
The Indonesian Journal of Computer Science
www.ijcs.net	

Volume	14,	Issue	1,	February	2025	
https://doi.org/10.33022/ijcs.v14i1.4592	

	

Attribution-ShareAlike	4.0	International	License	 717		

	
A	Systematic	Review	of	Challenges	in	Teaching	and	Learning	Computer	
Programming	Modules	
	
Elegbeleye	Femi	Abiodun1,	Bassey	Isong2		
26600536@nwu.ac.za1,	bassey.isong@nwu.ac.za2	
1,2	Computer	Science	Department,	North-West	University,	Mafikeng,	2790,	South	Africa	
	
Article	Information	 	 Abstract	

Received	:	 28	Dec	2024	
Revised	 :	 24	Jan	2025	
Accepted	:	 24	Feb	2025	

	
	 In	today's	rapidly	changing	digital	world,	computer	programming	(CP)	has	

become	an	indispensable	skill	across	various	fields	which	fuels	innovation	
and	 growth.	 Despite	 its	 critical	 importance,	 many	 students	 pursuing	
Computer	Science	and	related	fields	struggle	to	comprehend	fundamental	
CP	 concepts	 such	 as	 logic,	 syntax,	 data	 structures,	 and	 data	 types.	 These	
challenges	 often	 lead	 to	 high	 failure	 rates	 and	 decreased	 motivation,	
resulting	 in	poor	academic	performance.	This	study	examines	the	specific	
programming	problems	that	students	encounter,	explores	the	contributing	
factors,	and	identifies	the	most	challenging	issues	on	their	learning	journey.	
In	 addition,	 it	 investigates	whether	 these	 obstacles	 affect	 computing	 and	
non-computing	 students	 differently	 and	 identifies	 various	 strategies	 to	
improve	 learning	 outcomes.	We	 employed	 a	 systematic	 literature	 review	
approach	 and	 extracted	 relevant	 information	 from	 existing	 literature	
selected	 from	 reputable	 electronic	 databases	 such	 as	 IEEE	 Xplore,	 ACM,	
ScienceDirect,	and	Google	Scholar.	The	findings	identified	different	learning	
styles	among	students,	the	complexity	of	CP	concepts,	insufficient	resources,	
and	educators'	abilities	as	critical	challenges.	It	also	offers	insights	into	best	
practices	 for	 improving	 motivation	 and	 engagement	 in	 programming	
education,	 such	 as	 adaptive	 learning	 tools,	 game-based	 applications,	 and	
artificial	 intelligence-driven	 support	 systems	 personalized	 to	 meet	
individual	student	needs.	

Keywords		 	

Computer	programming,	
Computer	Science	
Education,	Programming	
challenges.	
	
	

	
	
	

http://www.ijcs.net/
https://doi.org/10.33022/ijcs.v14i1.4592
https://doi.org/10.33022/ijcs.v14i1.4592
https://creativecommons.org/licenses/by-sa/4.0/

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 718	
	 	

A. Introduction	
						In	today’s	digital	age,	computer	programming	(CP)	has	become	an	indispensable	
skill	that	transcends	several	disciplines	and	organizations.	[1][2]	CP	is	foundational	
to	global	 innovations,	 enabling	 the	development	of	artificial	 intelligence	 (AI)	and	
machine	 learning	(ML)	technologies.	However,	 these	emerging	technologies	were	
only	 referenced	 in	 this	 context	 as	 an	 example	 of	 fields	 influenced	 by	 the	
advancements	in	programming.	[3]	[4]This	study	will	only	focus	on	how	teaching	
and	learning	programming	languages	is	pivotal	for	effectively	enhancing	students'	
capacity	to	engage	with	such	technologies.	Also,		despite	the	importance	of	CP,	CP	
remains	 a	 challenging	 subject	 for	 students,	 regardless	 of	whether	 they	 are	 from	
computer	science	or	non-computer	science	fields.	Understanding	these	challenges	
is	 critical	 for	 researchers	 aiming	 to	 propose	 practical	 solutions	 that	 improve	
teaching	and	learning	programming	outcomes.	[5]	[6].	To	this	end,	undertaking	a	
comprehensive	 study	 on	 teaching	 approaches	 and	 methodologies	 is	 vital	 for	
addressing	challenges	hindering	students’	ability	to	learn	and	apply	programming	
knowledge.	[6].	Additionally,	the	ability	to	write	and	comprehend	code	is	central	to	
reshaping	 industries	 and	 essential	 for	 driving	 innovation	 in	 advanced	 software	
applications	and	emerging	technologies	like	AI	and	ML.	These	technologies,	while	
transformative,	 serve	 as	 illustrations	 of	 the	 broader	 impact	 of	 programming	 on	
global	 technological	progress.	 [7].	Therefore,	students	will	be	better	equipped	by	
focusing	on	strategies	that	directly	improve	programming	education.	

Even	 though	 CP	 is	 essential,	 learning	 programming	 has	 presented	 some	
challenges	 among	 students,	 and	 these	 challenges	 can	 be	 attributed	 to	 various	
factors;	due	to	the	abstract	nature	of	coding	itself,	some	students	find	it	very	difficult	
to	acquire	this	skill;	also,	students	not	understanding	programming	syntax,	and	logic	
are	some	of	the	challenges	they	faced	by	the	students.	[11].	These	difficulties	have	
caused	the	students	to	become	frustrated,	and	some	have	lost	confidence	in	learning	
programming;	 if	 proper	 measures	 are	 implemented,	 these	 will	 eventually	 affect	
students’	academic	performance	and	general	learning	outcomes.	Furthermore,	the	
creation	 of	 fresh	 teaching	 resources	 and	 tools	 might	 benefit	 from	 a	 thorough	
analysis	 of	 the	 challenges	 students	 face	 when	 learning	 programming	 languages.	
These	tools	could	be	gamified	learning	environments,	interactive	coding	platforms,	
or	AI-powered	 tutoring	programs	 that	adjust	 to	each	student's	unique	needs.	 [6].	
Prepare	them	for	the	needs	of	the	digital	workforce	by	putting	forth	or	suggesting	
practical	solutions	to	these	problems.	

This	study	aims	to	comprehensively	analyze	students'	challenges	when	offering	
computer	programming	modules,	evaluate	and	 identify	 interventions	and	 trends,	
and	provide	insightful	concepts	for	improving	how	programming	languages	can	be	
taught	to	learners.		
	
This	article	will	be	based	on	the	following	research	questions	(RQs):	

	
RQ1:	What	programming	challenges	do	students	 face	 in	CP	modules,	and	which	
challenges	impact	them	the	most?	
RQ2:	What	factors	contribute	to	students’	difficulties	in	CP?		
RQ3:	What	class	of	students	are	most	affected	by	these	challenges?	CS	students,	NCS	
students,	or	Both?	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 719	
	 	

RQ4:	To	what	extent	have	challenges	been	identified,	and	what	interventions	have	
been	offered	to	address	them?	
RQ5:	What	are	the	best	practices	that	can	be	used	to	motivate	and	engage	students	
in	learning	programming?	

	
The	key	contribution	of	this	study	is,	therefore,	briefly	summarized	as	follows:	
	

1) We	systematically	identified	key	challenges	students	and	educators	face	in	
CP	modules,	such	as	cognitive	overload,	lack	of	poor	background	knowledge,	
and	ineffective	teaching	approaches.	

2) The	study	provides	excellent	insight	into	which	teaching	methodologies	(e.g.,	
gamification,	 flipped	 classrooms,	 or	 project-based)	 are	 the	 most	 effective	
methods	for	solving	these	challenges.	

3) We	systematically	 reviewed	existing	 studies,	 identified	 research	gaps,	 and	
provided	a	guide	for	future	researchers	to	develop	an	innovative	solution.	

4) The	study	also	provides	actionable	interventions	and	recommendations	for	
overcoming	student	challenges.	

	
A. Planning	

						This	section	describes	 the	systematic	review	planning	process,	starting	with	a	
detailed	 search	 plan	 to	 identify	 relevant	 studies	 from	 key	 databases	 and	
repositories.	 Data	 collection	 focused	 on	 peer-reviewed	 sources	 and	 reputable	
publications.	Inclusion	and	exclusion	criteria	ensured	studies	were	relevant,	recent,	
and	methodologically	 sound.	 Titles,	 abstracts,	 and	 full	 texts	 were	 screened,	 and	
eligible	 studies	 were	 critically	 analyzed.	 This	 structured	 approach	 ensured	 a	
comprehensive	and	unbiased	review.						

B. Search	strategy	
All	 search	 terms	 used	 in	 the	 process	were	 documented	 to	 ensure	 the	 search	

processes	 are	 replicable	 and	 transparent.	This	 was	 achieved	 by	 keeping	a	
systematic	review	search	log	of	all	search	terms	used.	We	also	kept	track	of	previous	
studies	that	were	accepted	and	rejected	from	all	the	databases.	Together	with	my	
supervisor's	guides,	the	search	terms	were	created	as	shown	in	Table	2;	how	this	
was	done	is	outlined	in	Table	1	as	proposed	by	[12].	The	databases	listed	in	Table	3	
were	all	used	in	this	study.	

	
Table	1.	Search	terms	construction	process	

No	 Search	terms	construction	process	
1	 The	paper	should	only	be	from	publication	date	2019-2024	
2	 By	checking	the	keywords	in	some	papers,	we	already	have	
3	 The	paper	must	only	be	written	in	English.	
4	 The	paper	should	only	be	Conference,	Journal	articles,	and	book	chapters.	

5	 The	 primary	 term	 is	 formed	 from	 the	 RQs	 identifying	 the	 solutions,	 outcomes,	
interventions,	and	challenges.	

	
	
	
	
	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 720	
	 	

Table	2.	Search	terms	
No	 Search	terms	
1	 CS	programming	challenges	
2	 CS	programming	difficulties	
3	 NCS	programming	challenges	
4	 NCS	programming	difficulties	

5	 CS	programming	interventions	
NCS	programming	interventions	

6	 CS	programming	solutions	
7	 NCS	programming	solutions	

	
Table	3.	Databases	used	

No	 Database	name	
1	 ACM	Digital	Library	
2	 IEEE	Xplore	
3	 Science	Direct		
4															Google	Scholar	

	
C. 	Study	selection	criteria	and	procedures	
The	study	began	by	performing	an	extensive	search	across	the	ACM	Digital	

Library,	 IEEE	Xplore,	SpringerLink,	and	ScienceDirect	 to	 identify	relevant	studies	
done	previously	by	scholars/researchers.	Our	search	focused	on	studies	addressing	
the	 specific	 challenges	 faced	by	both	CS	 and	NCS	 students	 and	 the	 interventions	
designed	to	overcome	these	challenges.	We	applied	strict	inclusion	criteria,	limiting	
our	selection	to	papers	published	between	2019	and	2024,	written	in	English,	and	
categorized	as	either	journal	articles	or	conference	papers.	After	gathering	the	initial	
pool	of	documents,	we	carefully	screened	titles	and	abstracts	to	ensure	they	aligned	
with	our	focus	on	student	challenges	and	interventions.	Studies	that	did	not	address	
these	core	themes	or	fell	outside	the	specified	time	frame	or	language	requirement	
were	 excluded.	 Following	 this,	we	 conducted	 a	 full-text	 review	 of	 the	 remaining	
papers	to	verify	that	they	met	all	inclusion	criteria	and	provided	meaningful	insights	
into	student	challenges	and	corresponding	interventions.	This	systematic	process	
allowed	 us	 to	 curate	 a	 focused	 body	 of	 literature	 that	 directly	 supports	 our	
research's	overall	goals	and	objectives.	Detailed	selection	is	presented	in	Table	2.	

