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accuracy as set in its strategic objectives. This study aims to develop machine

learning-based predictive models for 16 climate zones to enhance forecast

Keywords accuracy. Five regression algorithms—Multiple Linear Regression, Support

. Vector Regression, Extra Trees Regression, Random Forest Regression, and
Decadal Rainfall, .. . . .
Decision Tree Regression—were tested under two scenarios: input variable
variations (VR) and time series data length (TS). Results showed that the VR
scenario increased average accuracy to 71.7% (2022) and 69.4% (2023),
while the TS scenario achieved 73.1% (2022) and 72.6% (2023). Support
Vector Regression and Extra Trees Regression demonstrated the best
performance in most zones. These models are expected to be operationalized
to improve climatological information services and better meet public and
stakeholder needs.
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A. Introduction

Indonesia, located along the equator and surrounded by the Indian and
Pacific Oceans, experiences a complex climate shaped by global phenomena such
as the El Nifio Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), the
Asia-Australia monsoon circulation, the Intertropical Convergence Zone (ITCZ),
and its diverse topography [1]. To address these challenges, the Indonesian
government established an institution tasked with delivering high-quality
climatological services to support public safety and welfare [2]. Among these
institutions, the XYZ Climatology Station set a target forecast accuracy of 70% for
rainfall predictions in 2022 and 2023 [3]. However, the station faced significant
challenges due to climate variability, exacerbated by anomalous climate events
such as El Nifio and La Nifia during these years [4], [5]. To mitigate these
challenges, XYZ Climatology Station employs multiple climate models and
integrates their outputs. This approach aims to reduce the uncertainties and errors
typically associated with single-model limitations and the complexity of climate
variability [6], [7]. By combining forecasts from various models, each with its own
strengths and weaknesses, this ensemble method seeks to improve the accuracy of
climate predictions [6], [8], [9]. Traditional ensemble techniques, such as the
Average Ensemble or Weighted Average Ensemble, have been used, but these
methods have yielded suboptimal results at XYZ Climatology Station in practice. An
evaluation of rainfall forecasts, comparing predicted values with actual
observational data using the Proportion of Correct (PC) metric, revealed that in
2022 and 2023, many zones did not meet the accuracy target. The average
accuracy across all zones was 57.4% in 2022 and 58.8% in 2023, significantly
below the target set.

Research on ensemble methods using outputs from different climate models
to produce more accurate climate forecasts has been widely conducted, yet often
using different ensemble techniques, such as regression via machine learning
algorithms. Machine learning is effective for addressing complex problems that
traditional methods struggle to solve, as it can uncover relevant insights [10], [11].
The use of appropriate algorithms for decision-making has been increasingly
developed, enhancing autonomy and control [12]. Additionally, these algorithms
improve the accuracy of rainfall data analysis, resulting in more accurate forecasts
[13]. Explorations of machine learning with 21 datasets from global models (NEX-
GDDP) and 13 CMIP6 models using algorithms such as Multiple Linear Regression
(MLR), Support Vector Machine (SVM), Extra Tree Regressor (ETR), Random
Forest (RF), and Long Short-Term Memory (LSTM) have successfully reduced
prediction uncertainties and enhanced the accuracy of climate models at local
scales. Li et al. [14] compared ensemble strategies using the average arithmetic
mean (AM) and linear regression among ensemble members, with RF modeling.
Their study found that RF in multi-model ensemble processing produced more
accurate climate projections, improving the precision of rainfall and temperature
predictions and identifying spatial differences in greater detail. Other studies
proposed multi-model ensemble techniques to improve climate projection
accuracy by combining 36 outputs from General Circulation Models (GCMs) using
algorithms such as Artificial Neural Networks (ANN), K-Nearest Neighbour (KNN),
SVM, and Relevance Vector Machine (RVM), which significantly enhanced climate
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projection accuracy. In general, machine learning algorithms can correct errors
and improve the accuracy of rainfall data analysis, particularly through optimized
regression models, thus yielding more accurate forecasts [13].

