipitation data from 

direct measurements 

2 
Climate Model Data 
(Multiple Model Forecast): 

  
 
 
Multi-model forecast 
outputs of decadal rainfall 
(ten-day accumulated 
rainfall) 

 1) rawECMWF Numeric 
 2) corECMWF Numeric 
 3) rawCFS Numeric 
 4) corCFS Numeric 
 5) WAR Numeric 
 6) ARM Numeric 
 7) InaMMEv1 Numeric 
 8) InaMMEv1 Numeric 

 
2. Research Tools 

The research utilizes a range of software and libraries for data processing and 
model development. Microsoft Excel is employed for converting daily rainfall 
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observations into decadal (ten-day) periods and constructing the dataset, 
taking advantage of its data processing. The Pandas library in Python is used 
for efficient data manipulation and analysis within DataFrame structures. For 
regression modeling, the Scikit-Learn library, a popular Python tool for 
machine learning, is applied. All programming tasks are carried out using 
Google Colab, a cloud-based platform that allows for direct Python code 
writing and execution in the browser. 
 
The research experiment process involves several stages: data collection, 

preprocessing, modeling, evaluation, and validation. These stages are carried out 
in sequence, following the workflow illustrated in Figure 1. 

 

 
Figure 1. Research Workflow 

 
Each step and process in this research, as illustrated in Figure 1, will be 

explained in more detail as follows: 
1. Data Collection 

The research relies on two primary types of data: rainfall observation data 
and outputs from various climate models. These datasets are sourced directly 
from the XYZ Climatology Station, which is responsible for providing climate 
forecasts and conducting climate observations across 16 distinct climate 
zones. This data represents historical observations and operational 
forecasting services provided by the station. 

2. Data Preprocessing 
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The data preprocessing steps in this research are relatively simple, as the 
data has already been well-documented through operational activities. The 
preprocessing tasks include: 
a) Data Transformation, which involves converting daily rainfall data into 

decadal (10-day) rainfall data by aggregating the data for each zone to 
meet the research needs.  

b) Data Integration, where the transformed data from various sources is 
combined into a unified dataset in DataFrame format. This consolidated 
dataset is then prepared for modeling and further analysis. 

3. Dataset Partitioning and Experimental Scenarios 
The dataset used in this study is divided into three parts: 
a) Training Dataset: This dataset is used to train the model, enabling it to 

recognize patterns, understand relationships between variables, and 
extract knowledge from the data. It covers a maximum period of 30 years, 
from 1991 to 2020. The study also incorporates two experimental 
scenario designs that influence the training dataset used in modeling: 
• First scenario: Variation in input variables (VR), consisting of three 

experiments—VR-1, VR-2, and VR-3—focusing on the addition of 
input variables. 

• Second scenario: Variation in time series data length (TS), involving 
six experiments—TS-1 to TS-6—emphasizing differences in 
historical data length. 

These approaches aim to explore various regression modeling 
configurations to identify the most optimal and reliable predictive model. 
Details of both scenarios are presented in Table 2. 
 

Table 2. Experimental Scenarios for Model Training 
Scenario 

Name 
Input Variables 

Series Data 

VR-1 rawECMWF,  corECMWF, rawCFS,  corCFS All series data 
VR-2 rawECMWF,  corECMWF, rawCFS,  corCFS, 

WAR, ARM 
All series data 

VR-3 rawECMWF,  corECMWF, rawCFS,  corCFS, 
WAR, ARM, InaMMEv1, InaMMEv2 

All series data 

TS-1 All variabel input data 5 Years (2016- 2020) 
TS-2 All variabel input data 10 Years (2011-2020) 
TS-3 All variabel input data 15 Years (2006-2020) 
TS-4 All variabel input data 20 Years (2001-2020) 
TS-5 All variabel input data 25 Years (1996-2020) 
TS-6 All variabel input data 30 Years (1991-2020) 

 
b) Testing Dataset: Used to assess the performance and effectiveness of the 

trained model by evaluating its ability to generalize patterns to unseen 
data, thereby identifying the most optimal model. This dataset consists of 
data for a single year, 2021. 