	
	

Table	4.	Detailed	Study	Inclusion	and	Exclusion	Criteria	

	 Inclusion	Criteria	

1	 The	journal	article	must	be	available	in	full	text	on	the	web.	

2	 The	 journal	 article	must	be	a	 literature	 review,	 systematic	 literature,	 survey,	
case	study,	or	comparative	study.	

3	 The	journal	must	be	a	peer-reviewed	
4	 NCS	students’	programming	interventions	
5	 CS	students’	programming	interventions	
6	 Non-CS	students’	programming	challenges	
7	 CS	students’	programming	challenges	
	 Exclusion	Criteria	
1	 Journal	articles	that	do	not	match	the	inclusive	criteria	will	be	excluded.	
2	 Journals	that	are	not	related	to	NCS	students'	programming	will	be	excluded.	
3	 Journals	not	related	to	CS	student's	programming	will	be	excluded.	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 721	
	 	

	
E. Quality	assessment	
		 Key	variables	were	examined	to	evaluate	the	quality	of	the	studies	included	
in	the	systematic	literature	review.	First,	we	assessed	the	research	design	to	ensure	
the	methods	employed	were	appropriate	for	the	study	objectives.	We	also	evaluated	
whether	the	sample	sizes	were	adequate	and	clearly	reported	to	support	reliable	
and	valid	conclusions.	We	also	carefully	examined	the	explanations	provided	for	the	
interventions	and	whether	there	was	sufficient	data	to	back	them,	as	illustrated	in	
each	 study.	 The	 finding's	 applicability	to	 our	 focus	 on	 non-computing	 and	
computing	 students	was	 another	 crucial	 factor	 that	was	 considered.	We	ensured	
that	the	research	was	published	 in	credible	 journals	 and	 underwent	 peer	 review.	
Table	3	illustrates	how	the	quality	of	the	selected	paper	was	validated.		
	

Table	5.	Quality	criteria	
No	 Quality	criteria	

1	
	
Does	the	study	clearly	describe	the	intervention	or	solution	used	to	engage	and	motivate	the	
students	and	the	strategies	and	tools	deployed	for	the	solution?	

2	 Is	the	research	methodology	used	well-defined	and	clearly	outlines	the	steps	to	address	the	
identified	problem?		

3	 Does	the	research	methodology	clearly	state	the	appropriate	steps	to	solve	the	problem?	

4	 Is	 the	 design	 and	 conceptual	 framework	 selected	 in	 the	 study	 explicitly	 supported	 by	
literature?	

5	 Does	the	research	methodology	align	with	the	study	design	and	answer	the	RQs?	
6	 Are	the	validity	threats	related	to	the	study	results	reported?	
7	 Are	negative	findings	and	gaps	related	to	the	study	reported?	
8	 Are	there	any	restrictions	or	limitations	on	the	results	of	the	study	reported?	
	
F. Data	Extraction	

We	used	a	systematic	process	to	extract	data	from	all	the	journal	databases	to	
guarantee	consistency	in	the	data	collection	stages	and	ensure	accuracy	across	all	
the	chosen	studies.		Likewise,	essential	details	from	every	paper	selected	were	key	
in	 ensuring	 the	 extracted	 information	 was	 correct.	 Details	such	 as	the	 names	 of	
author(s),	year	of	publication,	the	title	of	the	studies,	and	article	source	were	noted.	
Later,	we	extracted	data	based	on	the	various	difficulties	encountered	by	students	
studying	CS	and	those	who	don’t	(NCS	students),	along	with	solutions	provided	to	
solve	the	suggested	interventions	 and	problems.	 We	 also	 took	 note	 of	 specifics	
regarding	the	sample	 size,	 research	design,	 and	necessary	 conclusions	to	ensure	
that	each	study's	contributions	were	fully	understood.	

		
G. Execution	and	Results	
		 We	used	inclusive	 and	 exclusive	 selection	 criteria	 to	systematically	review	
and	 sort	 out	 all	 the	studies	 selected	 during	 the	 execution	 phase.	We	started	by	
searching	 the	 various	designated	 databases	and	 then	 used	publication	date,	
language,	and	article	type	to	refine	the	results;	the	review	process	is	presented	in	
Figure	1.	
	

	
	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 722	
	 	

Table	6.	Results	found	per	database	
Database	name	 Total	found	 Total	selected	
ACM	Digital	Library	 3168	 30	
IEEE	Xplore	 3008	 55	
Science	Direct		 4233	 40	
Google	Scholar	 35,300	 50	
Total		 45,709	 175	

	

	
Figure	1.		SLR	Workflow	

	
Figure	 1	 illustrates	 the	 systematic	 literature	 process,	 identifying	 all	 the	 journal	
paper	 warehouses,	 exclusive	 and	 inclusive	 criteria	 used	 in	 selecting	 the	 paper	
needed	in	the	study,	and	ensuring	the	inclusion	of	relevant	and	high-quality	papers	
chosen.	

Table	7.	Article	selected	from	the	systematic	review	
Id	 Ref	 Year	 Study	name	
1	 [6]	 2024	 Computing	education	in	the	era	of	generative	AI	
2	 [13]		 2021	 A	study	of	difficulties	in	teaching	and	learning	programming	
3	 [11]	 2022	 Exploration	of	C++	Teaching	Reform	Method	Oriented	by	Ability	Output	
4	 [14]	 2024	 Impact	of	Computer	Programming	on	Mathematics	Education	in	K-12	
5	 [15]	 2021	 A	gamified	web-based	system	for	computer	programming	learning	
6	 [16]	 2024	 Integrating	 online	 meta-cognitive	 learning	 strategy	 and	 team	 regulation	 to	 develop	

students	
7	 [17]	 2023	 Applying	 an	 evidence-based	 learning	 analytics	 intervention	 to	 support	 computer	

programming	
8	 [18]	 2024	 Students’	perspectives	on	using	digital	tools	in	programming	courses		

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 723	
	 	

9	 [19]	 2024	 A	 Rule-Based	 Chatbot	 Offering	 Personalized	 Guidance	 in	 Computer	 Programming	
Education	

10	 [20]	 2024	 A	study	of	factors	influencing	programming	anxiety	among	non-computer	students	
11	 [21]	 2024	 Experience	Teaching	Non-Computer	Science	Majors	Computer	Programming	
12	 [22]	 2023	 An	 enhanced	 career	 prospect	 prediction	 system	 for	 non-computer	 stream	 students	 in	

software	companies	
13	 [23]	 2021	 A	Phenomenographic	Analysis	of	College	Students’	conceptions	of	and	approaches	to	
14	 [24]	 2024	 Interdisciplinary	integration	of	computational	thinking	in	K-12	education	
15	 [25]	 2024	 An	Interactive	Tool	for	Improving	Python	Syntax	Mastery	in	Non-Computing	Students	
16	 [26]	 2024	 Using	Accessibility	Awareness	Interventions	to	Improve	Computing	Education	
17	 [27]	 2024	 Professional	Development	in	Computational	Thinking:	A	Systematic	Literature	Review	
18	 [28]	 2024	 Digital	 Game	 Making	 and	 Game	 Templates	 Promote	 Learner	 Engagement	 in	 Non-

computing	Classroom	Teaching.	
19	 [29]	 2021	 Designing	 IDE	 interventions	 to	promote	 social	 interaction	 and	 improved	programming	

outcomes	in	early	computing	courses	
20	 [30]	 2024	 Integrating	online	partial	pair	programming	&	socially	shared	metacognitive	regulation	

for	the	improvement	of	students’	learning	
21	 [31]	 2022	 Analysis	 of	 factors	 contributing	 to	 the	 difficulties	 in	 learning	 computer	 programming	

among	non-computer	science	students	
22	 [32]	 2023	 Evaluation	Of	The	Impact	Of	Training	In	Programming	With	Scratchjr	On	Future	Pedagogy	

Professionals	
23	 [33]	 2023	 Develop	Digital	Competencies	Through	Information	Tech	&		Computer	Modelling	Lessons	

In	Elementary	School	Education	
24	 [34]	 2022	 Increasing	programming	self-efficacy	(PSE)	through	a	problem-based	gamification	digital	

learning	ecosystem	(DLE)	model	
25	 [35]	 2024	 Coding	attitudes	of	fourth-grade	Latinx	students	during	distance	learning	
26	 [36]	 2021	 Collaborating	learning	in	an	educational	robotics	environment	
27	 [37]	 2024	 Programming	education	and	learner	motivation	in	an	age	of	generative	AI:	student	and	

educator	perspective		
28	 [38]	 2024	 An	AI-driven	virtual	tutor	for	computer	science	education	
29	 [39]	 2023	 Effectiveness	of	flipped	classroom	pedagogy	in	programming	education:	A	meta-analysis	

	
Twenty-nine	 studies	 related	 to	 CP	were	 found	 through	 an	 SLR,	 and	most	

address	some	of	the	students'	unique	challenges	in	CP	courses.	As	reported	in	the	
study	 [6],	 student	overdependence	on	AI-generated	code	has	affected	 the	 rate	at	
which	the	learners	will	understand	the	fundamental	programming	syntaxes.	Also,	
the	 lack	 of	 logical	 and	 essential	 problem-solving	 skills	 was	 another	 challenge	
mentioned	 in	another	paper.	 [13].	 	Another	 study	noted	 that	many	students	also	
struggle	 with	 understanding	 Object-Oriented	 Programming	 (OOP),	 such	 as	
combining	primary	programming	key	concepts	like	syntax	and	logic	when	writing	
codes	and	debugging.	[11].	Challenges	in	teachers'	having	the	proper	training	and	
the	students	viewing	programming	with	 incorrect	perceptions	 further	hinder	 the	
students'	motivation.	At	 the	same	 time,	an	overreliance	on	automated	evaluation	
systems	 diminishes	 students’	 engagement	 in	 the	 learning	 process.	 Teaching	
programming	online,	mainly	to	large	classes,	poses	unique	difficulties	with	student	
engagement,	 real-time	 analytics,	 and	 understanding	 key	 concepts	 like	 variables.	
Additionally,	 the	 lack	 of	 personalized	 guidance	 systems,	 such	 as	 chatbots,	
exacerbates	 these	 issues	 as	 students	 struggle	 to	 apply	 programming	 to	 real-life	
problems.	Anxiety	in	learning	programming	languages	is	also	prevalent,	particularly	
among	non-CS	majors	and	students	with	limited	foundational	knowledge,	who	often	
find	it	difficult	to	use	standard	language	libraries	and	functions.		[14].	
	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 724	
	 	