Building on previous studies and addressing the challenges in climatological
information services, particularly at Climatology Stations, this research aims to
explore several machine learning-based regression algorithms through various
experimental scenarios applied to climate model forecast datasets. The objective is
to develop an optimal predictive model that enhances rainfall forecast accuracy
across 16 climate zones at XYZ Climatology Station. This study is expected not only
to help achieve organizational targets by improving forecast accuracy but also to
provide more reliable decadal rainfall data for each zone, thereby offering
significant value to the public and stakeholders who depend on this information.

B. Research Method

This research focuses on the exploration of various machine learning-based
regression algorithms, combined with different experimental scenarios applied to
climate model forecast datasets. The aim is to obtain an optimal configuration that
produces the best predictive model, capable of improving rainfall forecast accuracy
across the 16 zones under the responsibility of XYZ Climatology Station. In
developing this predictive model, several research instruments are required,
including:

1. Data

This study utilizes two categories of climate parameter data: rainfall
observation data, which is historical rainfall data obtained from direct
measurements, and data from eight climate models, consisting of historical
outputs from multiple model forecasts developed and used in operational
settings, covering the period from 1991 to 2023. These two datasets will be
used for training the regression models, with each serving as the target and
input variables, as shown in Table 1.

Table 1. Main Variable Data

No Category Type Description
1 Rainfall Observation Data Numeric D.aily precipitation data from
direct measurements
Climate Model Data
(Multiple Model Forecast):
1) rawECMWF Numeric
2) corECMWF Numeric Multi-model forecast
3) rawCFS Numeric outputs of decadal rainfall
4) corCFS Numeric (ten-day accumulated
5) WAR Numeric rainfall)
6) ARM Numeric
7) InaMMEv1 Numeric
8) InaMMEv1 Numeric

2. Research Tools
The research utilizes a range of software and libraries for data processing and
model development. Microsoft Excel is employed for converting daily rainfall
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observations into decadal (ten-day) periods and constructing the dataset,
taking advantage of its data processing. The Pandas library in Python is used
for efficient data manipulation and analysis within DataFrame structures. For
regression modeling, the Scikit-Learn library, a popular Python tool for
machine learning, is applied. All programming tasks are carried out using
Google Colab, a cloud-based platform that allows for direct Python code
writing and execution in the browser.

The research experiment process involves several stages: data collection,
preprocessing, modeling, evaluation, and validation. These stages are carried out
in sequence, following the workflow illustrated in Figure 1.

Data Collection

|

Data Preprocessing

Data Transformation = = =—» Data Integration

l

Splitting Data

Training Dataset Testing Dataset Validation Dataset
VR Scenario TS Scenario
(Input Variable Variations) (Time Series Data Length)
Modeling
MLR SVR ETR RFR DTR
Evaluation

(Mean Absolute Error)

|

Models Validation
(Proportion of Correct )

Figure 1. Research Workflow

Each step and process in this research, as illustrated in Figure 1, will be
explained in more detail as follows:

1. Data Collection
The research relies on two primary types of data: rainfall observation data
and outputs from various climate models. These datasets are sourced directly
from the XYZ Climatology Station, which is responsible for providing climate
forecasts and conducting climate observations across 16 distinct climate
zones. This data represents historical observations and operational
forecasting services provided by the station.

2. Data Preprocessing
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The data preprocessing steps in this research are relatively simple, as the
data has already been well-documented through operational activities. The
preprocessing tasks include:

a) Data Transformation, which involves converting daily rainfall data into
decadal (10-day) rainfall data by aggregating the data for each zone to
meet the research needs.

b) Data Integration, where the transformed data from various sources is
combined into a unified dataset in DataFrame format. This consolidated
dataset is then prepared for modeling and further analysis.