c) Validation Dataset: Utilized to evaluate the top-performing model from 
the testing phase, ensuring its reliability in addressing real-world 
challenges relevant to the research. This dataset spans two years, 2022 
and 2023, which are the focal periods of this study. 
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4. Modeling 
The algorithms employed in this research experiment include: 
a) Multiple Linear Regression (MLR) is a widely used regression analysis 

method to explain the relationship between one dependent variable and 
multiple independent variables through a linear equation [15]. This 
method is commonly applied in climate studies for downscaling and 
impact analysis [16], [17]. 

b) Support Vector Regression (SVR) is a non-linear regression algorithm that 
maps low-dimensional data into a high-dimensional feature space using 
kernel functions. This technique is frequently utilized in climate change 
and hydrological analyses [18], [19]. 

c) Extra Trees Regression (ETR) is a variation of decision tree algorithms 
that incorporates randomness in its formation [20]. Unlike Random 
Forest (RF), ETR: (1) does not use bootstrapping and trains each tree on 
the entire training dataset and (2) selects split points randomly instead of 
determining the optimal split. The split with the highest score among the 
random options is chosen. This approach generates unique decision trees 
for each sample, helping to mitigate overfitting [21], [22]. 

d) Random Forest Regressor (RFR) utilizes an ensemble of decision trees to 
prevent overfitting and handle various types of input variables. This 
algorithm produces independent trees and makes predictions based on 
non-parametric statistical regression with randomization elements [22]. 
The final prediction is derived by averaging the outputs of all trees. 

e) Decision Tree Regression (DTR) is a predictive method for regression 
tasks that splits the dataset into subsets based on feature values, 
constructing a decision tree with branches representing decisions and 
leaves representing predictions. DTR excels at handling non-linear and 
multivariate data without requiring assumptions about the data 
distribution [23], [24]. 

5. Evaluation 
Model evaluation involves assessing the performance of machine learning 
models using metrics such as Mean Absolute Error (MAE) to ensure accurate 
and reliable predictions. MAE is widely applied in research, including in the 
field of climatology [25], [26]. 
 

 
6. Validation 

This study employs the Proportion of Correct (PC) metric, a standard 
operational metric used by the XYZ Climatology Station for evaluating and 
verifying climate forecasts. The use of this metric ensures that the model's 
performance results are interpretable within the organization's operational 
context. PC is a simple and intuitive metric that measures the accuracy of 
categorical forecasts. As noted by Jolliffe [27] and cited in Muharsyah [28], PC 
is a commonly used verification technique for evaluating forecast accuracy in 
climatology. 
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Figure 2. Contingency Table of Matching Pairs  

Between Forecast and Observation  
 

C. Result and Discussion 
Data Collection 

The climate parameters used in this study are divided into two categories: 
observational rainfall data and data from eight climate models. 

• Observational Rainfall: This data is collected through direct 
measurements by the staff of the XYZ Climatology Station, which records 
daily rainfall at specific locations representing each study zone. The daily 
data is then processed into decadal time scales (Figure 3). 
 

 
Figure 3. Screenshot of the Observational Rainfall Dataset 

 
• Climate Model Data: This data is derived from outputs of eight climate 

models that provide rainfall forecasts on a decadal time scale. These data 
are historical operational results from the XYZ Climatology Station and 
serve as representations of climate predictions (Figure 4). 
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Figure 4. Screenshot of the Climate Model Output Rainfall Dataset  

 
Data Preprocessing 

The data preprocessing in this study consists of two main steps: 
transformation and integration. The transformation step involves converting the 
daily rainfall data into decadal rainfall data, which is the accumulation of daily 
rainfall over a ten-day period, resulting in 36 decadal periods in a year [1]. Data 
integration combines separate files into a complete dataset in DataFrame format, 
ensuring that the data is ready for regression modeling. This DataFrame structure 
facilitates data management, analysis, and model training using the Pandas library 
in Python, as shown in Figure 5.  

