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Mobile	Edge	Computing	(MEC)	is	a	promising	technology	which	enables	5G	
and	 	 reduces	 latency.	By	bringing	cloud	computing	capabilities	closer	 to	
end	 users,	 MEC	 enables	 latency-sensitive	 applications	 to	 perform	more	
efficiently.	 However,	 security	 attacks	 pose	 significant	 challenges	 to	 the	
objectives	of	5G	with	Distributed	Denial	of	Service	(DDoS)	attacks	being	a	
major	threat.	These	attacks	can	overwhelm	target	systems	with	excessive	
data	 preventing	 access	 to	 and	 disrupting	 network	 services.	 Effective	
mitigation	 strategies	 are	 required	 to	protect	MEC	 technology.	Given	 the	
high	data	volume	generated	by	such	attacks,	this	paper	utilizes	a	modified	
Firefly	Algorithm	to	select	relevant	 features.	These	selected	 features	are	
then	used	to	train	a	proposed	variant	of	Extreme	Learning	Machine	(ELM),	
where	 weights	 are	 initialized	 using	 Neighbourhood-Based	 Differential	
Evolution.	MATLAB	simulations	demonstrate	that	the	proposed	modified	
ELM	outperforms	traditional	approaches,	providing	an	effective	solution	to	
DDoS	attacks	in	MEC.	
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A. Introduction	

Communication	 networks	 are	 increasingly	 becoming	 vulnerable	 to	 security	
threats	 prompting	 a	 need	 for	 robust	 security	 mechanisms	 [1],	 [2].	 Mobile	 Edge	
Computing	(MEC),	an	emerging	communication	technology	is	susceptible	to	security	
attacks	 [3].	 Unlike	 traditional	 networks,	 MEC	 brings	 cloud	 computing	 resources	
closer	 to	 end-users	 to	 support	 latency-sensitive	 applications.	 However,	 this	
proximity	 introduces	 unique	 security	 challenges	 which	 cannot	 be	 mitigated	 by	
current	security	schemes.		

Among	the	primary	threats	to	MEC	is	the	Distributed	Denial	of	Service	(DDoS)	
attack.	 DDoS	 attacks	 can	 lead	 to	 significant	 latency	 and	 system	unavailability	 by	
overwhelming	the	network	with	excessive	data	requests	which	prevent	legitimate	
users	from	accessing	networks	resources.	Several	approaches	have	been	proposed	
to	 counter	 DDoS	 attacks	 in	 MEC.	 The	 authors	 in	 [4]	 	 proposed	 signature	 based	
scheme	 while	 in	 [5],	 a	 statistical	 based	 approached	 is	 proposed.	 In	 [6]	 and	 [7],	
schemes	 integrating	 signature	 and	 statistical	 approaches	 are	 discussed.	 	 As	MEC	
continues	 to	 evolve,	 developing	 new	 specialized	 security	 measures	 is	 critical	 to	
safeguarding	its	performance	and	availability.	

In	this	work,	we	proposed	a	statistical	approach	named	Neighbourhood	based	
deferential	 evolution	extreme	machine	 learning	 (NDE-EML)	 to	 address	 the	DDoS	
attacks	 in	 MEC.	 The	 performance	 of	 model	 is	 compared	 to	 the	 traditional	 EML.	
Unfortunately,	when	addressing	DDoS	attacks,	lot	of	data	is	generated.	Performing	
statistics	analysis	on	the	entire	data	set	leads	to	delays	in	detecting	attacks	[8].	To	
address	 this	 challenge,	 we	 first	 propose	 a	 feature	 selection	 technique	 known	 as	
Quasi	opposite	Firefly	Algorithm	(QOFA)	to	reduce	the	number	of	features	resulting	
in	 early	 	 detection	 of	 attacks	 and	 accurate	 predictions.	 NDE-EML	 is	 a	 modified	
extreme	 machine	 learning	 model	 which	 makes	 use	 of	 Neighbourhood	 based	
differential	evolution	to	assign	input-hidden	link	weights	and	hidden	biases.	On	the	
QOFA,	we	modified	the	firefly	algorithm	by	initialising	the	population	by	using	quisi-
opposite	based	learning	differential	evolution.		

The	paper	is	organized	as	follows.	Section	2	examines	the	various	developments	
in	DDoS	attacks	mitigation.	In	Section	3,	we	present	the	dataset	and	feature	selection	
process	for	the	model.	Section	4	presents	the	development	of	the	proposed	model	
including	 training,	 testing,	 and	 performance	 evaluation.	 Section	 4	 presents	 the	
experiment	 results	 and	 comparative	 evaluation	 results.	 Section	7	concludes	 the	
study.	
	