3. Dataset Partitioning and Experimental Scenarios

The dataset used in this study is divided into three parts:

a) Training Dataset: This dataset is used to train the model, enabling it to
recognize patterns, understand relationships between variables, and
extract knowledge from the data. It covers a maximum period of 30 years,
from 1991 to 2020. The study also incorporates two experimental
scenario designs that influence the training dataset used in modeling:

e First scenario: Variation in input variables (VR), consisting of three
experiments—VR-1, VR-2, and VR-3—focusing on the addition of
input variables.

e Second scenario: Variation in time series data length (TS), involving
six experiments—TS-1 to TS-6—emphasizing differences in
historical data length.

These approaches aim to explore various regression modeling
configurations to identify the most optimal and reliable predictive model.
Details of both scenarios are presented in Table 2.

Table 2. Experimental Scenarios for Model Training

Scenario Input Variables Series Data
Name
VR-1 rawECMWEF, corECMWEF, rawCFS, corCFS All series data
VR-2 rawECMWF, corECMWEF, rawCFS, corCFS, All series data
WAR, ARM
VR-3 rawECMWEF, corECMWEF, rawCFS, corCFS, All series data

WAR, ARM, InaMMEv1, InaMMEv2

TS-1 All variabel input data 5 Years (2016- 2020)
TS-2 All variabel input data 10 Years (2011-2020)
TS-3 All variabel input data 15 Years (2006-2020)
TS-4 All variabel input data 20 Years (2001-2020)
TS-5 All variabel input data 25 Years (1996-2020)
TS-6 All variabel input data 30 Years (1991-2020)

b) Testing Dataset: Used to assess the performance and effectiveness of the
trained model by evaluating its ability to generalize patterns to unseen
data, thereby identifying the most optimal model. This dataset consists of
data for a single year, 2021.

c) Validation Dataset: Utilized to evaluate the top-performing model from
the testing phase, ensuring its reliability in addressing real-world
challenges relevant to the research. This dataset spans two years, 2022
and 2023, which are the focal periods of this study.
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4. Modeling

The algorithms employed in this research experiment include:

a) Multiple Linear Regression (MLR) is a widely used regression analysis
method to explain the relationship between one dependent variable and
multiple independent variables through a linear equation [15]. This
method is commonly applied in climate studies for downscaling and
impact analysis [16], [17].

b) Support Vector Regression (SVR) is a non-linear regression algorithm that
maps low-dimensional data into a high-dimensional feature space using
kernel functions. This technique is frequently utilized in climate change
and hydrological analyses [18], [19].

c) Extra Trees Regression (ETR) is a variation of decision tree algorithms
that incorporates randomness in its formation [20]. Unlike Random
Forest (RF), ETR: (1) does not use bootstrapping and trains each tree on
the entire training dataset and (2) selects split points randomly instead of
determining the optimal split. The split with the highest score among the
random options is chosen. This approach generates unique decision trees
for each sample, helping to mitigate overfitting [21], [22].

d) Random Forest Regressor (RFR) utilizes an ensemble of decision trees to
prevent overfitting and handle various types of input variables. This
algorithm produces independent trees and makes predictions based on
non-parametric statistical regression with randomization elements [22].
The final prediction is derived by averaging the outputs of all trees.

e) Decision Tree Regression (DTR) is a predictive method for regression
tasks that splits the dataset into subsets based on feature values,
constructing a decision tree with branches representing decisions and
leaves representing predictions. DTR excels at handling non-linear and
multivariate data without requiring assumptions about the data
distribution [23], [24].

5. Evaluation

Model evaluation involves assessing the performance of machine learning

models using metrics such as Mean Absolute Error (MAE) to ensure accurate

and reliable predictions. MAE is widely applied in research, including in the

field of climatology [25], [26].