 

 
Figure 5. Screenshot of the Transformed and Integrated  

Dataset Structure 
 
Dataset Partitioning 

The Training Dataset consists of decadal rainfall data for the period 1991–
2020, encompassing 1,080 decadal data points for each input and target variable. 
This dataset is used to train the models based on two experimental scenarios, as 
described in Table 2. Meanwhile, the Testing Dataset contains decadal rainfall data 
for one year (36 data points), used to evaluate model performance. The Validation 
Dataset spans two years (72 data points) and is used to assess the model's ability 
to address the challenges posed by the research period. 
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Modeling and Evaluation 
The regression modeling experiments are conducted based on two main 

scenarios: variations in input variables (VR) and the time series length (TS). Five 
regression algorithms are used for modeling: MLR, SVR, DTR, ETR, and RFR. The 
trained models are then tested across 16 zones using the MAE metric to measure 
prediction errors. Each model is evaluated under various scenarios to determine 
the best predictive performance for each zone. The results are displayed in Figures 
6 and 7. 

Table 3. Evaluation of Predictive Model Performance by Zone for VR Scenario 

Models 
Zona 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

V
R

-1
 

MLR 35.3 41.1 43.8 52.6 33.6 36.8 38.5 28.7 30.3 30.4 33.2 35.2 30.6 30.9 38.2 41.7 

SVR 35.7 38.8 41.5 53.5 34.3 34.6 38.8 28.3 31.3 30.9 34.2 36.4 30.1 31.8 41.0 41.7 

DTR 68.5 58.2 77.2 85.7 56.9 65.4 45.7 39.2 41.9 53.9 49.8 53.9 34.0 39.3 47.3 60.8 

ETR 39.4 46.1 52.6 54.1 36.0 38.7 36.7 31.0 27.6 29.4 32.3 32.7 30.3 30.1 35.3 42.4 

RFR 39.7 46.1 51.5 52.2 35.5 40.3 39.7 31.2 32.1 31.5 33.9 35.3 29.8 31.2 35.5 43.6 

V
R

-2
 

MLR 35.3 41.1 44.2 53.1 33.3 36.6 38.4 27.8 29.6 29.7 33.1 35.8 30.0 30.2 38.3 42.0 

SVR 35.5 38.9 41.7 53.3 34.1 34.0 38.8 28.4 31.6 30.9 34.1 36.7 29.4 31.0 40.8 40.5 

DTR 60.8 58.6 69.7 89.0 50.0 64.2 67.4 45.0 39.9 34.9 42.7 46.6 36.5 51.6 51.0 45.7 

ETR 41.3 45.9 48.4 60.3 37.3 38.5 37.8 30.3 29.8 29.9 31.0 33.0 28.8 31.6 35.6 42.5 

RFR 41.4 46.0 45.5 57.4 37.3 39.9 41.7 31.6 32.3 30.9 32.2 36.3 29.8 31.6 38.6 44.4 

V
R

-3
 

MLR 35.0 41.3 43.5 52.1 35.5 37.8 38.9 32.6 30.0 31.1 35.1 38.9 31.8 32.8 36.0 44.4 

SVR 35.9 39.5 41.8 53.9 35.1 35.0 39.5 28.8 29.6 30.9 34.0 36.5 28.6 32.2 37.9 43.4 

DTR 49.6 55.7 66.1 103.3 58.1 72.3 57.5 40.7 33.0 36.8 44.6 40.7 38.8 43.3 49.4 57.3 

ETR 43.7 47.9 49.0 62.4 38.6 42.0 40.6 32.9 32.3 31.0 32.2 35.8 30.3 31.3 36.4 41.6 

RFR 43.7 47.9 43.3 64.6 40.9 47.5 44.1 35.2 31.7 33.7 33.2 37.5 31.0 30.6 37.9 43.2 

 
The evaluation results in Figure 6 show that the ETR algorithm consistently 

outperforms others in predicting decadal rainfall with low prediction errors. This 
algorithm excels in seven zones, namely Zones 7, 9, 10, 12, 14, and 15 under the 
VR-1 scenario, as well as Zone 11 under the VR-2 scenario. ETR's dominance 
highlights its ability to reliably capture rainfall patterns across different zones. 
Meanwhile, SVR algorithm performs strongly, achieving the best results in five 
zones under different scenarios. SVR outperforms in Zones 2 and 3 under the VR-1 
scenario, Zones 6 and 16 under VR-2, and Zone 13 under VR-3. The flexibility of 
SVR across various scenarios demonstrates its potential to handle the complexity 
of rainfall variability. 

MLR model also proves to be reliable, with its best performance in four 
zones: Zones 5 and 8 under VR-2, and Zones 1 and 4 under VR-4. MLR’s success in 
these zones underscores its ability to perform well in specific situations, although 
its overall scope is more limited compared to ETR and SVR. In contrast, DTR and 
RFR algorithms did not show superior performance in any of the tested zones. This 
indicates that these two algorithms are less competitive compared to ETR, SVR, 
and MLR in the context of decadal rainfall modeling. 

 
Table 4. Evaluation of Predictive Model Performance by Zone for TS Scenario 

https://doi.org/10.33022/ijcs.v14i1.4593


  The Indonesian Journal of Computer Science 

https://doi.org/10.33022/ijcs.v14i1.4593  227  

Models 
Zone 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
T

S
-1

 