B. Related	work	

DDOS	 attacks	 were	 outlined	 and	 discussed	 as	 potential	 attacks	 on	 edge	
computing	in	[9].	The	prevention	of	these	attacks	take	place	in	the	form	of	Statistical	
or	 packet	 monitoring.	 Our	 proposed	 work	 adopt	 a	 statistical	 approach	 where	
machine	learning	techniques	are	utilized.	

The	work	in	[10]	proposed	a	MECshield	where	smart	filters	were	deployed	at	
the	 destination	 network.	 The	 filters	 cooperate	 using	 policies	 generated	 by	 the	
central	 controller	 and	 the	 policies	 are	 triggered	 by	 a	 given	 type	 of	 attack.	 	 Self-
organizing	map	(SOM)	in	[11]	is	part	of	the	component	of	the	filters	and	they	are	
trained	simultaneously	using	local	traffic	supervised	by	the	generated	policies.	The	
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trained	SOM	detects	malicious	IoT	traffic	by	matching	the	traffic	features	to	the	SOM	
map	to	detect	whether	it	represents	a	DDoS	attack.	The	detection	rate	and	accuracy	
in	mitigating	the	attack	were	improved.		Numerical	results	show	that	the	proposed	
scheme	outperformed	distributed-SOM	and	centralized-SOM	schemes	proposed	in	
[12].	This	approach	leads	to	a	delay	in	the	detection	of	the	attack	if	large	data	sets	
are	used.		

The	 novel	 autonomic	 security	 system	 is	 proposed	 in	 [13]	which	 protects	 5G	
networks	 from	 DDoS	 attacks.	 The	 system	 is	 self-managing	 and	 implements	 all	
detection	 protocols	 in	 the	 detection	 and	 mitigation	 of	 the	 effects	 of	 the	 attack.	
Autonomous	 decisions	 are	 made	 and	 enforced	 automatically	 by	 the	 proposed	
scheme.	The	paper	focused	on	combating	User	datagram	flooding	attacks.	We	focus	
on	 MEC,	 the	 technology	 that	 was	 proposed	 to	 enable	 the	 objectives	 of	 5G.	 The	
proposed	scheme	is	vulnerable	to	DDoS	attacks.		

The	work	 in	 [14],	 proposed	 a	 detection	 framework,	 a	 composite	multiplayer	
perceptron	 designed	 to	 detect	 any	 type	 of	 DDoS	 attack.	 The	 effectiveness	 of	 this	
framework	was	determined	through	simulation,	and	it	achieved	an	accuracy	level	of	
99.66%.	 The	 is	 a	 high	 level	 of	 accuracy	 which	 was	 achieved	 at	 the	 cost	 of	 high	
computational	 power.	 There	 is	 therefore	 a	 need	 for	 a	 lightweight,	 simple,	 and	
efficient	scheme	which	requires	less	computational	power.	Our	work	uses	feature	
selection	 in	pre-processing	phase	which	reduces	 the	effort	needed	 to	classify	 the	
attack.	This	is	desirable	since	the	MEC	has	lover	computational	power	compared	to	
traditional	cloud	computing	architectures.		

The	Cooperative	defence	framework	for	MEC	known	as	CODE4MEC	is	proposed	
in	[15]	to	reduce	the	costs	associated	with	the	implementation	of	security	defence	
mechanisms	 to	 each	 MEC	 server.	 We	 modify	 traffic	 flow	 by	 automatically	
coordinating	the	network	defence	mechanisms	amongst	cooperative	edge	servers.	
Four	control	plane	mechanisms	that	enable	the	functionality	of	this	framework	were	
proposed.	 These	 are	 CODE	 triggering,	 scheduling,	 coordination	 and	 releasing	
mechanisms.	Hence,	APP-DDOS	attack	mitigation	scheme	was	applied	on	top	of	this	
framework	and	 its	effectiveness	was	validated	and	was	evaluated	using	a	 testbed	
and	simulation.	This	work	is	adopted	in	our	study.	We	designed	a	mitigation	scheme	
which	enhances	the	functionality	of	this	framework.		

In	 [16],	 the	 authors	 proposed	 a	 traffic	 scheduling	 strategy	 to	 counter	 DDoS	
attacks	 in	 edge	 computing-enabled	 Time	 and	 Wavelength	 Division	 Multiplexed	
Passive	Optical	Networks	 (TWDM-PON).	Application-level	DDoS	attacks	were	 the	
focal	 of	 their	 study.	 The	 strategy	 schedules	 time	 sensitive	 services	 where	 Edge	
Computing	Optical	Network	Units	(EC-ONUs)	are	attacked	with	the	central	premise	
of	reducing	the	impact	of	the	attack	on	the	services	hosted	at	EC	nodes.		