1 n
MAE = EZL% — Gl
=1

6. Validation
This study employs the Proportion of Correct (PC) metric, a standard
operational metric used by the XYZ Climatology Station for evaluating and
verifying climate forecasts. The use of this metric ensures that the model's
performance results are interpretable within the organization's operational
context. PC is a simple and intuitive metric that measures the accuracy of
categorical forecasts. As noted by Jolliffe [27] and cited in Muharsyah [28], PC
is a commonly used verification technique for evaluating forecast accuracy in
climatology.
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Figure 2. Contingency Table of Matching Pairs
Between Forecast and Observation

C. Result and Discussion
Data Collection

The climate parameters used in this study are divided into two categories:
observational rainfall data and data from eight climate models.

e Observational Rainfall: This data is collected through direct
measurements by the staff of the XYZ Climatology Station, which records
daily rainfall at specific locations representing each study zone. The daily
data is then processed into decadal time scales (Figure 3).
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Figure 3. Screenshot of the Observational Rainfall Dataset

e C(limate Model Data: This data is derived from outputs of eight climate
models that provide rainfall forecasts on a decadal time scale. These data
are historical operational results from the XYZ Climatology Station and
serve as representations of climate predictions (Figure 4).
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Figure 4. Screenshot of the Climate Model Output Rainfall Dataset

Data Preprocessing

The data preprocessing in this study consists of two main steps:
transformation and integration. The transformation step involves converting the
daily rainfall data into decadal rainfall data, which is the accumulation of daily
rainfall over a ten-day period, resulting in 36 decadal periods in a year [1]. Data
integration combines separate files into a complete dataset in DataFrame format,
ensuring that the data is ready for regression modeling. This DataFrame structure
facilitates data management, analysis, and model training using the Pandas library
in Python, as shown in Figure 5.
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f‘igure 5. Screenshot of the Transformed and In_tegrated
Dataset Structure

Dataset Partitioning

The Training Dataset consists of decadal rainfall data for the period 1991-
2020, encompassing 1,080 decadal data points for each input and target variable.
This dataset is used to train the models based on two experimental scenarios, as
described in Table 2. Meanwhile, the Testing Dataset contains decadal rainfall data
for one year (36 data points), used to evaluate model performance. The Validation
Dataset spans two years (72 data points) and is used to assess the model's ability
to address the challenges posed by the research period.
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Modeling and Evaluation
The regression modeling experiments are conducted based on two main
scenarios: variations in input variables (VR) and the time series length (TS). Five
regression algorithms are used for modeling: MLR, SVR, DTR, ETR, and RFR. The
trained models are then tested across 16 zones using the MAE metric to measure
prediction errors. Each model is evaluated under various scenarios to determine
the best predictive performance for each zone. The results are displayed in Figures
6 and 7.
Table 3. Evaluation of Predictive Model Performance by Zone for VR Scenario
Zona
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Models

MLR 35.3 41.1 43.8 52.6 33.6 36.8 38.5 28.7 30.3 304 33.2 35.2 30.6 30.9 38.2 41.7

SVR 35.7 388 41.5 53.5 343 34.6 38.8 28.3 31.3 30.9 34.2 36.4 30.1 31.8 41.0 41.7

;;". DTR 68.5 58.2 77.2 85.7 56.9 65.4  45.7 39.2 41.9 539 498 53.9 34.0 39.3 47.3 60.8
ETR 394 461 52.6 54.1 36.0 38.7 36.7 31.0 27.6 29.4 323 32.7 30.3 30.1 35.3 42.4
RFR 39.7 46.1 51.5 52.2 35.5 40.3 39.7 31.2 321 31.5 33.9 35.3 29.8 31.2 35.5 43.6
MLR 35.3 41.1 44.2 53.1 333 36.6 384 27.8 29.6 29.7 331 35.8 30.0 30.2 38.3 42.0
SVR 35.5 38.9 41.7 53.3 34.1 34.0 38.8 284 31.6 30.9 341 36.7 29.4 31.0 40.8 40.5