The	challenge	of	teaching	introductory	programming	to	NCS	students,	like	in	
CSC	101,	 is	 compounded	by	a	 lack	of	employability-focused	platforms	 tailored	 to	
non-computer	science	students.	This	 issue	also	extends	to	K-12	education,	where	
computational	 thinking	 (CT)	 is	 not	 well-integrated	 into	 teacher	 training	 or	
assessment	 programs,	 and	 valid	 assessment	 tools	 are	 lacking.	 [15].	 Additionally,	
there	 is	 no	 clear	 correlation	 between	problem-solving	 time	 and	 solution	 quality,	
complicating	 the	 effectiveness	 of	 current	 tools.	 Addressing	 the	 accessibility	 and	
fairness	of	learning	software	remains	a	significant	gap,	and	integrating	digital	games	
into	 the	 curriculum	 is	 underutilized.	 [16].	 Poor	 feedback	 mechanisms,	 limited	
collaboration,	 and	 lack	 of	 teamwork	 hinder	 students’	 progress,	 as	 tasks	 and	
assignments	are	rarely	completed	in	a	collaborative	setting.	Together,	these	factors	
create	 complex	 barriers	 in	 programming	 education,	 requiring	 more	 integrated,	
personalized,	and	collaborative	approaches	to	improve	learning	outcomes.	Figure.	
2	summarises	the	number	of	studies	found	according	to	a	yearly	publication.	[17].	
With	high	 impact	scores	close	to	9	on	a	10-point	scale,	as	shown	in	Figure	3,	 the	
graph	displays	 the	 results	and	findings	 from	previous	studies	 that	have	 the	most	
impact	 on	 the	 student.	 As	 reported,	 the	 main	 factors	 influencing	 programming	
education	 are	 Automated	 Assessment,	Real-time	 Feedback	 Systems,	 and	
Educator	Challenges.	 Real-time	feedback	is	 essential	 for	 programming	 because	 it	
enables	students	to	 comprehend	 and	 fix	 mistakes	 rapidly.	 Improving	these	
systems	may	 increase	learning	outcomes	 and	 student	 engagement.	 Secondly,	 the	
introduction	of	automated	systems	will	help	the	students	to	evaluate	their	work	on	
their	 own	 and	 get	 immediate	results.	 Although	 this	 practice	 may	 have	 reported	
some	benefits,	 there’s	a	 chance	 that	 students	will	now	prioritize	 test-taking	over	
comprehending	some	key	fundamentals	of	programming	ideas,	which,	therefore,	is	
the	fair	need	for	having	assessment	practices.		
	
H. 	Analysis		
	
Trends	in	publications	and	authors'	contributions	
	
Trends	in	publications		

This	 paper	 gives	 a	 very	 insightful	 analysis	 of	 challenges,	 innovations,	
interventions,	 and	 trends	 in	 computer	 programming	 education,	 as	 identified	
through	a	systematic	review	of	relevant	studies	from	four	journal	databases.	Some	
key	findings	provided	by	researchers	helped	in	the	analysis	process	to	give	an	in-
depth	understanding	of	some	challenges	encountered	by	students	and	educators	in	
teaching	 programming	 languages.	 Particular	 attention	 has	 been	 drawn	 to	 the	
recurring	themes	such	as	cognitive	barriers	[16],	lack	of	engagement	and	motivation	
strategies,	and	 the	excessive	use	of	emerging	 technologies	by	 the	student	as	also	
drastically	affected	the	way	and	manner	the	student	understands	programming	and	
the	influence	of	the	use	of	generative	AI	 	on	the	current	educational	practices	 [6].	
Finally,	this	analysis	highlights	challenges	the	non-computer	science	students	faced,	
such	as	accessibility	issues,	poor	background,	and	lack	of	problem-solving	skills	[31].	
Accessibility	 issues	and	 the	role	of	pedagogical	 interventions	 in	addressing	 these	
difficulties	will	further	help	to	curb	some	of	the	challenges	in	the	current	state	of	
programming	 education	 and	 identify	 critical	 gaps	 and	 opportunities	 for	 further	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 725	
	 	

research	 and	 innovation,	 according	 to	 Table	 7.	We	 shall	 be	 dividing	 the	 trends,	
challenges,	and	interventions	of	analysis	provided	into	three	key	areas:	(i)	teaching	
methodologies	 and	 pedagogy,	 (ii)	 learner	 skills,	 motivation,	 and	 psychological	
barriers,	and	(iii)	expanding	the	scope	of	programming	education.	
	
	

																				 	
	
																			Figure	2.	Sketch	showing	yearly	publication	trend	(2021-2024)	

	
Figure	 2:	 The	 graph	 above	 shows	 the	 number	 of	 publications	 over	 the	 years,	
reflecting	 fluctuations	 influenced	 by	 the	 study's	 scope	 as	 we	 try	 to	 conduct	 a	
systematic	 review	 of	 some	 challenges	 that	 students	 face	 when	 offering	
programming	modules.	While	many	papers	were	published,	only	a	limited	number	
aligned	with	the	primary	objectives	of	 this	study.	 In	2021,	 five	publications	were	
selected	as	they	were	papers	closely	aligned	with	our	goals.	In	2022,	it	was	observed	
that	the	number	of	documents	has	decreased.	Therefore,	we	selected	three	papers	
because	these	studies	are	closely	related	to	our	research	title.	The	number	increased	
again	to	five	publications	in	2023,	reflecting	a	renewed	alignment	with	our	research	
focus.	 Lastly,	 in	2024,	more	papers	were	 selected	because	we	noticed	a	 surge	 in	
published	publications,	 indicating	 an	 increased	 volume	of	 relevant	 research	 or	 a	
notable	 expansion	 in	 the	 field	 directly	 addressing	 our	 study	 goal	 and	 objective.	
Figure	2	highlights	the	precise	papers	selected	each	year,	emphasizing	quality	and	
relevance	over	quantity	in	selecting	publications.		
	
Authors'	contributions	

In	 this	 section,	 we	 shall	 summarize	 the	 authors'	 contributions	 in	 all	 29	
selected	papers	and	what	each	author	did	with	their	objective	and	limitations	as	per	
individual	 contributions	 in	 each	 paper	 addressed	 how	 to	 improve	 programming	
education,	focusing	on	their	goals,	methods,	findings,	limitations,	and	impact.	

This	research	systematically	examined	various	interventions	and	strategies	
presented	 by	 each	 paper.	 For	 example,	 integrating	 generative	AI	 into	 computing	
education	examines	its	transformative	potential.	[6].	At	the	same	time,	studies	on	
chatbots	providing	holistic,	personalized	guidance	[19]	and	AI-driven	virtual	tutors	
[38]	highlighted	using	intelligent	tools	to	support	programming	learners.	Gamified	
systems	 [15]	 and	 interactive	 tools	 for	 Python	 syntax	 mastery	 [25]	 also	 boost	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 726	
	 	

students'	 engagement	 and	 ease	 learning	 difficulties,	 especially	 for	 NCS	 students.	
Moreover,	the	role	of	accessibility	awareness	interventions	[26]	also	points	out	how	
to	make	programming	education	more	inclusive.	

Collaboration	and	data-driven	approaches	are	recurring	themes	in	most	of	
the	papers.	A	study	such	as	integrating	pair	programming	(PP)	with	metacognitive	
regulation	 [30]	 and	 IDE	 interventions	 promoting	 social	 interaction	 [29]	
Demonstrates	 the	value	of	 teamwork	and	peer	 learning.	Evidence-based	 learning	
analytics	 [17]	 and	 systematic	 reviews	of	 professional	 development	programs	 for	
computational	 thinking	 [27]	 Underline	 the	 importance	 of	 data-driven	 decision-
making	 and	 educator	 support	 in	 improving	 outcomes.	 Innovative	 pedagogical	
strategies	play	a	critical	role.	The	flipped	classroom	pedagogy	[39]	and	gamification-
driven	 digital	 ecosystems	 [34]	 They	 are	 analyzed	 for	 their	 effectiveness	 in	
enhancing	programming	 self-efficacy.	 C++	 teaching	 reforms	 [11]	Propose	 ability-
oriented	 methodologies	 while	 integrating	 computational	 thinking	 into	 K-12	
curricula.	 [24]	 and	 exploring	 interdisciplinary	 impacts	 on	 mathematics	 [14]	 To	
showcase	the	broader	educational	applications	of	programming.	Some	papers	also	
address	the	challenges	students	face,	particularly	NCS	major	students.	These	include	
studies	that	deal	with	some	students	having	programming	anxiety.	[20],	difficulties	
in	learning	[13]	and	approaches	to	teaching	NCS	students	[21].	One	of	the	papers	
also	reported	a	career	prospect	prediction	system.	[22]	and	an	enhanced	focus	on	
digital	 competencies	 for	 future	 educators	 [33],	 reflecting	 efforts	 to	 align	
programming	 education	 with	 practical	 outcomes.	 The	 study	 analyzes	 students’	
conceptions	and	approaches.	[23]	and	insights	into	Latinx	students'	coding	attitudes	
during	 distance	 learning	 [35]	 Offer	 valuable	 perspectives	 on	 diverse	 learner	
experiences.		

Game-based	learning	and	engagement	strategies	are	also	prominent.	Digital	
game-making	 and	 templates	 [28]	 and	 the	 impact	 of	 programming	 on	 future	
pedagogy	professionals	 [32]	Highlight	ways	 to	 foster	 creativity	 and	 engagement.	
Similarly,	the	potential	of	robotics	for	collaborative	learning	[36]	and	the	integration	
of	 training	 programs	 like	 ScratchJr	 	 [32]	 	 Underscores	 the	 role	 of	 hands-on,	
interactive	 learning.	 Finally,	 the	 role	 of	 computational	 tools	 and	 approaches	 in	
addressing	 learning	 barriers	 is	 explored.	 These	 include	 studies	 on	 online	 meta-
cognitive	strategies.	[16],	difficulties	in	learning	programming	[31],	and	evidence-
based	teaching	reforms	[37].	Several	works	also	analyze	the	impact	of	programming	
education	 in	 improving	 computational	 thinking.	 [27]	 and	 fostering	 learner	
motivation	[37],	especially	in	emerging	technologies.	
In	summary,	these	studies	collectively	came	out	with	findings	that	reshape	the	ever-
evolving	programming	education	ecosystem	through	innovative	tools,	collaborative	
methods,	pedagogical	 strategies,	 and	 targeted	 interventions	 that	 can	help	a	wide	
range	 of	 learners	 across	 several	 fields	 of	 study.	 While	 they	 present	 actionable	
insights,	many	highlight	the	need	for	further	research,	broader	validation,	and	long-
term	evaluation	to	maximize	their	 impact	on	programming	education	to	 improve	
student	performance	and	increase	student	motivation	toward	programming.	
	