Two	strategies	are	proposed	in	this	paper	where	the	second	one	addresses	the	
shortcomings	 observed	 in	 the	 first	 strategy.	 In	 the	 first	 strategy,	 EC-ONUs	when	
attacked	by	DDoS,	can	still	allow	delay	sensitive	applications	to	be	executed	in	the	
event	were	 the	node	 is	 still	 able	 to	meet	 the	 requirements	of	 the	network	 in	 the	
presence	of	an	attack.	Hence,	if	a	request	from	delay	sensitive	application	comes	with	
a	high	demand	for	the	services	and	the	node	is	already	overwhelmed,	the	request	
can	be	transferred	to	other	nodes.	The	sharing	of	EC	nodes	is	allowed	by	the	scenario	
where	the	is	a	cooperative	communication	among	the	nodes.	Unfortunately,	delay	
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sensitive	application	traffic	at	the	attacked	nodes	can	be	subjected	to	delay	in	the	
event	that	they	are	enqueued.		

In	 addressing	 the	 chalMlenge	 above	 the	 second	 strategy	 was	 proposed.	 The	
service	request	by	 legitimate	nodes	can	be	allowed	to	utilise	 the	edge	computing	
nodes	dedicated	to	service	delay	tolerant	applications.	The	proposed	strategies	do	
not	provide	solutions	to	a	scenario	where	the	is	a	coordinated	attack	targeting	all	EC	
nodes.	Also,	the	scenario	where	other	layer-level	attacks	are	launched	they	may	not	
be	addressed.	It	assumes	that	there	is	always	one	EC	node	that	is	attacked.	

In	work	[17],	authors	proposed	the	combination	of	source	based	and	reactive	
prevention	mechanisms	to	address	DDoS	attacks	on	Multy	Access	Edge	Computing	
(MAEC).	The	mechanisms	are	designed	to	combat	the	attack	at	both	the	source	and	
destination.	

In	paper	[18],	authors	proposed	the	DDoS	attack	mitigation	Scheme	that	utilised	
the	visual	environment	and	management	entities	of	MEC.	The	attack	 is	mitigated	
through	the	use	of	hybrid	approaches	which	integrates	anomaly	and	deep	parked	
inspection	 techniques.	 Using	 artificial	 intelligence,	 the	 network	 is	 monitored	
continuously	to	detect	any	anomalous	behaviour.		The	suspected	network	traffic	is	
routed	to	a	visual	machine	where	deep	inspection	of	the	data	packets	is	done.	This	
reduces	the	load	of	the	targeted	node	so	that	it	continues	to	serve	other	requests.		
The	management	entities	of	MEC,	reconfigure	the	nodes	after	data	is	routed	to	visual	
machines.	The	paper	 is	 an	extension	of	 the	work	 in[19],	 and	 the	authors	did	not	
provide	any	analytical	or	simulation	results,	hence	the	is	no	conclusion	about	the	
effectiveness	of	the	proposed	scheme.		

In	[20],	an	anomaly-based	DDoS	attack	detection	mechanism	in	Fog	computing	
is	proposed.	The	mechanism	utilises	the	Naive	Bayesian	Classifier	combined	with	
the	Markov	Model	and	Virtual	Honey	Pot	Devices.	The	model	reduces	false	positive	
rates.	Using	the	source	and	destination	data,	the	probability	of	attack	and	normal	is	
calculated	 using	 the	 Naive	 Bayesian	 Classifier.	 Packets	 are	moved	 to	 the	Markov	
Model	for	further	inspection	in	the	event	when	the	probability	of	attack	is	greater	
than	 that	 of	 normal	 traffic.	 The	 Threshold	 Value	 (TV)	 is	 used	 to	 compare	 the	
probability	 calculated	 using	 the	 Markov	 model.	 Therefore,	 if	 the	 probability	 is	
greater	than	TV	then	the	packet	is	transferred	to	Visual	Honey	Pot	Device	(VHD).		