E DTR 60.8 58.6 69.7 89.0 50.0 64.2 67.4 45.0 39.9 349 427 46.6 36.5 51.6 51.0 45.7
ETR 41.3 45.9 48.4 60.3 37.3 38.5 37.8 30.3 29.8 29.9 31.0 33.0 28.8 31.6 35.6 42.5
RFR 414  46.0 45.5 57.4 37.3 399 417 31.6 323 30.9 32.2 36.3 29.8 31.6 38.6 44.4
MLR 35.0 413 43.5 52.1 35.5 37.8 38.9 32.6 30.0 311 35.1 38.9 31.8 32.8 36.0 44.4
SVR 35.9 39.5 41.8 53.9 35.1 35.0 39.5 28.8 29.6 30.9 34.0 36.5 28.6 32.2 37.9 43.4

g DTR 49.6 55.7 66.1 103.3 58.1 72.3 57.5 40.7 33.0 368 44.6 40.7 38.8 43.3 49.4 57.3

ETR 43.7 479 49.0 62.4 38.6 42.0 40.6 329 323 31.0 32.2 35.8 30.3 31.3 36.4 41.6

RFR 43.7 479 43.3 64.6 40.9 47.5 44.1 35.2 31.7 33.7 33.2 37.5 31.0 30.6 37.9 43.2

The evaluation results in Figure 6 show that the ETR algorithm consistently
outperforms others in predicting decadal rainfall with low prediction errors. This
algorithm excels in seven zones, namely Zones 7, 9, 10, 12, 14, and 15 under the
VR-1 scenario, as well as Zone 11 under the VR-2 scenario. ETR's dominance
highlights its ability to reliably capture rainfall patterns across different zones.
Meanwhile, SVR algorithm performs strongly, achieving the best results in five
zones under different scenarios. SVR outperforms in Zones 2 and 3 under the VR-1
scenario, Zones 6 and 16 under VR-2, and Zone 13 under VR-3. The flexibility of
SVR across various scenarios demonstrates its potential to handle the complexity
of rainfall variability.

MLR model also proves to be reliable, with its best performance in four
zones: Zones 5 and 8 under VR-2, and Zones 1 and 4 under VR-4. MLR’s success in
these zones underscores its ability to perform well in specific situations, although
its overall scope is more limited compared to ETR and SVR. In contrast, DTR and
RFR algorithms did not show superior performance in any of the tested zones. This
indicates that these two algorithms are less competitive compared to ETR, SVR,
and MLR in the context of decadal rainfall modeling.

Table 4. Evaluation of Predictive Model Performance by Zone for TS Scenario
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Zone
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Models