RQ1:	What	programming	challenges	do	students	face	in	CP	modules,	and	which	
challenges	impact	the	most?	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 727	
	 	

In	answering	RQ1,	recent	studies,	as	described	in	Figure	3		below,	illustrated	
the	 various	 challenges	 associated	 with	 programming	 modules,	 and	 this	 was	
presented	 in	 the	3D	graph	below.	The	 challenges	 registered	 from	 the	papers	are	
categorized	into	eight	types,	namely:	(Syntax	error-related	challenges)	Difficulty	in	
mastering	syntax	errors,	debugging	syntax	errors,	and	applying	the	right	syntax	in	
solving	meaningful	real-life	problems,	therefore	leading	to	the	students	having	very	
low	confidence	in	learning	programming	languages	such	as	Python,	C++,	Java,	etc.	
[11]	[25]	[31].	(Conceptual	challenges)	that	is,	students,	lacking	the	basic	knowledge	
of	 understanding	 abstract	 programming	 logic,	 such	 as	 recursion,	 condition	
statements,	 and	 inheritance	 [11],	 [13],	 [19],	 [24],	 [31],	 which	 therefore	 involves	
reducing	 student	 interest	 in	 the	 learning	 of	 programming	 language;	 the	 non-cs	
students	are	more	impacted	by	the	conceptual	challenges	[20].		(Cognitive	overload	
challenges)	 This	 talked	 more	 about	 the	 difficulty	 in	 processing	 theoretical	
programming	concepts	by	the	students.	[34].	Another	issue	discussed	here	is	that	
students	do	not	have	a	collaborative	learning	programming	environment.	[30],	so	
they	cannot	handle	multiple	programming	problems	simultaneously	[18].		
	

																								 	
Figure	3.	Programming	challenges	types	

	
(lack	of	resources	and	tools)	another	challenge	is	students'	limited	access	to	well-
needed	 resources	 such	 as	 educational	 tools	 and	 e-learning/distance	 learning	
materials	[35].	Students	are	not	used	to	the	integrated	development	environment	
(IDE)	 [29],	 and	 accessibility	 barriers	 exist	 in	 programming	 education	 [26].		
(Motivation	 and	 engagement	 issues)	 As	 reported	 in	 the	 papers,	 the	 lack	 of	
motivation	 in	 the	 traditional	 teaching	approach	also	demotivates	 the	 students	 in	
learning	programming.	 [15]	 [18]	 	 [35],	 limited	access	 to	gamification	or	 interactive	
learning	environments	to	engage	the	students	[28].	The	impact	of	this	challenge	on	
the	 students	 is	 causing	 a	 decline	 in	 performance	 and	negative	 attitudes	 towards	
programming,	 especially	 the	 non-cs	 students.	 [28].	 (Anxiety	 and	 psychological	
barriers)	 Programming	 anxiety	 among	 non-cs	 students	 arises	 from	unfamiliarity	
with	the	subject,	fear	of	failure	when	tackling	challenging	assignments,	and	stress	
caused	 by	 inadequate	 feedback	 or	 guidance.	 This	 anxiety	 leads	 to	 decreased	
confidence,	 increased	 avoidance	 of	 programming	 tasks,	 lower	 grades,	 reduced	
course	participation,	and	limited	career	aspirations	in	computing	fields.	[16],	[18],	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 728	
	 	

[20],	[31],	[38]. (Collaborative learning and social interaction issues) Collaboration	
challenges	 in	 programming	 language	 include	 difficulties	 in	 communication,	
coordination,	 and	 limited	 social	 interaction	 in	 teaching	 programming	 education,	
leading	to	poor	teamwork,	reliance	on	individual	work,	and	missed	peer	 learning	
opportunities.[26],[29],	[30].	(Integration	of	emergence	technologies)	Overreliance	
on	generative	AI	tools	and	difficulty	integrating	them	effectively	lead	to	dependency,	
weaker	 foundational	 skills,	 ethical	 concerns,	 and	 challenges	 adapting	 to	 non-AI	
environments	[6]	[37],	[38].	
	

	
	
																						Figure	4.	Programming	challenges	percentage	distribution	
	

Figure	4	analysis	reveals	various	challenges	students	face	in	programming	
education,	 with	 conceptual	 understanding	 emerging	 as	 the	 most	 significant	
challenge,	 accounting	 for	 20%.	 This	 highlights	 students'	 difficulty	 grasping	
fundamental	 programming	 concepts,	 the	 foundation	 for	 coding.	 Issues	 related	 to	
syntax	(15%)	also	pose	a	considerable	challenge,	as	errors	in	code	structure,	missing	
characters,	and	improper	formatting	often	lead	to	frustration	and	hinder	progress.	
Similarly,	 motivation	 (15%)	 remains	 a	 critical	 barrier	 as	 students	 struggle	 to	
maintain	interest	and	engagement,	particularly	when	faced	with	the	complexity	of	
programming	tasks.	
	

Other	challenges	include	cognitive	load	(10%),	where	the	mental	demands	of	
processing,	 retaining,	 and	 applying	 programming	 knowledge	 can	 overwhelm	
learners.	The	lack	of	adequate	resources	(10%),	such	as	 learning	materials,	 tools,	
and	software,	further	compounds	the	problem,	limiting	opportunities	for	effective	
practice.	Anxiety	(10%)	also	impacts	learning,	as	fear	of	failure,	debugging	errors,	
and	 making	 mistakes	 erode	 students’	 confidence.	 In	 addition,	 difficulties	 in	
collaboration	(10%)	hinder	students’	ability	to	work	effectively	in	teams	and	learn	
from	 peers,	 while	 keeping	 pace	 with	 emerging	 technologies	 (10%)	 creates	 a	
disconnect	 between	 educational	 content	 and	 industry	 expectations.	 These	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 729	
	 	

challenges	 highlight	 the	 complex	 nature	 of	 learning	 barriers	 in	 programming	
education,	with	conceptual	understanding,	syntax,	and	motivation	being	the	most	
prominent	challenges.	Addressing	these	issues	through	targeted	support,	improved	
resources,	 and	 innovative	 teaching	 strategies	 is	 crucial	 for	 enhancing	 students’	
learning	experiences	and	outcomes.	

	
Learners	Challenges	related	to	programming	learning	ability.	
	

																 	
														Figure	5.	Students'	programming	challenges	
	

Figure	 5	 shows	 the	 rate	 at	 which	 students	 struggle	 with	 learning	
programming	modules.	The	25%	of	teaching	challenges	seen	in	Figure	5	show	that	
traditional	 teaching	 methods	 are	 ineffective,	 as	 many	 students	 struggle	 to	
understand.	 	There	are	numerous	challenges	in	delivering	practical	programming	
modules,	as	seen	in	several	articles	in	Table	1.	For	example,	learning	programming	
is	complex	because	it's	a	complicated	subject,	and	different	students	have	varying	
levels	 of	 preparedness.	 It	 is	 also	 discussed	 in	 the	 article	 [13]	 that	 a	 very	 high	
percentage	 of	 students	 indicate	 that	 this	 is	 a	 global	 challenge	 that	 needs	 to	 be	
addressed	 to	 develop	 better	 and	more	 effective	 teaching	 strategies	 for	 teaching	
students	 the	 programming	modules.	 Programming	 Anxiety	 (16.7%)	 As	 someone	
interested	in	programming	coding,	another	critical	psychology	hinders	individuals;	
people	 are	well	 aware	 of	 it	 as	 it	 is	 reasonably	well	 documented.	 In	 the	 study	 of	
factors	 influencing	 programmers’	 Coding	 skills:	 “A	 Study	 of	 Factors	 Influencing	
Programming	 Anxiety	 Among	 Non-Computer	 Students”	 (2024),	 it	 is	 noted	 that	
anxiety	around	programming	affects	students’	learning	ability	in	a	significant	way.	
The	students	suffer	from	various	emotional	and	psychological	blocks	in	learning	to	
program,	such	as	the	fear	of	failure,	low	self-efficacy,	and	bad	previous	experiences	
with	 programming.	 Meta-Cognitive	 Strategies	 (8.3%)	 Cross-border	 strategies,	
including	self-monitoring	and	reasoning	for	students	to	enable	them	to	learn	how	to	
monitor	their	learning,	are	yet	another	significant	aspect	of	dealing	with	barriers	to	
meta-learning	 in	 programming	 education.	 As	 stated	 in	 the	 title	 of	 the	 article	
“Integrating	 Online	 Meta-Cognitive	 Learning	 Strategy	 and	 Team	 Regulation	 to	
Develop	Students”	(2024),	meta-cognitive	strategies	serve	the	purpose	of	enhancing	
the	 anxiety	 skills	 of	 the	 students.	 This	 section,	 in	 comparison,	 is	 smaller.	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 730	
	 	

Nonetheless,	it	indicates	the	recognition	that	students	are	taught	how	to	think	and	
reflect	on	 their	 feelings,	which	enhances	 the	acquisition	of	problem-solving	skills	
and	decreases	angry	outbursts	while	learning	to	code.	Coding	Attitudes	(16.7%)	The	
construction	of	 coding	 attitudes	 stems	 from	 the	psychology	 and	motivation	with	
which	students	come	to	understand.	[35]	It	gives	an	example	of	how	a	student’s	views	
about	coding	affect	the	outcome	of	the	coding	task.	It	is	well	known	that	layperson	
learners	often	negatively	perceive	programming	or	coding.	This	negative	perception	
usually	 leads	 to	 failure,	 avoidance,	 minimal	 effort	 in	 avoidance,	 or	 minimal	
engagement	 in	 the	 task.	 The	 chart’s	 representation	 of	 this	 category	 shows	 the	
importance	of	having	or	developing	a	good	attitude	towards	programming,	which	
would	help	lower	or	overcome	other	psychological	factors,	including	anxiety.	NCS	
Difficulties	(16.7%)	The	NCS	students'	difficulties	are	related	to	the	issues	of	NSC	
students.	However,	this	time,	the	view	tends	toward	personal	resource	constraints,	
student	 support,	 and	 access	 to	 proper	 materials.	 Articles	 [21]	 Highlight	 the	
difficulties	 NCS	 students	 encounter	 when	 learning	 programming	 due	 to	 poor	
background	knowledge.	These	factors	may	have	contributed	to	a	student's	inability	
to	achieve	the	skills	needed	in	CP	modules.	Gamification	for	Self-Efficacy	has	these	
(16.7%).		This	talked	more	about	self-efficacy	using	game-like	elements	in	teaching	
programming,	 which	 has	 increased	 the	 students'	 understanding	 of	 learning	
programming	 modules	 and	 has	 boosted	 their	 confidence	 and	 motivation	 [34].	 It	
discusses	how	integrating	gamification	into	the	learning	process	can	help	students	
build	 self-efficacy	 by	 providing	 immediate	 feedback,	 rewards,	 and	 a	 sense	 of	
achievement.	 This	 method	 allows	 students	 to	 engage	 with	 programming	 less	
intimidatingly,	thus	reducing	barriers	like	anxiety	and	negative	attitudes.	
	