The	 log	 file	 generated	 by	 the	 VHD	 records	 the	 device	 information	 if	 it	 is	
malicious	 or	 not.	 Hence,	 the	 non-malicious	 data	 is	 transferred	 back	 to	 the	 fog	
network.	 	 The	 proposed	 scheme	does	 not	 address	 the	 concept	 of	 queuing	 of	 the	
parkers	which	can	lead	to	Quality-of-Service	degradation	and	increased	latency.	The	
DDoS	 attack	 impact	 the	 availability	 of	 MEC	 and	 its	 resources.	 Delay-sensitive	
applications	 can	be	 starved	of	 resources,	 resulting	 in	 catastrophic	events	 like	 car	
accidents	 in	 vehicular	 networks.	 The	 availability	 assures	 that	 the	 resources	 are	
available	to	users	when	robust	detection	and	prevention	schemes	are	implemented	
to	detect	and	address	the	effects	of	malicious	users.	

In	[21],	DDoS	attacks	are	outlined	and	discussed	as	potential	attacks	on	edge	
computing.	The	prevention	of	these	attacks	is	presented	in	the	form	of	Statistical	or	
packet	monitoring	techniques.		
There	are	still	some	open	research	issues	and	gaps	in	the	DDoS	attack	mitigation	in	
MEC.	To	the	best	of	our	knowledge,	much	has	not	been	done	to	address	the	multy-
layered	DDoS	 attack	 in	 MEC.	 Multi	 -	 layer	 DDoS	 attacks	 may	 be	 mitigated	 by	
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employing	a	hybrid	attack	detection	strategies	 that	combine	signature-based	and	
anomaly	detection.	

	
C. Proposed	Scheme,	Synthetic	Data,	and	Simulation	Results	
i. Traditional	extreme	machine	learning	
Artificial	neural	networks	(ANN)	are	“an	interconnected	of	nodes	inspired	by	

biological	neurons”	[22].	Extreme	machine	learning	(EML)	is	one	of	the	ANN	models	
proposed	 to	 train	 single-hidden	 layer	 feedforward	 neural	 networks	 (SLFN)	 [23].	
Modified	versions	of	EML	are	proposed	 in	 the	 literature	 [24],	 [25],	 [26],	 [27].	To	
prevent	the	machine	learning	algorithm	from	being	subjected	to	a	lengthy	training	
period,	we	 can	 reduce	 the	high	dimensionality	 of	 the	dataset	with	 the	 aid	of	 the	
feature	selection	strategy	that	was	proposed	in	the	previous	section.	

In	the	feedforward	networks,	they	are	three	basic	layers	of	neurons:	input,	
hidden	and	output	 layers.	The	neurons	 from	the	previous	 layer	are	connected	 to	
those	 of	 the	 next	 layer	 through	weighted	 links.	 In	 the	 training	procedure,	 input-
hidden	weights	and	hidden	biases	are	randomly	assigned	a	value	in	the	range	[0,1],	
while	 hidden-output	 weights	 are	 determined	 by	 Moore–Penrose	 inverse.	 This	
contributes	 to	 faster	model	 training	when	 compared	 to	 back-propagation	which	
uses	iteration	after	randomly	assigning	weights	in	the	range	[0,1].	Figure	1,	presents	
the	layout	of	extreme	machine	learning.	
	

	
Figure	1.	Extreme	machine	learning	

	
Fig	1	presents	EML	with	𝑛	input,	𝐿	hidden	and	𝑚	output	neurons.	The	input-

hidden	link	weight	𝜔!" 	connects	𝑖#$	input	to	𝑗#$	hidden	neurons	were	𝑖	=	1	to	𝑛,	and	
𝑗	=	1	to	𝐿.	Link	with	weight	𝛽!" ,	on	the	other	hand,	connects	the	𝑖#$		hidden	neuron	
to	the	𝑗#$	output	neuron	where	𝑖	=	1	to	𝐿	and	𝑗	=	1	to	𝑚,	hidden	layer	biases	are	
expressed	as	𝑏! .	Matrices	ζ	and	φ	represent	the	set	of	all	input-hidden	link	weights	
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and	hidden-output	link	weights,	respectively.	𝑥! 	=	[𝑥!%, 𝑥!%, 𝑥!&, … , 𝑥!']T	∈ 	𝑅'	where	
𝑛		is	the	number	of	features,	represents	the	𝑖#$		sample.	𝑦! 	=	[𝑦!(, 𝑦!%, 𝑦!&, … , 𝑦!)]T		∈
𝑅)			where	𝑚	denotes	the	number	of	classes	that	the	sample	could	belong	to	are	the	
corresponding	output	of	the	model.	The	model	is	first	trained	before	it	can	be	used	
to	classify	data.	