MLR 372 45.8 47.4 52.0 386 40.2 43.1 43.6 428 36.7 425 436 37.8 39.8 418 479

SVR 378 399 56.1 55.7 351 359 402 305 302 316 336 354 318 325 370 41.0

E} DTR 53.3 85.2 76.0 86.1 76.9 82.1 494 61.6 58.5 53.7 46.7 50.7 634 484 59.2 58.4
ETR 409 481 54.9 62.0 424 425 41.8 39.3 40.1 33.7 32.2 37.2 41.2 31.3 348 417
RFR 43.7 499 43.6 63.0 46.8 45.1 42.0 42.9 42.1 36.6 33.2 37.0 41.6 30.6 388 433
MLR 356 437 45.7 52.4 37.7 38.2 41.3 38.5 36.8 33.7 39.5 417 34.6 36.5 395 464
SVR 36.9 39.8 51.7 54.6 35.4 35.3 39.7 30.1 29.9 313 33.5 35.7 31.7 32.5 369 409
E DTR 63.0 61.5 73.0 85.1 60.3 53.0 49.7 36.8 39.0 56.2 43.7 50.1 471 41.0 53.5 66.0
ETR 43.0 49.6 54.2 67.3 40.9 43.8 41.6 34.8 33.2 32.9 31.0 371 34.1 32.2 349 421
RFR 414 50.1 42.8 63.9 414 441 42.1 37.8 354 353 33.7 38.2 33.1 31.6 364 423
MLR 353 42.2 44.4 52.9 36.9 38.1 40.0 34.6 32.0 324 36.6 40.1 31.5 33.9 37.3 44.6
SVR 36.3 39.5 47.5 53.8 35.4 35.1 39.3 293 30.1 30.8 33.7 36.1 31.8 323 374 416
2 DTR 63.5 731 65.4 97.1 51.6 66.7 72.8 463 441 444 401 41.0 35.6 58.3 57.9 54.7
ETR 418 47.6 49.9 65.4 40.1 42.5 41.9 33.0 32.8 32.2 32.5 37.9 29.8 32.9 364 445
RFR 414 474 46.7 62.8 428 478 48.9 33.7 33.5 343 34.6 36.0 323 349 379 45.0
MLR 354 420 44.0 52.6 36.7 38.5 40.0 34.8 32.2 32.7 36.8 40.2 314 342 37.3 44.7
SVR 36.6 39.6 41.9 53.8 35.4 35.1 39.5 293 29.8 31.2 33.7 36.3 31.9 32.5 37.7 417
z DTR 59.6 80.6 51.1 78.9 61.5 90.7 83.5 51.7 47.5 45.0 51.6 61.1 40.6 50.4 62.6 60.7
ETR 47.7 47.0 511 66.5 41.4 39.4 43.7 339 32.7 31.0 32.8 34.5 29.3 31.6 35.7 43.0
RFR 45.8 51.5 42.0 65.6 414 482 46.8 34.0 343 33.7 35.1 37.2 31.2 34.8 38.6 463
MLR 349 410 43.2 51.9 35.2 37.5 38.6 32.8 304 311 35.1 38.9 30.6 331 36.2 43.2
SVR 36.9 394 47.1 54.0 35.4 35.0 39.5 29.1 29.7 311 34.0 36.3 321 324 384 42,0
2 DTR 56.0 75.2 57.5 101.8 61.7 76.4 79.8 454 431 36.9 61.8 52.1 494  46.5 63.0 54.2
ETR 458 479 46.1 62.6 43.0 41.0 41.5 32.0 31.7 30.3 33.2 36.5 30.9 33.2 358 44.2
RFR 429 483 41.9 63.7 40.2 46.4 45.8 329 30.7 35.3 35.7 38.0 30.7 34.8 385 48,0
MLR 350 413 43.5 52.1 35.5 37.8 38.9 32.6 30.0 311 35.1 38.9 30.3 32.8 36.0 43.2
SVR 35.9 39.5 43.3 53.9 35.5 35.1 39.5 28.8 29.6 30.9 34.0 36.5 31.8 32.2 379 416
E DTR 49.6 55.7 66.1 103.3 58.1 72.3 57.5 40.7 33.0 36.8 44.6 407 38.8 433 49.4 57.3

ETR 43.7 479 49.0 62.4 386 42.0 40.6 329 323 30.6 34.0 35.8 30.1 35.7 375 434

RFR 43.7 479 41.8 64.6 40.9 47.5 44.1 35.2 31.7 334 35.2 37.5 31.0 37.7 39.8 444

The evaluation results in Figure 7 show that the ETR algorithm exhibits
superior performance in predicting decadal rainfall with low error rates across six
different zones. ETR achieved the best performance in Zone 15 under the TS-1
scenario, Zone 11 under TS-2, Zones 12 and 13 under TS-4, and Zone 10 under TS-
5 and TS-6. This excellence indicates that ETR consistently captures rainfall
patterns across various data scenarios. Meanwhile, SVR algorithm also performs
competitively, achieving the best results in six other zones. SVR successfully
predicts with high accuracy in Zone 5 under TS-1, Zone 16 under TS-2, Zones 2 and
6 under TS-5, and Zones 8 and 9 under TS-6. SVR’s strong performance in these
zones highlights its flexibility in handling diverse rainfall patterns. MLR model
ranks next, with its best performance in three zones: Zones 1, 4, and 7, all under
the TS-5 scenario. Although its scope is more limited compared to other
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algorithms, MLR demonstrates reliability in specific zones with consistently low
prediction errors. On the other hand, the RFR algorithm only shows an advantage
in one zone—Zone 14 under TS-1 and Zone 3 under TS-6. This suggests that while
RFR performs well in certain conditions and zones, overall it is less competitive
compared to ETR, SVR, or MLR in the tested scenarios.