According	to	Figure	5,	Programming	Anxiety	and	Coding	Attitudes	are	critical	
psychological	 barriers	 that	must	 be	 addressed	 to	 help	 students	 succeed.	 Smaller	
segments	 like	 Meta-Cognitive	 Strategies	 and	 Gamification	 for	 Self-Efficacy	 show	
promising	approaches	to	overcoming	these	barriers,	while	NCS	Difficulties	highlight	
the	importance	of	addressing	broader	educational	challenges.	The	interplay	of	these	
factors	 emphasizes	 the	 need	 for	 a	 holistic	 approach	 to	 improving	 programming	
education,	considering	both	technical	and	psychological	aspects	of	student	learning.	
	
RQ2:	What	factors	contribute	to	students’	difficulties	in	CP?		

The	 teaching	 method	 used	 in	 all	 papers	 reviewed	 was	 discussed	 in	 this	
section,	 as	 shown	 in	 Figure	 6.	 In	 one	 paper	 review,	 generative	 AI	 tools	 offer	
personalized	feedback	and	self-paced	learning	[6].	Traditional	teaching	methods	are	
critiqued	 for	 lack	 of	 engagement	 and	 clarity,	 focusing	 on	 improving	 practical	
application	in	programming	[13].	As	mentioned	in	this	study,	ability-based	teaching	
approaches	 emphasize	 project-based	 learning	 to	 connect	 theory	 to	 real-world	
problems	 [11].	 Another	 teaching	method	 integrated	 gamification	 techniques	 like	
leaderboards	to	enhance	motivation	and	engagement	in	programming	courses	[15].	
Meta-cognitive	learning	strategies	and	team	regulation	to	improve	self-regulation	
and	collaborative	skills	in	students	were	some	of	the	teaching	methods	used	also	in	
the	 papers	 [16].	 Learning	 analytics	 provides	 real-time,	 data-driven	 feedback	 to	
support	student	progress	[17].	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 731	
	 	

Most	of	the	papers	emphasize	using	digital	tools,	such	as	IDEs	and	compilers,	
and	rule-based	chatbots	for	personalized	guidance	in	debugging,	which	are	explored	
to	 enhance	 learning	 efficiency	 [18][19],	 as	 described	 in	 Figure	 6.	 Techniques	 to	
reduce	programming	anxiety,	such	as	scaffolding	and	simplified	exercises,	benefit	
NCS	students	[20].	Teaching	for	NCS	students	focuses	on	real-world	programming	
applications.	 At	 the	 same	 time,	 career-oriented	 learning	 helps	 bridge	 the	 gap	
between	 theory	 and	 professional	 use	 [21][22],	 which	 are	 also	 some	 teaching	
strategies	 used.	 Phenomenographic	 analysis	 of	 student	 learning	 approaches	
suggests	 adaptive	 teaching	 methods	 [23].	 Interdisciplinary	 integration	 of	
computational	 thinking	 across	 subjects	 broadens	 the	 scope	 of	 programming	
education	[24].	

As	reported,	interactive	tools	for	syntax	mastery,	especially	in	Python,	help	
beginners	improve	their	skills	with	instant	feedback	[25],	another	teaching	method	
used	 in	 some	 papers.	 Accessibility	 awareness	 interventions	 ensure	 inclusive	
learning	environments	for	students	with	disabilities	[26].	Professional	development	
in	computational	thinking	enhances	educators'	teaching	effectiveness	[27].	Digital	
game-making	 and	 game	 templates	 engage	 students	 in	 programming	 through	
interactive	 activities	 [28].	 Collaborative	 learning	 via	 educational	 robotics	 fosters	
teamwork	and	problem-solving	skills	[36].	Finally,	AI-driven	virtual	tutors	and	the	
flipped	 classroom	model	 allow	personalized	 learning	 and	 active	problem-solving	
during	in-class	sessions	very	quickly	for	the	learners	[38][39].	

	
	
																																				
	
	
	
	
	
	
	
	
	
	
	
	
Figure	6:	Frequency	of	the	teaching	methods	used		
	

Various	 challenges,	 including	 insufficient	 resources,	 complex	 syntax,	 and	
ethical	 considerations	 around	 using	 generative	 AI	 models,	 hinder	 the	 effective	
teaching	of	programming	skills.	[18].	Educators	face	difficulty	helping	learners	grasp	
fundamental	 programming	 concepts	 for	 solving	 real-life	 problems,	 particularly	
when	 integrating	 programming	 into	 subjects	 like	 mathematics.	 This	 difficulty	 is	
compounded	by	a	lack	of	interactive,	real-time	assessment	tools	and	platforms	that	
provide	 immediate	 student	 feedback,	 manage	 student	 engagement,	 and	 offer	
support,	 which	 are	 critical	 for	 developing	 problem-solving	 skills	 and	 reasoning.	
Programming’s	impact	on	learners'	reasoning	and	problem-solving	skills	has	shown	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 732	
	 	

potential,	especially	when	combined	with	tools	like	team	regulation	(TR)	learning	
platforms	 and	 metacognitive	 learning	 strategies	 (MCLS)	 or	 supported	 by	
intervention-tracking	systems	like	the	I-Ntervene	platform	for	automated	grading.	
Enhanced	learning	environments,	such	as	those	that	integrate	visualization,	online	
discussion,	and	immediate	feedback	platforms,	aim	to	engage	students	effectively.	

Using	 rule-based	 chatbots	 tailored	 for	 languages	 like	 Java	 can	 aid	 in	
improving	response	time,	query	accuracy,	and	overall	user	satisfaction,	addressing	
learners'	immediate	needs	in	programming.	In	addition,	the	effectiveness	of	learning	
tools	 can	 be	 bolstered	 by	 educators’	 support	 platforms	 and	 teaching	 beliefs,	
impacting	 students'	 self-efficacy	 and	 satisfaction.	 Deep	 learning	 applications	 are	
also	 being	 explored	 to	 further	 support	 students	 with	 different	 learning	 needs.	
Studies	highlight	the	differences	in	learning	approaches	between	computer	science	
and	NCS	students,	emphasizing	the	importance	of	interactive	learning	tools,	such	as	
PyLe,	for	enhanced	usability	and	educational	value.	However,	there	is	still	a	lack	of	
empathy	education	and	accessibility	resources,	which	calls	for	experiential	learning	
approaches	to	make	learning	inclusive.	The	overreliance	on	individual	work,	with	
limited	 teamwork,	 often	 leads	 to	 negative	 experiences	 and	 potential	 dropouts.	
Research	supports	the	benefits	of	socially	shared	metacognitive	control	(SSMR)	and	
online	 partial	 pair	 programming	 (PPP)	 to	 mitigate	 these	 issues.	 Focusing	 on	
individual	work	and	early	instructional	methods,	combined	with	a	lack	of	real-time	
evaluation	tools	and	game-based	templates,	contributes	to	declining	performance	in	
programming	education.	Enhancing	programming	education	will	require	balancing	
active	learning,	block-based	languages,	and	integrating	technology	with	formative	
assessments	in	an	inclusive,	collaborative	environment	that	prepares	students	for	
practical	problem-solving.	

	

																						 		
						Figure	7.	Teaching	methodologies	and	approaches.	
	

Figure	7.	Teaching	methodologies	and	approaches	outline	various	approaches	
and	 methods	 that	 influence	 programming	 education,	 focusing	 on	 frameworks,	
models,	 and	 interventions	 in	 programming	 education;	 the	 following	 analysis	
emerges:	Math	in	K-12	(25%).	In	this	graph,	we	learn	how	K-12	education	addresses	
real-world	 problems	 through	 programming,	 abbreviating	 problems	 scientifically,	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 733	
	 	

and	explaining	 the	benefits	of	 teaching	math	early.	 For	 instance,	 the	paper	 titled	
"Mathematics	 as	 a	 Precursor	 for	 Computational	 Thinking:	 A	 Case	 Study	 in	
Programming	Education,	2023"	stresses	the	strong	correlation	between	early	math	
skills	 and	 programming	 success.	 The	 25%	 portion	 illustrates	 how	 math-centric	
education	equips	students	with	problem-solving	skills	and	reasoning	logic	vital	to	
programming.	 System	 Gamified	 (25%)	 According	 to	 this	 study	 [28],	 there	 is	 A	
recurrent	 theme	of	 gamification	 in	 programming	 education.	 Students	who	might	
ordinarily	 find	 programming	 boring	 or	 scary	 are	 primarily	 engaged	 by	 this	
approach,	 which	 uses	 points,	 levels,	 and	 prizes.	 Chatbot	 Guidance	 	 (16.7%)	The	
growing	usage	of	AI	 to	give	students	 immediate	 feedback	and	help	 is	reflected	 in	
chatbot-based	learning	interventions	(e.g.,	"AI-Powered	Chatbots	for	Personalized	
Programming	 Education")	 [19].	 The	 chart's	 16.7%	 allotment	 emphasizes	 how	
interactive	AI	tools	can	assist	conventional	teaching	strategies	and	meet	the	unique	
learning	demands	of	each	student,	especially	those	who	need	extra	help	outside	of	
the	 classroom.	 NCS	 Teaching	 Experience	 (16.7%)	 This	 section	 highlights	 the	
difficulties	experienced	by	teachers	without	a	computer	science	background	when	
teaching	 programming.	 Articles	 such	 as	 [21],	 which	 examine	 how	 professional	
development	programs	and	frameworks	might	assist	in	preparing	such	educators,	
are	 cited	 in	 Table	 7.	 Computational	 Thinking	 (8.3%)	 The	 graph	 highlights	 the	
importance	of	computational	thinking	in	programming	education	through	studies	
such	as		[24].	The	distribution	of	the	chart	highlights	that	although	computational	
thinking	is	essential,	its	successful	use	necessitates	supplementary	tactics	(such	as	
gamification	or	chatbot	instruction).	Motivation	with	Generative	AI	(8.3%)	ChatGPT,	
DALL·E,	 and	 other	 generative	 AI	 tools	 have	 become	 cutting-edge	 resources	 for	
increasing	student	involvement	and	programming	innovation.	Studies	like	[37]	and	
Table	 7	 explore	 how	 these	 tools	 can	 motivate	 students	 by	 personalizing	 and	
enhancing	the	interactive	nature	of	learning.		