MLR 37.2 45.8 47.4 52.0 38.6 40.2 43.1 43.6 42.8 36.7 42.5 43.6 37.8 39.8 41.8 47.9 

SVR 37.8 39.9 56.1 55.7 35.1 35.9 40.2 30.5 30.2 31.6 33.6 35.4 31.8 32.5 37.0 41.0 

DTR 53.3 85.2 76.0 86.1 76.9 82.1 49.4 61.6 58.5 53.7 46.7 50.7 63.4 48.4 59.2 58.4 

ETR 40.9 48.1 54.9 62.0 42.4 42.5 41.8 39.3 40.1 33.7 32.2 37.2 41.2 31.3 34.8 41.7 

RFR 43.7 49.9 43.6 63.0 46.8 45.1 42.0 42.9 42.1 36.6 33.2 37.0 41.6 30.6 38.8 43.3 

T
S

-2
 

MLR 35.6 43.7 45.7 52.4 37.7 38.2 41.3 38.5 36.8 33.7 39.5 41.7 34.6 36.5 39.5 46.4 

SVR 36.9 39.8 51.7 54.6 35.4 35.3 39.7 30.1 29.9 31.3 33.5 35.7 31.7 32.5 36.9 40.9 

DTR 63.0 61.5 73.0 85.1 60.3 53.0 49.7 36.8 39.0 56.2 43.7 50.1 47.1 41.0 53.5 66.0 

ETR 43.0 49.6 54.2 67.3 40.9 43.8 41.6 34.8 33.2 32.9 31.0 37.1 34.1 32.2 34.9 42.1 

RFR 41.4 50.1 42.8 63.9 41.4 44.1 42.1 37.8 35.4 35.3 33.7 38.2 33.1 31.6 36.4 42.3 

T
S

-3
 

MLR 35.3 42.2 44.4 52.9 36.9 38.1 40.0 34.6 32.0 32.4 36.6 40.1 31.5 33.9 37.3 44.6 

SVR 36.3 39.5 47.5 53.8 35.4 35.1 39.3 29.3 30.1 30.8 33.7 36.1 31.8 32.3 37.4 41.6 

DTR 63.5 73.1 65.4 97.1 51.6 66.7 72.8 46.3 44.1 44.4 40.1 41.0 35.6 58.3 57.9 54.7 

ETR 41.8 47.6 49.9 65.4 40.1 42.5 41.9 33.0 32.8 32.2 32.5 37.9 29.8 32.9 36.4 44.5 

RFR 41.4 47.4 46.7 62.8 42.8 47.8 48.9 33.7 33.5 34.3 34.6 36.0 32.3 34.9 37.9 45.0 

T
S

-4
 

MLR 35.4 42.0 44.0 52.6 36.7 38.5 40.0 34.8 32.2 32.7 36.8 40.2 31.4 34.2 37.3 44.7 

SVR 36.6 39.6 41.9 53.8 35.4 35.1 39.5 29.3 29.8 31.2 33.7 36.3 31.9 32.5 37.7 41.7 

DTR 59.6 80.6 51.1 78.9 61.5 90.7 83.5 51.7 47.5 45.0 51.6 61.1 40.6 50.4 62.6 60.7 

ETR 47.7 47.0 51.1 66.5 41.4 39.4 43.7 33.9 32.7 31.0 32.8 34.5 29.3 31.6 35.7 43.0 

RFR 45.8 51.5 42.0 65.6 41.4 48.2 46.8 34.0 34.3 33.7 35.1 37.2 31.2 34.8 38.6 46.3 

T
S

-5
 

MLR 34.9 41.0 43.2 51.9 35.2 37.5 38.6 32.8 30.4 31.1 35.1 38.9 30.6 33.1 36.2 43.2 

SVR 36.9 39.4 47.1 54.0 35.4 35.0 39.5 29.1 29.7 31.1 34.0 36.3 32.1 32.4 38.4 42.0 

DTR 56.0 75.2 57.5 101.8 61.7 76.4 79.8 45.4 43.1 36.9 61.8 52.1 49.4 46.5 63.0 54.2 