Overall, the evaluation results for the TS scenarios indicate that eleven
predictive models outperformed others, while the VR scenarios produced seven
top-performing predictive models with high accuracy, as indicated by the low
error values. The combination of algorithms and experimental scenarios in both
approaches successfully developed predictive models with the best accuracy in
each zone, indicated by the lowest MAE values. These models were then selected
for further testing during the validation phase to assess their reliability under real-
world conditions. The validation phase aims to evaluate how effectively the models
can perform, particularly in addressing accuracy challenges, which are a primary
concern at the XYZ Climatology Station. These results provide a solid foundation
for implementing the best predictive models according to the characteristics of
each zone, while also supporting efforts to improve rainfall forecast accuracy. The
best predictive models selected for re-testing in the validation phase are
summarized in Table 3.

Table 5. Summary of Selected Predictive Models by Scenario
Zone Predictive Models for VR Scenarios Predictive Models for TS Scenarios

1

3
4
5
6
7
8
9
10
11
12
13
14
15
16

MLR Model VR-3
SVR Model VR-1
SVR Model VR-1
MLR Model VR-3
MLR Model VR-2
SVR Model VR-2
ETR Model VR-1
MLR Model VR-2
ETR Model VR-1
ETR Model VR-1
ETR Model VR-2
ETR Model VR-1
SVR Model VR-3
ETR Model VR-1
ETR Model VR-1
SVR Model VR-2

MLR Model TS-5
SVR Model TS-5
ETR Model TS-6
MLR Model TS-5
SVR Model TS-1
SVR Model TS-5
MLR Model TS-5
SVR Model TS-6
SVR Model TS-6
ETR Model TS-5
ETR Model TS-2
ETR Model TS-4
ETR Model TS-4
RFR Model TS-1
ETR Model TS-1
SVR Model TS-2

Model Validation

In this stage, each of the selected predictive models was tested again to
ensure their reliability and evaluate how effectively they can perform in meeting
the accuracy targets that are a key focus of this study. The results showed that the
selected predictive models, both for the VR and TS scenarios, significantly
improved the accuracy of seasonal rainfall predictions compared to the initial
performance of the XYZ Climatology Station. The detailed results of the model
performance for both scenarios in predicting seasonal rainfall for the consecutive
years 2022 and 2023 are presented in Table 4.

Table 6. Validation of Selected Predictive Model Performance
for the Years 2022 and 2023
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Proportion of Proportion of