Suppose	there	are	𝑎	training	samples	of	the	form		𝑥!#	=	[	𝑥!(# , 𝑥!%# , 𝑥!&# , … , 𝑥!'# ]T	
∈ 𝑅',	with	their	corresponding	target	vector	of	the	form	𝛼! 	=	[𝛼!(, 𝛼!%, 𝛼!&, … , 𝛼!)]T		
∈ 𝑅).	The	output	of	this	network	can	then	be	modeled	as	follows:	

	

𝑦! =	4𝑓(𝑤"

*

"+(

, 𝑏" , 𝑥!#)𝛽" 	, 𝑓𝑜𝑟		𝑖 = 1,2,3, … , 𝑎		

	

(1)	

Where,	 	𝑤" 	=	 [𝑤"(, 𝑤"%, 𝑤"&, … , 𝑤"']T	 	 and	𝛽" =	 [𝛽"(, 𝛽"%, 𝛽"&, … , 𝛽")]T	 	 are	 the	
weight	vectors	that	connect	the	𝑗#$		hidden	neuron	to	the	𝑛		input	neuron	and	the	𝑚	
output	 neuron,	 respectively.	𝑏" 	 represents	 the	 𝑗#$	 	 hidden	 bias.	 For	 the	 entire	
training	dataset	of	𝑎	samples,	we	may	express	the	following	equation:	

	
𝑦 = 	𝜙𝜑	 (2)	

Where,	
	

𝜙 =	

⎝

⎜
⎛
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⎞
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⎝
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⎛
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.
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⎟
⎞
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⎝
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⎛
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.
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⎟
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in	reducing	error	 	|𝑦 − 𝛼|,	where	α	=	[𝛼(, 𝛼%, 𝛼&, … , 𝛼,]	representing	target	

vectors	 of	 all	 the	 training	 samples.	 We	 can	 randomly	 generate	 values	 for	the	
parameters	𝑤" 	 and	 𝑏" 	 independent	 of	 the	 input	 values.	 The	 hidden-output	 link	
weights	can	now	be	calculated	by	finding	the	least	square	solution	to	the	equation	
below.	

𝜑 = 𝜙ℸα	
	

(3)	

where	ℸ		represents	the	generalized	inverse	matrix	of	Moore–Penrose.	Now	that	
the	value	of	the	hidden-output	link	weights	matrix	(𝜑)	is	known,	the	model	can	be	
used	for	classification.	
	
ii. Neighbourhood	Based	Differential	Evolution	-	Extreme	Learning	(NDE-

EML).	
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The	 fact	 that	 it	does	not	 require	 iterative	 training,	EML	can	be	 trained	 faster.		
However,	because	the	 input-hidden	link	weights	and	hidden	biases	are	randomly	
initialized,	it	may	not	always	produce	an	optimal	training	accuracy	resulting	in	low	
testing	accuracy.	Furthermore,	the	number	of	neurons	in	the	hidden	layer	must	be	
greater	 than	 that	 of	 other	 SLFN	 resulting	 in	 a	 longer	 testing	 time	 for	 unknown	
samples.		

In	 addressing	 the	 above-mentioned	 challenge	 this	 work	 proposes	 the	
optimization	 of	 EML.	 Neighbourhood-based	 differential	 evolution	 (NBD)	 [28]	 is	
utilised	 to	 optimize	 EML.	 The	 input-hidden	 layer	weights	 and	 hidden	 biases	 are	
found	by	utilizing	NBD	Whereas	Moore–Penrose	is	utilised	to	calculate	the	hidden-
output	weight.	Neighbourhood	Based	Differential	Evolution	is	a	population-based	
algorithm	 whereby	 each	 unit	 of	 the	 population	 represents	 a	 solution.	 Until	 the	
optimal	solution	is	 found	those	units	evolve	 in	each	successive	generation.	 In	the	
proposed	scheme,	the	input-hidden	link	weights	and	hidden	biases	are	encoded	as	
a	vector.	

In	 achieving	 optimal	 training	 accuracy	 of	 NDE-EML	 the	 following	 steps	 are	
followed	 from	 generation	 to	 generation	 until	 the	 optimal	 training	 accuracy	 is	
reached:	 Input-hidden	 layer	 link	 initialisation,	 hidden-output	 layer	 link	 weights	
calculation,	mutation	crossover	and	selection.	
	