ETR 45.8 47.9 46.1 62.6 43.0 41.0 41.5 32.0 31.7 30.3 33.2 36.5 30.9 33.2 35.8 44.2 

RFR 42.9 48.3 41.9 63.7 40.2 46.4 45.8 32.9 30.7 35.3 35.7 38.0 30.7 34.8 38.5 48.0 

T
S

-6
 

MLR 35.0 41.3 43.5 52.1 35.5 37.8 38.9 32.6 30.0 31.1 35.1 38.9 30.3 32.8 36.0 43.2 

SVR 35.9 39.5 43.3 53.9 35.5 35.1 39.5 28.8 29.6 30.9 34.0 36.5 31.8 32.2 37.9 41.6 

DTR 49.6 55.7 66.1 103.3 58.1 72.3 57.5 40.7 33.0 36.8 44.6 40.7 38.8 43.3 49.4 57.3 

ETR 43.7 47.9 49.0 62.4 38.6 42.0 40.6 32.9 32.3 30.6 34.0 35.8 30.1 35.7 37.5 43.4 

RFR 43.7 47.9 41.8 64.6 40.9 47.5 44.1 35.2 31.7 33.4 35.2 37.5 31.0 37.7 39.8 44.4 

 
The evaluation results in Figure 7 show that the ETR algorithm exhibits 

superior performance in predicting decadal rainfall with low error rates across six 
different zones. ETR achieved the best performance in Zone 15 under the TS-1 
scenario, Zone 11 under TS-2, Zones 12 and 13 under TS-4, and Zone 10 under TS-
5 and TS-6. This excellence indicates that ETR consistently captures rainfall 
patterns across various data scenarios. Meanwhile, SVR algorithm also performs 
competitively, achieving the best results in six other zones. SVR successfully 
predicts with high accuracy in Zone 5 under TS-1, Zone 16 under TS-2, Zones 2 and 
6 under TS-5, and Zones 8 and 9 under TS-6. SVR’s strong performance in these 
zones highlights its flexibility in handling diverse rainfall patterns. MLR model 
ranks next, with its best performance in three zones: Zones 1, 4, and 7, all under 
the TS-5 scenario. Although its scope is more limited compared to other 
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algorithms, MLR demonstrates reliability in specific zones with consistently low 
prediction errors. On the other hand, the RFR algorithm only shows an advantage 
in one zone—Zone 14 under TS-1 and Zone 3 under TS-6. This suggests that while 
RFR performs well in certain conditions and zones, overall it is less competitive 
compared to ETR, SVR, or MLR in the tested scenarios. 