Predictive Models Predictive Models

Zone . Correct (% . Correct (%

for VR Scenarios 2022 (2 0)23 for TS Scenarios 2022 (2 0)2 3
1 MLR Model VR-3 83.3 75.0 MLR Model TS-5 80.6 75.0
2 SVR Model VR-1 75.0 75.0 SVR Model TS-5 75.0 77.8
3 SVR Model VR-1 61.1 72.2 ETR Model TS-6 77.8 66.7
4 MLR Model VR-3 55.6 80.6 MLR Model TS-5 52.8 83.3
5 MLR Model VR-2 80.6 66.7 SVR Model TS-1 72.2 66.7
6 SVR Model VR-2 66.7 75.0 SVR Model TS-5 69.4 83.3
7 ETR Model VR-1 69.4 66.7 MLR Model TS-5 83.3 69.4
8 MLR Model VR-2 80.6 77.8 SVR Model TS-6 75.0 77.8
9 ETR Model VR-1 88.9 61.1 SVR Model TS-6 86.1 72.2
10 ETR Model VR-1 80.6 66.7 ETR Model TS-5 80.6 75.0
11 ETR Model VR-2 63.9 55.6 ETR Model TS-2 72.2 63.9
12 ETR Model VR-1 63.9 61.1 ETR Model TS-4 63.9 63.9
13 SVR Model VR-3 77.8 66.7 ETR Model TS-4 75.0 69.4
14 ETR Model VR-1 72.2 66.7 RFR Model TS-1 69.4 75.0
15 ETR Model VR-1 61.1 75.0 ETR Model TS-1 63.9 72.2
16 SVR Model VR-2 66.7 69.4 SVR Model TS-2 72.2 69.4

Mean 71.7% 69.4% Mean 73.1% 72.6%

The validation results for the predictive models selected in the VR and TS
scenarios for 2022 and 2023, as shown in Table 4, indicate significant
improvement compared to the initial performance of the XYZ Climatology Station.
In the VR scenario, the average accuracy of the predictive model in 2022 reached
71.7%, an increase of 14.3% from the initial average accuracy of 57.4%. This
achievement not only exceeded the organizational target of 70% but also
demonstrated that the predictive model provided more accurate results than
previous approaches. However, in 2023, the average accuracy of the VR model
slightly decreased to 69.4%, falling below the organizational target, although still
showing a 10.5% improvement from the initial accuracy of 58.8%. Meanwhile, the
TS scenario provided more consistent results. In 2022, the average accuracy of the
TS model reached 73.1%, an increase of 15.7% from the initial average of 57.4%,
surpassing the organizational target. In 2023, although there was a slight decline,
the average accuracy remained high at 72.6%, reflecting a 13.8% improvement
from the initial accuracy of 58.8%. Overall, the validation results for both scenarios
showed that the developed predictive models made a significant contribution to
improving the accuracy of seasonal rainfall forecasts, with the TS scenario slightly
outperforming in terms of average accuracy for both years.

In conclusion, both scenario approaches have successfully demonstrated the
effectiveness of predictive models in substantially improving the accuracy of
seasonal rainfall predictions. When comparing the two, the predictive models from
the TS scenario showed an advantage in maintaining consistent accuracy over two
consecutive years. This indicates that the TS scenario produced stable predictive
models with good generalization ability in predicting the variability of seasonal
rainfall across different years and climate conditions. This success also reflects the
effectiveness of using sufficient historical data, providing a stronger foundation for
capturing long-term patterns and generating more stable predictions. As a result,
the TS scenario proves to be an excellent solution for implementing consistent and
accurate seasonal rainfall forecasts.
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D. Conclusion

This study aims to develop a machine learning-based predictive model that can
improve the accuracy of seasonal rainfall forecasts across 16 climate zones. By
utilizing five regression algorithms—MLR, SVR, ETR, RFR, and DTR—this research
applies an ensemble approach to multiple model forecast data from various
climate models. Experimental exploration was carried out through two main
scenarios: variation in the number of input variables (VR) and the length of the
time series data (TS), to determine the most accurate and reliable predictive model
configuration. The results demonstrate that the time series-based model, with a
longer data range, performs better in recognizing climate conditions and
variability patterns, leading to more reliable and accurate seasonal rainfall
predictions.Among the five regression algorithms tested in these experimental
scenarios, four algorithms contributed to the improvement of prediction accuracy.
SVR and ETR emerged as dominant, with accuracy improvements in 11 out of 16
zones, or approximately 69% of the areas. These findings indicate that both
algorithms are effective in identifying patterns from historical climate model
outputs and observed rainfall data in the 16 zones, which could potentially be used
operationally to enhance the reliability of seasonal rainfall forecasts in the region
under the responsibility of Station XYZ.
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