Input-hidden	layer	link	Initialization		
	
An	 encoded	 solution	 vector	 is	 initialised	during	 every	 generation	 composed	 of	 a	
population	of	size		ع.The	target	vector	refers	to	how	each	individual	in	the	population	
is	represented.	
𝛤/,1=[
𝑤((, 𝑤(%, … , 𝑤(* , 𝑤%(, 𝑤%%, … , 𝑤%* , 𝑤&(, 𝑤&%, … , 𝑤&* , … , 𝑤'(, 𝑤'%, … , 𝑤'* , 𝑏(, 𝑏%, … , 𝑏*	]	
Where	 k	 and	 s	 represent	 the	 target	 vector	 and	 generation	 number	 respectively.	
Target	vectors	𝛤/,(	are	randomly	initialized	with	values	that	fall	within	[0,1].	In	other	
generations	(s),	the	population	is	initialised	by	a	selected	solution	vector	from	the	
previous	generation	(s-1).		
	
hidden-output	layer	link	weights	calculation	
	
𝑠th	population	target	vector	is	calculated	as:	
	

𝜑/,1	=	𝜙/,1ℸα	
	

(4)	

	
Where	𝜑/,1	and	α	represent	hidden	layer	output	Matrix	and	target	matrices	

respectively.	The	said	matrices	are	defined	as:	
	

𝜙/,1 =	

⎝

⎜
⎛
𝑓(𝑤(,1, 𝑏(,1, 𝑥(,1)	 .				.				. 𝑓(𝑤/,1, 𝑏/,1, 𝑥(,1).

.

.

.

.

.

.

.

.
𝑓(𝑤(,1, 𝑏(,1, 𝑥/,1)	 .				.				. 𝑓(𝑤/,1, 𝑏/,1, 𝑥/,1)⎠

⎟
⎞
,		α =	

⎝

⎜
⎛
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Where,	α1=	[α1,(, α1,%, … , α1,,]	is	the	target	vector	of	sth	training	sample	and	𝑎	is	the	
total	number	of	training	sample.	Mean	squared	error	(MSE)	is	defined	as	
	MSE/,1	=		

	∑ ∑ (5!,#678!,#,9!,#,:$,#;<	=$,#)%
!&'

(
$&'

'
	

is	utilised	as	an	objective	function.	The	vector	with	minimum	RMSE	in	generation	S	
is	represented	as	𝛤9?1#,1.	
	
mutation	crossover	
	

The	process	of	changing	one	or	more	components	of	the	solution	vector	to	
produce	a	better	solution	is	known	as	mutation.	In	this	stage,	a	mutant	vector	ϗ/,1		is	
produced	for	each	target	vector	𝛤/,1.	This	study	makes	use	of	Differential	evolution	
global	 and	 local	 neighbourhood	 (DEGL)	 mutation	 strategy	 proposed	 in	 [28].	 To	
maintain	 the	 uniqueness	 of	 every	 neighbourhood,	 the	 vector	 indices	 are	
arranged	randomly	 (as	 determined	 during	 initialization).	 Now,	 we	 establish	 a	
neighbourhood	of	radius	z	for	each	vector	𝑤',* ,	where	z	is	a	nonzero	integer	from	0	
to	(n-1)/2	since	the	neighbourhood	size	must	be	smaller	than	the	population	size,	
i.e.	 2z	 +	 1	 ≤	 n,	made	 up	 of	 vectors	𝑤'<@,* ,...,	𝑤',* ,…,	𝑤'A@,* .	 In	working	with	 this	
method,	we	assume	that	the	vectors	are	organised	in	a	ring	topology	such	that	the	
two	direct	neighbours	of		𝑤(,*	are	𝑤',*	and	𝑤%,* .		

The	 best	 (fittest)	 vector	 from	 the	member's	 neighbourhood	 and	 any	 two	
more	 vectors	 are	 used	 to	 build	 a	 local	 donor	 vector	 for	 each	 individual	 in	 the	
population.	The	model	might	be	written	as	
	

𝑈',*=	𝑤',*	+	α	.	(𝑤'_9?1#',* −	𝑤',*	)	+	β	.	(𝑤C,* −𝑤D,*)	
	

(5)	

	
Where	the	best	vector	in	the	neighbourhood	of	𝑤',*	is	indicated	by	subscript	

n_bestn	and	p,	q	∈	[i	−	k,	 i	+	k]	with	p	≠	q	≠n.	 likewise,	the	global	donor	vector	 is	
created	as		
	

𝑔',*=	𝑤',*	+	α	.	(𝑤E_9?1#',* −	𝑤',*	)	+	β	.	(𝑤F(,* −𝑤F%,*)	
	

(6)	

	
The	 best	 vector	 in	 the	 entire	 population	 at	 generation	 L	 is	 denoted	 by	

𝑔_𝑏𝑒𝑠𝑡𝑛	and	r1,	r2	∈	[1,	n]	with	r1	≠	r2	≠	i	.	α	and	β	are	the	scaling	factors.	
	