Furthermore,	 the	 graph	 visually	 represents	 the	 crucial	 elements	 and	
interventions	influencing	programming	education.	While	Chatbot	Guidance	and	NCS	
Teaching	Experience	showcase	creative	and	valuable	ways	to	enhance	teaching	and	
learning,	 K–12	 math	 and	 gamified	 systems	 focus	 equally	 on	 these	 fundamental	
functions.	Computational	Thinking	and	Motivation	with	Generative	AI's	minor	but	
significant	 contributions	 highlight	 the	 necessity	 of	 a	 well-rounded,	 multifaceted	
strategy	to	address	various	programming	education	issues.		
	
	 	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 734	
	 	

																	 	
																			Figure	8.	Teaching	methodologies	and	pedagogical	approaches	
	

Figure	 8.	 outlines	 several	 teaching	 methodologies	 used	 in	 programming	
education.	The	methods	are	based	on	Table	7,	which	brought	a	broad	spectrum	of	
innovative	pedagogical	approaches	designed	to	improve	programming	instruction.	
C++	Teaching	Reform	(21.4%)	This	segment	illustrates	the	great	attention	paid	to	
the	teaching	reform	of	C++,	as	in	the	article.	[11]	Teaching	reform	represents	one	of	
the	 significant	 aspects	 of	 contemporary	 programming	 education,	which	 requires	
changes	in	conventional	methodologies	based	on	demands	from	students'	learning	
experiences.	Such	a	high	percentage	 implies	a	considerable	 interest	 in	rethinking	
how	C++	is	taught,	perhaps	through	competency-based	education	or	modifications	
to	curricular	materials	that	make	them	more	accessible	and	impactful	for	learners.	
Learning	 Analytics	 (14.3%)	 The	 paper	 demonstrates	 that	 learning	 analytics	 is	
another	 crucial	 approach	 in	 programming	 education.	 [17].	 The	 authors	 use	 tools	
from	learning	analytics	that	equip	educators	with	data	to	make	informed	decisions	
about	 teaching.	 This	 approach	 identifies	 students	 who	 might	 be	 struggling	 and	
provides	 targeted	 interventions	 to	 improve	 outcomes.	 The	 14.3%	 allocation	
signifies	its	increased	relevance	within	educational	strategies.	Digital	Tools	(21.4%)	
The	paper	[18]		Highlights	that	digital	tools	used	in	programming	education	are	also	
significant.	 Digital	 tools	 include	 integrated	 development	 environments	 (IDEs),	
coding	 platforms,	 and	 collaboration	 tools.	 For	 students,	 these	 tools	 offer	 a	much	
more	experiential	and	interactive	approach	to	dealing	with	programming,	which	in	
turn	encourages	better	habituation	to	coding	practices.	Python	Syntax	Tool	(7.1%)	
An	 interactive	 tool	 for	 enhancing	 Python	 syntax	mastery	 among	 NCSs	 has	 been	
discussed	in	[25]."	Although	representing	a	smaller	demographic,	such	tools	show	
an	 explicit	 effort	 toward	 aiding	 learners	 in	 acquiring	 particular	 programming	
languages	through	tailored	immediate	feedback	on	their	coding	efforts.	PP	(14.3%),	
as	detailed	in	[30],	is	a	tandem	instructional	strategy	wherein	two	learners	tackle	an	
identical	 problem.	 One	 student	 types	 the	 code	 while	 the	 other	 critiques	 it.	 This	
method	has	been	established	to	enhance	learning	outcomes	due	to	its	facilitation	of	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 735	
	 	

peer	learning	and	heightened	engagement	levels.	The	chart	represents	well	and	thus	
reflects	 its	 relevance	 in	 the	 context	 of	 contemporary	programming	 education.	AI	
Virtual	Tutor	(14.3%)	The	emergence	of	AI-powered	virtual	tutors,	as	discussed	[38]	
[40]	 [41],	 Underscores	 a	 trend	 toward	 more	 tailored	 learning	 experiences	 that	
artificial	intelligence	enables.	Such	systems	can	offer	personalized	feedback,	tackle	
student	queries,	and	assist	learners	with	intricate	programming	tasks.	The	AI	virtual	
tutor's	 approach	 is	 catching	 on,	 evident	 from	 its	 inclusion	 in	 the	 graph.	 Flipped	
Classroom	 (7.1%)	 The	 flipped	 classroom	 model,	 where	 students	 absorb	 new	
material	 at	home	by	watching	videos	or	 reading	 texts	and	 then	use	 the	acquired	
knowledge	 in	 school,	 is	 not	 very	 common	 but	 still	 has	 a	 notable	 place	 within	
programming	education,	as	noted	in	[39].	This	model	encourages	students	to	engage	
in	practice	and	practice	more	during	 the	class	 to	master	particular	programming	
concepts	and	skills,	which	 is	why	there	 is	very	 little	content	delivered	during	the	
lessons.	
	

	In	summary,	graphical	representation	further	substantiates	Table	1	in	that	
it	 assists	 in	 showing	 the	 different	 models	 that	 are	 emerging	 in	 programming	
education.	The	highlighted	places	of	learning	programming	languages,	such	as	C++,	
Java,	Python,	and	learning	analysis,	are	the	strategies	to	enhance	the	interactivity,	
data	focus,	and	adaptability	of	programming	education.	The	provision	of	AI	tutors,	
PP,	 and	 the	 inclusion	 of	 flipped	 classrooms	 illustrate	 that	 novel,	 active,	 and	
technology-oriented	 pedagogies	 are	 continuously	 incorporated	 into	 the	
programming	syllabus.	These	strategies	are	essential	in	responding	to	the	problems	
existing	in	programming	education,	improving	student	participation,	their	interest,	
and,	consequently,	the	learning	outcomes.	
	
																																																									
RQ3:	 What	 class	 of	 students	 are	 most	 affected	 by	 these	 challenges?	 CS	
students,	NCS	students,	or	Both?	
																	As	 noticed	 in	 Figure	 9,	 the	 challenges	 in	 computing	 education	 vary,	
impacting	both	CS	students	and	NCS	students	fields.	For	instance,	the	emergence	of	
generative	 AI	 poses	 challenges	 in	 adapting	 traditional	 teaching	methods	 to	 new	
technological	 advancements,	 affecting	 both	 fields	 [6].	 NCS	 students,	 specifically,	
encounter	issues	with	learning	programming,	including	programming	anxiety	and	
insufficient	 prior	 exposure	 to	 computational	 thinking,	 as	 highlighted	 in	 various	
research	studies	[13],	[20],	[31].	Furthermore,	integrating	programming	education	
into	NCS	 fields	reveals	challenges	related	 to	pedagogical	approaches	and	student	
involvement	[21],	[[25],	[31],	[32].	

CS	education	also	contends	with	notable	challenges,	especially	the	need	to	
revise	 programming	 languages	 like	 C++,	 Python,	 and	 Java	 to	 improve	 student	
outcomes	 and	 prepare	 them	 for	 practical	 applications	 in	 the	 job	 market.	 [11].	
Additional	hurdles	arise	 from	the	growing	 integration	of	digital	 tools	and	AI	 into	
programming	educational	 curricula,	as	 students	and	educators	 face	difficulties	 in	
effectively	 using	 these	 resources	 to	 enhance	 learning	 and	motivation.	 [18],	 [37],	
[38].	While	strategies	like	gamification	and	online	learning	show	promise,	they	also	
create	 challenges	 in	 sustaining	 student	 interest	 and	 addressing	problems	 in	 skill	
development.	[15],	[28],	[34].	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 736	
	 	

Moreover,	teaching	programming	in	early	education	and	K-12	environments	
presents	 specific	 challenges	 regarding	 curriculum	 integration,	 particularly	 with	
educational	tools	like	Scratchjr	and	the	advancement	of	digital	skills.	[24],	[34].	The	
research	underscores	the	critical	role	of	social	interaction	in	programming	classes,	
noting	 that	 IDE	 interventions	have	potential	but	 also	encounter	obstacles	during	
implementation	because	some	students	face	challenges	adapting	and	understanding	
the	working	environment.	[29],	[30].	Finally,	there	is	an	increasing	emphasis	on	the	
professional	development	of	educators	in	computational	thinking,	which	offers	both	
opportunities	and	challenges	in	improving	teaching	methods	within	programming	
education.	[16]	[27].	Lastly,	Figure	9	shows	the	number	of	paper	distributions	of	the	
challenges	and	the	percentage	of	studies	that	affected	both	CS	and	NCS,	showing	that	
researchers	should	consider	students	who	can	accommodate	both	disciplines.	

							 	
Figure	9.	Graph	showing	the	distribution	of	challenges		(CS),	(NCS),	or	Both	students	
	
	
RQ4:	To	what	extent	have	challenges	been	identified,	and	what	interventions	
have	been	offered	to	address	them?	

Each	of	these	four	papers	emphasizes	some	key	areas	of	the	application	of	
CP,	including	the	involvement	of	participants,	the	techniques	used,	and	the	study's	
suggested	interventions	or	practices.	
Study	one	from	Table	5	uses	various	techniques,	including	exercises,	surveys,	case	
studies,	 experiments,	 and	 university-level	 assignments,	 to	 examine	CS	 and	
NCS	students.	 The	 study,	 which	 includes	350	 graduate	 and	 undergraduate	
students,	investigates	 how	AI	 tools	might	 be	 incorporated	into	 the	 curriculum	
to	give	 students	 individualized	feedback.	 The	suggested	 approach	
addresses	ethical	issues	in	AI-based	education	and	emphasizes	using	generative	AI	
to	improve	instructional	content.	

Also,	 study	 2	 from	 Table	 7	 uses	an	 SLR	approach	at	 the	 undergraduate	
university	level,	 focusing	 on	 NCS	 students.	It	looks	 at	 issues	 instructors	and	
students	have	when	teaching	programming	 to	NCSs	without	mentioning	 the	 total	
number	of	participants.	The	study	 recommends	 improving	 teaching	and	 learning	
strategies	 to	 encourage	 critical	 and	 logical	 thinking	 in	students.	It	 also	suggests	
using	 learner	 assistance	 tools	like	visualizations	 to	 help	 overcome	challenges.	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 737	
	 	

Likewise,	[11]	Table	7	is	an	experiment	conducted	in	a	university	setting,	specifically	
for	undergraduates,	focusing	on	computer	science	students.	The	study	investigates	
how	traditional	 teaching	methods	 and	 competition	 can	 be	 integrated,	 though	 the	
number	 of	 participants	 is	 not	 disclosed.	The	suggested	 approach	 includes	a	 five-
point	teaching	model	integrating	live	code	management,	student-centered	systems,	
problem-solving,	 and	 an	 integrated	 assessment	 system	 to	 enhance	 students’	
programming	 skills.	 Finally,	 the	 integration	 of	 CP	 into	 high	 school	 mathematics	
curricula	 is	 the	 main	 topic	 of	 study	 shown	 in	 Table	 7.	 This	 literature	 review	
examined	 12	 important	 and	 relevant	 journal	 articles	 and	explored	
fundamental	mathematical	ideas	using	different	programming	languages.	
	