Overall, the evaluation results for the TS scenarios indicate that eleven 
predictive models outperformed others, while the VR scenarios produced seven 
top-performing predictive models with high accuracy, as indicated by the low 
error values. The combination of algorithms and experimental scenarios in both 
approaches successfully developed predictive models with the best accuracy in 
each zone, indicated by the lowest MAE values. These models were then selected 
for further testing during the validation phase to assess their reliability under real-
world conditions. The validation phase aims to evaluate how effectively the models 
can perform, particularly in addressing accuracy challenges, which are a primary 
concern at the XYZ Climatology Station. These results provide a solid foundation 
for implementing the best predictive models according to the characteristics of 
each zone, while also supporting efforts to improve rainfall forecast accuracy. The 
best predictive models selected for re-testing in the validation phase are 
summarized in Table 3. 

 
Table 5. Summary of Selected Predictive Models by Scenario 

Zone Predictive Models for VR Scenarios Predictive Models for TS Scenarios 
1 MLR Model VR-3 MLR Model TS-5 
2 SVR Model VR-1 SVR Model TS-5 
3 SVR Model VR-1 ETR Model TS-6 
4 MLR Model VR-3 MLR Model TS-5 
5 MLR Model VR-2 SVR Model TS-1 
6 SVR Model VR-2 SVR Model TS-5 
7 ETR Model VR-1 MLR Model TS-5 
8 MLR Model VR-2 SVR Model TS-6 
9 ETR Model VR-1 SVR Model TS-6 

10 ETR Model VR-1 ETR Model TS-5 
11 ETR Model VR-2 ETR Model TS-2 
12 ETR Model VR-1 ETR Model TS-4 
13 SVR Model VR-3 ETR Model TS-4 
14 ETR Model VR-1 RFR Model TS-1 
15 ETR Model VR-1 ETR Model TS-1 
16 SVR Model VR-2 SVR Model TS-2 

 
Model Validation 

In this stage, each of the selected predictive models was tested again to 
ensure their reliability and evaluate how effectively they can perform in meeting 
the accuracy targets that are a key focus of this study. The results showed that the 
selected predictive models, both for the VR and TS scenarios, significantly 
improved the accuracy of seasonal rainfall predictions compared to the initial 
performance of the XYZ Climatology Station. The detailed results of the model 
performance for both scenarios in predicting seasonal rainfall for the consecutive 
years 2022 and 2023 are presented in Table 4. 

Table 6. Validation of Selected Predictive Model Performance  
for the Years 2022 and 2023 
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Zone 
Predictive Models 
for VR Scenarios 

Proportion of 
Correct (%) 

Predictive Models 
for TS Scenarios 

Proportion of 
Correct (%) 

2022 2023 2022 2023 
1 MLR Model VR-3 83.3 75.0 MLR Model TS-5 80.6 75.0 
2 SVR Model VR-1 75.0 75.0 SVR Model TS-5 75.0 77.8 
3 SVR Model VR-1 61.1 72.2 ETR Model TS-6 77.8 66.7 
4 MLR Model VR-3 55.6 80.6 MLR Model TS-5 52.8 83.3 
5 MLR Model VR-2 80.6 66.7 SVR Model TS-1 72.2 66.7 
6 SVR Model VR-2 66.7 75.0 SVR Model TS-5 69.4 83.3 
7 ETR Model VR-1 69.4 66.7 MLR Model TS-5 83.3 69.4 
8 MLR Model VR-2 80.6 77.8 SVR Model TS-6 75.0 77.8 
9 ETR Model VR-1 88.9 61.1 SVR Model TS-6 86.1 72.2 