The	first	perturbation	term	of	equation	(5)	and	(6)	(the	one	multiplied	by	α)	
represents	an	arithmetical	recombination	operation,	whereas	the	second	term	(the	
one	multiplied	 by	 β)	 represents	 a	 differential	mutation.	 As	 a	 result,	we	 produce	
altered	recombinants	rather	than	pure	mutants	in	both	the	global	and	local	mutation	
models.		
	

Now,	 to	create	 the	actual	donor	vector	 for	 the	DEGL,	both	local	and	global	
donor	vectors	are	merged	using	a	scalar	weight	¢	∈	(0,	1).	
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𝑉',*=		¢	.	𝑔',*		+	(1-¢)	𝑈',*	
	

(7)	

	
If	¢	=1	and	α	=	β	=	F,	then	the	equation	(7)	becomes	a	donor	vector	generated	

by	DE/target-to-best/1	 technique.	After	 the	mutation,	 once	 the	donor	vector	has	
been	produced,	the	crossover	phase	is	conducted.	The	objective	and	donor	vectors	
are	combined	by	 this	operator.	The	Binomial	and	Exponential	 crossovers	are	 the	
two	basic	 types	of	crossover	operators.	Binomial	crossover	 is	employed	 in	DEGL.	
Based	on	the	crossover	probability,	Binomial	Crossover	chooses	the	value	for	each	
gene	in	the	final	vector	from	one	or	the	other	ancestor.	
	
Selection	
	

The	population	vector	of	the	next	generation	is	selected	at	this	stage.	MSE	is	used	
for	selecting	the	target	vectors	for	the	next	generation.	The	calculated	values	of	MSE	
for	each	vector	of	interest	at	the	current	generation	are	compared	and	the	one	with	
the	minimum	value	of	MSE	is	selected	and	included	in	the	next	generation.		
	
iii. Simulation	environment	
In	 this	 section,	 we	 discuss	 the	 simulation	 environment	 set	 up	 for	 the	

implementation	of	the	NDE-EML	and	NDE	subjected	to	QOFA.	We	utilised	synthetic	
data	generated	in	MATLAB.	The	most	relevant	features	were	selected	using	QOFA.	
Then	 the	 selected	 data	was	 used	 to	 train	 and	 test	 NDE-EML	 and	NDE.	 Different	
performance	evaluation	metrics	were	evaluated.	

Firstly,	 we	 generated	 synthetic	 datasets	 to	 simulate	 both	 normal	 traffic	 and	
DDoS	attack	patterns.	DDoS	attacks	are	dynamic,	hence	there	is	a	need	to	develop	
up-to-date	mitigation	 schemes.	 The	 available	 datasets	 used	 in	 the	 literature	 are	
outdated	and	have	limitations	[29].	if	used	there	is	a	possibility	that	mutated	attack	
strategies	may	be	missed	[30].	 	 	Hence,	 the	synthetic	data	was	generated	 for	 this	
reason.	We	 began	 by	 defining	 feature	 distributions	 for	 both	 types	 of	 traffic.	 For	
normal	traffic,	the	mean	values	were	specified	in	the	normal_dist	array	ranging	from	
10	 to	 300	 in	 increments	 of	 10.	 For	 DDoS	 attack	 traffic,	 the	 mean	 values	 were	
specified	 in	 the	 ddos_dist	 array	 ranging	 from	 50	 to	 340	 in	 increments	 of	 10.	 A	
standard	deviation	of	10	was	used	for	both	distributions	to	introduce	variability.	

The	total	number	of	data	points	was	100,000,	with	a	proportion	of	0.2,	0.4,	0.6,	
0.8	allocated	to	DDoS	attack	traffic.	Consequently,	80000,	60000,	40000	and	20000	
data	 points	 represented	 normal	 traffic	 respectively.	 For	 each	 of	 the	 30	 features,	
normal	 traffic	data	was	generated	using	a	normal	distribution	with	 the	 specified	
means	and	standard	deviation,	resulting	in	a	dataset	with	dimensions	normal	data	
x	 30	 respectively.	 Similarly,	 DDoS	 attack	 data	was	 generated	 using	 the	 specified	
means	and	standard	deviation,	producing	a	dataset	with	dimensions	DDoS	attack	
data	x	30.	