Table	8:	Quality	Assessment	of	Papers	(Yes/No)	
	

Ref	 Is	an	
Introduc
tion	
provided
?	

Is	the	
research	
methodolog
y	defined	

Is	the	design	
of	the	study	
stated?	

Are	validity	
threats	
reported?	

Are	negative	
findings	
reported?	

1	 yes	 yes	 yes	 yes	 yes	
2	 yes	 yes	 yes	 no	 yes	
3	 yes	 yes	 yes	 no	 yes	
4	 yes	 yes	 no	 yes	 yes	
5	 yes	 yes	 yes	 no	 yes	
6	 yes	 yes	 yes	 yes	 yes	
7	 yes	 yes	 yes	 no	 yes	
8	 yes	 yes	 no	 no	 yes	
9	 yes	 yes	 yes	 yes	 yes	
10	 yes	 yes	 yes	 yes	 yes	
11	 yes	 yes	 yes	 yes	 yes	
12	 yes	 yes	 no	 yes	 yes	
13	 yes	 yes	 yes	 yes	 Yes	
14	 yes	 yes	 yes	 yes	 yes	
15	 yes	 yes	 yes	 no	 yes	
16	 yes	 yes	 yes	 no	 yes	
17	 yes	 yes	 no	 yes	 yes	
18	 yes	 yes	 yes	 no	 yes	
19	 yes	 yes	 yes	 yes	 yes	
20	 yes	 yes	 yes	 no	 yes	
21	 yes	 yes	 no	 no	 yes	
22	 yes	 yes	 yes	 yes	 yes	
23	 yes	 yes	 yes	 yes	 Yes	
24	 yes	 yes	 yes	 yes	 yes	
25	 yes	 yes	 yes	 yes	 no	
26	 yes	 yes	 yes	 no	 no	
27	 yes	 yes	 yes	 yes	 yes	
28	 yes	 yes	 yes	 yes	 yes	
29	 yes	 yes	 yes	 yes	 yes	

	
										
	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 738	
	 	

	
Figure	10.	Quality	Assessment	

	 	
Figure	10	shows	the	quality	assessment	of	29	selected	papers	given	in	the	

table	based	 on	multiple	 criteria,	 including	the	inclusion	of	 an	 introduction,	
a	clearly	defined	 research	 methodology,	 a	 stated	 study	 design,	 the	 reporting	
of	threats	to	validity,	and	the	acknowledgment	of	negative	findings.		
Every	 paper	 included	 an	 introduction	 and	 outlined	 the	 research	 methodology,	
demonstrating	 a	 consistent	 approach	 to	 explaining	 the	 methods	 and	 research	
context.	Of	29	studies,	23	explicitly	reported	the	study	design,	while	seven	did	not	
address	it.	Twelve	publications	discussed	validity	threats,	reflecting	a	mixed	rigor	in	
addressing	potential	study	limitations.	Notably,	nearly	all	the	studies	(27	out	of	29)	
reported	 negative	 results,	 suggesting	 that	 most	 researchers	 in	 this	 group	 were	
transparent	about	the	challenges	or	limitations	of	their	findings.	
						
I. 	Limitations	of	the	study	

The	methods	 used	in	 this	 study	 have	diverged	 from	 the	recommendations	
given	in	Kitchenham's	2004	guidelines.	[42].	Rather	than	using	an	automated	search	
engine	system,	the	paper	search	was	conducted	manually	by	selecting	journals	and	
conference	 proceedings.	 This	 method	 is	 consistent	 with	 the	 work	 of	 previous	
researchers	who,	instead	of	researching	a	particular	software	evaluation	technique,	
use	more	educational	trends	in	CP	and	NCS	students.	We	verify	that	the	journals	and	
conference	proceedings	 excluded	during	 the	manual	 search	 process	 are	 not	 used	
when	 researching,	 as	 advised	by	Brereton	 et	 al.,	 ensuring	 that	 the	 extracted	
and	verified	 information	extracted	 from	 all	 the	 journals	 and	 the	 conferences	 are	
accurate.	[43].		

Additionally,	 conferences	 devoted	 to	educational	methodologies	 might	 have	
included	papers	dealing	with	issues	more	specifically	with	programming	education	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 739	
	 	

than	general	educational	 trends.		Our	findings	should	 be	interpreted	 cautiously,	
mainly	 concerning	systematic	 literature	 reviews	 in	prestigious	 general	 and	
educational	 technology	 conferences	 and	significant	 international	 education	 and	
computer	science	journals.	
	
J. 		Conclusions	
												This	 paper	 conducted	 an	 SLR	 and	 presented	 some	 specific	 programming	
difficulties	 students	encounter	and	 their	 contributing	 factors.	 	The	 findings	show	
that	teaching	and	learning	computer	programming	is	no	easy	task	and	comes	with	
many	 challenges.	 These	 include	 different	 learning	 styles	 among	 students,	 the	
complexity	 of	 programming	 concepts,	 insufficient	 resources,	 and	 educators'	
abilities.	Moreover,	the	fast-paced	evolution	of	technology	offers	new	opportunities	
and	 presents	 difficulties	 in	 keeping	 the	 curriculum	 up-to-date.	 	 Based	 on	 the	
findings,	 several	 strategies	 were	 identified	 to	 address	 these	 challenges,	 such	 as	
using	 a	mix	 of	 teaching	 strategies.	 In	 particular,	 personalized	 learning,	 hands-on	
experiences,	 and	 integrating	 modern	 technologies	 such	 as	 adaptive	 learning	
systems	and	game-based	learning	are	key.	Also,	developing	a	teaching	and	learning	
framework	that	provides	timely	support	for	both	CS	and	NCS	students	is	essential.	
This	framework	should	encourage	a	growth	mindset	in	programming	and	include	
varied	 learning	 approaches	 like	 problem-based	 learning,	 project-based	 learning,	
and	 gamification.	 These	 methods	 can	 reduce	 the	 stress	 of	 learning	 new	 skills,	
promote	 critical	 thinking,	 and	 shift	 the	 focus	 from	memorizing	 syntax	 to	 solving	
real-world	 problems.	 Furthermore,	 teamwork-focused	 interventions	 can	 be	
particularly	 beneficial	 for	 NCS	 students.	 This	 is	 crucial	 because	 they	 create	 a	
collaborative	environment	that	 lessens	 individual	pressure,	 fosters	peer	 learning,	
and	 improves	 problem-solving	 skills.	 Ongoing	 professional	 development	 for	
educators	 and	 supportive	 learning	 environments	 are	 vital	 for	 enhancing	 student	
engagement	and	performance	in	programming	courses.	
In	 our	 future	 work,	 we	 intend	 to	 integrate	 adaptive	 and	 game-based	 learning	
approaches	 to	 address	 programming	 difficulties	 and	 create	 a	more	 effective	 and	
inclusive	learning	experience	for	all	students.	
	
K. References	
[1]	 A.	Saraç	and	N.	Os zdener,	"Adapting	to	the	Industry	4.0	Era:	Transdisciplinary	

IoT	 Education,"	 in	 Transdisciplinary	 Approaches	 to	 Learning	 Outcomes	 in	
Higher	Education:	IGI	Global,	2024,	pp.	95-153.	

[2]	 M.	A.	Hashmi,	J.	P.	Mo,	and	R.	C.	Beckett,	"Transdisciplinary	systems	approach	
to	 realization	of	digital	 transformation,"	Advanced	Engineering	 Informatics,	
vol.	49,	p.	101316,	2021.	

[3]	 I.	 H.	 Sarker,	 "Deep	 learning:	 a	 comprehensive	 overview	 on	 techniques,	
taxonomy,	applications	and	research	directions,"	SN	computer	science,	vol.	2,	
no.	6,	p.	420,	2021.	

[4]	 T.-C.	Hsiao,	 Y.-H.	 Chuang,	T.-L.	 Chen,	 C.-Y.	 Chang,	 and	C.-C.	 Chen,	 "Students'	
Performances	 in	 Computer	 Programming	 of	 Higher	 Education	 for	
Sustainable	Development:	The	Effects	of	a	Peer-Evaluation	System,"	Frontiers	
in	Psychology,	vol.	13,	p.	911417,	2022.	

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 740	
	 	

[5]	 P.	R.	Daugherty	and	H.	J.	Wilson,	Human+	machine:	Reimagining	work	in	the	
age	of	AI.	Harvard	Business	Press,	2018.	

[6]	 P.	 Denny	 et	 al.,	 "Computing	 education	 in	 the	 era	 of	 generative	 AI,"	
Communications	of	the	ACM,	vol.	67,	no.	2,	pp.	56-67,	2024.	

[7]	 F.	 Buitrago	 Flórez,	 R.	 Casillas,	M.	Hernández,	 A.	 Reyes,	 S.	 Restrepo,	 and	G.	
Danies,	 "Changing	 a	 generation’s	way	of	 thinking:	Teaching	 computational	
thinking	through	programming,"	Review	of	Educational	Research,	vol.	87,	no.	
4,	pp.	834-860,	2017.	

[8]	 M.	C.	Marino,	Critical	code	studies.	MIT	Press,	2020.	
[9]	 M.	 Noone	 and	 A.	 Mooney,	 "Visual	 and	 textual	 programming	 languages:	 a	

systematic	review	of	the	literature,"	Journal	of	Computers	in	Education,	vol.	5,	
pp.	149-174,	2018.	

[10]	 N.	Gedik,	"Investigation	of	student	experiences	in	flipped	programming	using	
epistemic	network	analysis,"	Middle	East	Technical	University,	2024.		

[11]	 Y.	Zheng,	"Exploration	of	C++	Teaching	Reform	Method	Oriented	by	Ability	
Output,"	 in	 International	 Conference	 on	 Computer	 Science	 and	 Education,	
2022:	Springer,	pp.	16-27.		

[12]	 J.	E.	Hannay,	D.	I.	Sjoberg,	and	T.	Dyba,	"A	systematic	review	of	theory	use	in	
software	 engineering	 experiments,"	 IEEE	 Transactions	 on	 Software	
Engineering,	vol.	33,	no.	2,	pp.	87-107,	2007.	

[13]	 R.	Kadar,	N.	A.	Wahab,	J.	Othman,	M.	Shamsuddin,	and	S.	B.	Mahlan,	"A	study	
of	difficulties	in	teaching	and	learning	programming:	a	systematic	literature	
review,"	International	Journal	of	Academic	Research	in	Progressive	Education	
and	Development,	vol.	10,	no.	3,	pp.	591-605,	2021.	

[14]	 A.	AMIMOUR,	"Impact	of	Computer	Programming	on	Mathematics	Education	
in	K-12:	Literature	Review	and	Perspectives,"	2024.	