10 ETR Model VR-1 80.6 66.7 ETR Model TS-5 80.6 75.0 
11 ETR Model VR-2 63.9 55.6 ETR Model TS-2 72.2 63.9 
12 ETR Model VR-1 63.9 61.1 ETR Model TS-4 63.9 63.9 
13 SVR Model VR-3 77.8 66.7 ETR Model TS-4 75.0 69.4 
14 ETR Model VR-1 72.2 66.7 RFR Model TS-1 69.4 75.0 
15 ETR Model VR-1 61.1 75.0 ETR Model TS-1 63.9 72.2 
16 SVR Model VR-2 66.7 69.4 SVR Model TS-2 72.2 69.4 

Mean 71.7% 69.4% Mean 73.1% 72.6% 

 
The validation results for the predictive models selected in the VR and TS 

scenarios for 2022 and 2023, as shown in Table 4, indicate significant 
improvement compared to the initial performance of the XYZ Climatology Station. 
In the VR scenario, the average accuracy of the predictive model in 2022 reached 
71.7%, an increase of 14.3% from the initial average accuracy of 57.4%. This 
achievement not only exceeded the organizational target of 70% but also 
demonstrated that the predictive model provided more accurate results than 
previous approaches. However, in 2023, the average accuracy of the VR model 
slightly decreased to 69.4%, falling below the organizational target, although still 
showing a 10.5% improvement from the initial accuracy of 58.8%. Meanwhile, the 
TS scenario provided more consistent results. In 2022, the average accuracy of the 
TS model reached 73.1%, an increase of 15.7% from the initial average of 57.4%, 
surpassing the organizational target. In 2023, although there was a slight decline, 
the average accuracy remained high at 72.6%, reflecting a 13.8% improvement 
from the initial accuracy of 58.8%. Overall, the validation results for both scenarios 
showed that the developed predictive models made a significant contribution to 
improving the accuracy of seasonal rainfall forecasts, with the TS scenario slightly 
outperforming in terms of average accuracy for both years. 

In conclusion, both scenario approaches have successfully demonstrated the 
effectiveness of predictive models in substantially improving the accuracy of 
seasonal rainfall predictions. When comparing the two, the predictive models from 
the TS scenario showed an advantage in maintaining consistent accuracy over two 
consecutive years. This indicates that the TS scenario produced stable predictive 
models with good generalization ability in predicting the variability of seasonal 
rainfall across different years and climate conditions. This success also reflects the 
effectiveness of using sufficient historical data, providing a stronger foundation for 
capturing long-term patterns and generating more stable predictions. As a result, 
the TS scenario proves to be an excellent solution for implementing consistent and 
accurate seasonal rainfall forecasts. 
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D. Conclusion 

This study aims to develop a machine learning-based predictive model that can 
improve the accuracy of seasonal rainfall forecasts across 16 climate zones. By 
utilizing five regression algorithms—MLR, SVR, ETR, RFR, and DTR—this research 
applies an ensemble approach to multiple model forecast data from various 
climate models. Experimental exploration was carried out through two main 
scenarios: variation in the number of input variables (VR) and the length of the 
time series data (TS), to determine the most accurate and reliable predictive model 
configuration. The results demonstrate that the time series-based model, with a 
longer data range, performs better in recognizing climate conditions and 
variability patterns, leading to more reliable and accurate seasonal rainfall 
predictions.Among the five regression algorithms tested in these experimental 
scenarios, four algorithms contributed to the improvement of prediction accuracy. 
SVR and ETR emerged as dominant, with accuracy improvements in 11 out of 16 
zones, or approximately 69% of the areas. These findings indicate that both 
algorithms are effective in identifying patterns from historical climate model 
outputs and observed rainfall data in the 16 zones, which could potentially be used 
operationally to enhance the reliability of seasonal rainfall forecasts in the region 
under the responsibility of Station XYZ. 
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