[15]	 G.	 Polito	 and	 M.	 Temperini,	 "A	 gamified	 web-based	 system	 for	 computer	
programming	learning,"	Computers	and	Education:	Artificial	Intelligence,	vol.	
2,	p.	100029,	2021.	

[16]	 C.-W.	Tsai,	L.-Y.	Lee,	Y.-P.	Cheng,	C.-H.	Lin,	M.-L.	Hung,	and	J.-W.	Lin,	"Integrating	
online	 meta-cognitive	 learning	 strategy	 and	 team	 regulation	 to	 develop	
students’	programming	skills,	academic	motivation,	and	refusal	self-efficacy	
of	 Internet	 use	 in	 a	 cloud	 classroom,"	Universal	 Access	 in	 the	 Information	
Society,	vol.	23,	no.	1,	pp.	395-410,	2024.	

[17]	 P.	 Utamachant,	 C.	 Anutariya,	 and	 S.	 Pongnumkul,	 "i-Ntervene:	 applying	 an	
evidence-based	 learning	 analytics	 intervention	 to	 support	 computer	
programming	instruction,"	Smart	Learning	Environments,	vol.	10,	no.	1,	p.	37,	
2023.	

[18]	 M.	Asgari,	F.-C.	Tsai,	L.	Mannila,	F.	Strömbäck,	and	K.	M.	Sadique,	"Students’	
perspectives	on	using	digital	tools	in	programming	courses:	A	cross	country	
case	study	between	Sweden	and	Taiwan,"	Discover	Education,	vol.	3,	no.	1,	p.	
57,	2024.	

[19]	 C.	Papakostas,	C.	Troussas,	A.	Krouska,	and	C.	Sgouropoulou,	"A	Rule-Based	
Chatbot	 Offering	 Personalized	 Guidance	 in	 Computer	 Programming	
Education,"	in	International	Conference	on	Intelligent	Tutoring	Systems,	2024:	
Springer,	pp.	253-264.		

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 741	
	 	

[20]	 Y.	Jiang,	H.	Wu,	X.	Yu,	and	T.	Ji,	"A	study	of	factors	influencing	programming	
anxiety	 among	 non-computer	 students,"	 in	 Proceedings	 of	 the	 2024	 9th	
International	Conference	on	Information	and	Education	Innovations,	2024,	pp.	
63-69.		

[21]	 Y.	Tseng,	"Experience	Of	Teaching	Non-Computer	Science	Majors	Computer	
Programming,"	In	Inted2024	Proceedings,	2024:	Iated,	Pp.	6575-6579.		

[22]	 B.	Abraham	and	P.	Ambili,	"An	enhanced	career	prospect	prediction	system	
for	non-computer	stream	students	in	software	companies,"	in	Computational	
Intelligence	for	Engineering	and	Management	Applications:	Select	Proceedings	
of	CIEMA	2022:	Springer,	2023,	pp.	811-819.	

[23]	 T.-L.	Chou,	K.-Y.	Tang,	and	C.-C.	Tsai,	"A	Phenomenographic	Analysis	of	College	
Students’	Conceptions	of	and	Approaches	to	Programming	Learning:	Insights	
from	 a	 Comparison	 of	 Computer	 Science	 and	 Non-computer	 Science	
Contexts,"	Journal	of	Educational	Computing	Research,	vol.	59,	no.	7,	pp.	1370-
1400,	2021.	

[24]	 S.	 Yeni,	 N.	 Grgurina,	 M.	 Saeli,	 F.	 Hermans,	 J.	 Tolboom,	 and	 E.	 Barendsen,	
"Interdisciplinary	integration	of	computational	thinking	in	K-12	education:	A	
systematic	review,"	Informatics	in	Education,	vol.	23,	no.	1,	pp.	223-278,	2024.	

[25]	 A.	 K.	 Mbiada,	 B.	 Isong,	 and	 F.	 Lugayizi,	 "PyLe:	 An	 Interactive	 Tool	 for	
Improving	Python	Syntax	Mastery	 in	Non-Computing	 Students,"	 Journal	 of	
Information	Systems	and	Informatics,	vol.	6,	no.	2,	pp.	1008-1034,	2024.	

[26]	 Y.	 Liu,	 D.	 Mangano,	 K.	 P.	 Neupane,	 S.	 Malachowsky,	 and	 D.	 Krutz,	 "Using	
Accessibility	Awareness	Interventions	to	Improve	Computing	Education,"	in	
Proceedings	 of	 the	 46th	 International	 Conference	 on	 Software	 Engineering:	
Software	Engineering	Education	and	Training,	2024,	pp.	66-71.		

[27]	 A.	 Espinal,	 C.	 Vieira,	 and	 A.	 J.	 Magana,	 "Professional	 Development	 in	
Computational	Thinking:	A	Systematic	Literature	Review,"	ACM	Transactions	
on	Computing	Education,	vol.	24,	no.	2,	pp.	1-24,	2024.	

[28]	 T.	 Hughes-Roberts,	 D.	 Brown,	 A.	 Burton,	 N.	 Shopland,	 J.	 Tinney,	 and	 H.	
Boulton,	 "Digital	 Game	 Making	 and	 Game	 Templates	 Promote	 Learner	
Engagement	 in	 Non-computing	 Based	 Classroom	 Teaching,"	 Technology,	
Knowledge	and	Learning,	pp.	1-25,	2023.	

[29]	 D.	 Olivares,	 C.	 Hundhausen,	 and	 N.	 Ray,	 "Designing	 IDE	 interventions	 to	
promote	 social	 interaction	 and	 improved	 programming	 outcomes	 in	 early	
computing	courses,"	ACM	Transactions	on	Computing	Education	(TOCE),	vol.	
22,	no.	1,	pp.	1-29,	2021.	

[30]	 C.-W.	Tsai	 et	 al.,	 "Integrating	 online	 partial	 pair	 programming	 and	 socially	
shared	metacognitive	regulation	for	the	improvement	of	students’	learning,"	
Universal	Access	in	the	Information	Society,	pp.	1-17,	2024.	

[31]	 R.	Kadar,	S.	B.	Mahlan,	M.	Shamsuddin,	J.	Othman,	and	N.	A.	Wahab,	"Analysis	
of	factors	contributing	to	the	difficulties	in	learning	computer	programming	
among	 non-computer	 science	 students,"	 in	2022	 IEEE	 12th	 Symposium	 on	
Computer	Applications	&	Industrial	Electronics	(ISCAIE),	2022:	IEEE,	pp.	89-
94.		

[32]	 P.	 Ibáñez-Cubillas,	M.	 S.	M.	 Pinto,	 And	 S.	 L.	 Rodrıǵuez,	 "Evaluation	 Of	 The	
Impact	 Of	 Training	 In	 Programming	 With	 Scratchjr	 On	 Future	 Pedagogy	
Professionals,"	In	Edulearn23	Proceedings,	2023:	Iated,	Pp.	6900-6904.		

https://doi.org/10.33022/ijcs.v14i1.4592

	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i1.4592	 	 742	
	 	

[33]	 D.	 Atanasova	 And	 I.	 Minkova,	 "Developing	 Digital	 Competencies	 Through	
Information	 Technology	 And	 Computer	 Modelling	 Lessons	 In	 Elementary	
School	Education,"	In	Iceri2023	Proceedings,	2023:	Iated,	Pp.	7411-7417.		

[34]	 S.	 Chinchua,	 T.	 Kantathanawat,	 and	 S.	 Tuntiwongwanich,	 "Increasing	
programming	 self-efficacy	 (PSE)	 through	 a	 problem-based	 gamification	
digital	learning	ecosystem	(DLE)	model,"	Journal	of	Higher	Education	Theory	
and	Practice,	vol.	22,	no.	9,	2022.	

[35]	 L.	Garcia,	M.	Parker,	 and	M.	Warschauer,	 "Coding	 attitudes	of	 fourth-grade	
Latinx	students	during	distance	learning,"	Computer	Science	Education,	pp.	1-
39,	2024.	

[36]	 G.	 T.	 Papadopoulos,	 M.	 Antona,	 and	 C.	 Stephanidis,	 "Towards	 open	 and	
expandable	 cognitive	 AI	 architectures	 for	 large-scale	 multi-agent	 human-
robot	collaborative	learning,"	IEEE	Access,	vol.	9,	pp.	73890-73909,	2021.	

[37]	 S.	 Boguslawski,	 R.	 Deer,	 and	 M.	 G.	 Dawson,	 "Programming	 education	 and	
learner	 motivation	 in	 the	 age	 of	 generative	 AI:	 student	 and	 educator	
perspectives,"	Information	and	Learning	Sciences,	2024.	

[38]	 P.	Bassner,	E.	Frankford,	and	S.	Krusche,	"Iris:	An	AI-driven	virtual	tutor	for	
computer	science	education,"	 in	Proceedings	of	the	2024	on	Innovation	and	
Technology	in	Computer	Science	Education	V.	1,	2024,	pp.	394-400.	

[39]	 M.	Almassri	and	R.	Zaharudin,	"Effectiveness	of	Flipped	classroom	pedagogy	
in	 programming	 education:	 A	 meta-analysis,"	 International	 Journal	 of	
Instruction,	vol.	16,	no.	2,	pp.	267-290,	2023.	

[40]	 F.	 Sarshartehrani,	 E.	 Mohammadrezaei,	 M.	 Behravan,	 and	 D.	 Gracanin,	
"Enhancing	 E-Learning	 Experience	 Through	 Embodied	 AI	 Tutors	 in	
Immersive	Virtual	Environments:	A	Multifaceted	Approach	for	Personalized	
Educational	 Adaptation,"	 in	 International	 Conference	 on	 Human-Computer	
Interaction,	2024:	Springer,	pp.	272-287.		

[41]	 M.	 Rızvı,	 "Investigating	 AI-Powered	 Tutoring	 Systems	 that	 Adapt	 to	
Individual	 Student	 Needs,	 Providing	 Personalized	 Guidance	 and	
Assessments,"	The	Eurasia	Proceedings	of	Educational	and	Social	Sciences,	vol.	
31,	pp.	67-73,	2023.	

[42]	 S.	Pizard,	F.	Acerenza,	X.	Otegui,	S.	Moreno,	D.	Vallespir,	and	B.	Kitchenham,	
"Training	students	 in	evidence-based	software	engineering	and	systematic	
reviews:	 a	 systematic	 review	 and	 empirical	 study,"	 Empirical	 Software	
Engineering,	vol.	26,	pp.	1-53,	2021.	

[43]	 V.	 Garousi	 and	M.	 Felderer,	 "Experience-based	 guidelines	 for	 effective	 and	
efficient	data	extraction	 in	 systematic	 reviews	 in	 software	engineering,"	 in	
Proceedings	 of	 the	 21st	 International	 Conference	 on	 Evaluation	 and	
Assessment	in	Software	Engineering,	2017,	pp.	170-179.		

	
	

https://doi.org/10.33022/ijcs.v14i1.4592