These	 two	datasets	were	 then	combined	 into	a	 single	matrix,	data	 containing	
both	normal	and	DDoS	traffic.	Corresponding	labels	were	created	to	form	the	̀ labels`	
vector,	where	̀ 0`	denotes	normal	traffic	and	̀ 1`	denotes	DDoS	attacks.	This	synthetic	
dataset	provided	a	controlled	environment	 for	evaluating	the	performance	of	 the	
traditional	Firefly	Algorithm	and	Quasi-Oppositional	Firefly	Algorithm	in	selecting	
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relevant	 features	 for	network	 traffic	 classification.	The	generated	data	ensured	a	
balanced	representation	of	normal	and	attack	 traffic,	which	 is	crucial	 for	 reliable	
performance	evaluation	of	feature	selection	and	classification	algorithms.	
Secondly,	the	core	of	the	environment	consists	of	machine	learning	techniques.	We	
employed	 QOFA	 to	 optimize	 the	 selection	 of	 features	 that	 are	most	 relevant	 for	
distinguishing	between	normal	and	attack	traffic.	The	Traditional	Firefly	Algorithm	
evaluates	 feature	 attractiveness	 between	 fireflies,	 while	 the	 variant	 with	 Quasi-
Oppositional	 Learning	 enhances	 diversity	 by	 incorporating	 quasi-opposite	
solutions.	

Thirdly,	the	evaluation	metrics	used	in	this	environment	encompass	a	wide	
range	of	performance	 indicators	 crucial	 for	assessing	 the	effectiveness	of	 feature	
selection	and	classification	models.	These	metrics	include	accuracy,	precision,	recall,	
F1	 score	and	 false	positive	matrices.	Each	metric	provides	 insights	 into	different	
aspects	of	model	performance,	such	as	its	ability	to	correctly	classify	instances	of	
normal	traffic	and	DDoS	attacks.	

Fourthly,	we	partitioned	the	data	into	training	and	testing	to	ensure	robust	
performance	evaluation.	The	70%	of	the	data	is	used	for	training	the	models,	while	
the	remaining	30%	is	used	for	testing.	This	partitioning	strategy	helps	in	assessing	
how	well	the	models	generalize	unseen	data	and	avoid	overfitting.	Figure	2	is	the	
flow	diagram	of	the	proposed	and	traditional	EML.		
Synthetic	dataset	is	generated	comprising	of	normal	and	DDoS	attack	data.	
Using	QOFA,	feature	selection	is	done	on	the	dataset	to	minimize	its	dimensionality	
to	the	most	pertinent	features.	
The	reduced	dataset	is	then	partitioned	into	training	and	testing.	
EML	and	NDE-EML	is	trained	and	tested	
Finaly,	the	results	of	the	models	are	extracted.		
	

	
Figure	2.	Flow	diagram	of	the	experiment	carried	out.	
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The	 simulations	were	 conducted	 using	MATLAB	Online	 due	 to	 constraints	 in	
computational	 power	 on	 local	 systems.	 MATLAB	 Online	 provides	 the	 necessary	
computational	 resources	 and	 a	 cloud-based	 environment,	 ensuring	 that	 the	
simulations	 run	efficiently	without	 the	 limitations	posed	by	 local	 hardware.	This	
platform	 allows	 for	 seamless	 collaboration,	 easy	 access	 to	 the	 latest	 MATLAB	
features,	and	the	ability	to	run	intensive	computations	without	overloading	the	local	
machines.		
	
iv. Simulation	Results	
	
In	this	section,	we	present	and	discuss	the	performance	results	of	EML	compared	to	
NDE-EML	subjected	to	QOFA	obtained	through	MATLAB	experiments.	Figures	3-6	
present	 the	 simulation	 results	 of	 EML	 compared	 to	 NDE-EML	 under	 different	
network	scenarios.	Comparison	results	of	the	investigated	algorithm	in	a	network	
scenario	where	 20%	 of	 the	 data	 is	 generated	 by	DDoS	 attackers	 is	 presented	 in	
Figure	3.	
	

	
Figure		3.	Comparing	the	Performance	of	NDE-EML	and	Conventional	EML	on	Data	

with	20%	DDoS	Attack	Traffic	
	

The	 performance	 of	 the	 two	 models,	 EML	 and	 NDE-EML	 in	 a	 network	
containing	 20%	 of	 data	 generated	 by	 attackers	 is	 compared	 and	 the	 results	 are	
presented	in	Figure	3.	The	QOFA	algorithm	was	applied	to	both	models	to	reduce	
their	 features.	 In	 every	 metric,	 NDE-EML	 performs	 better.	 It	 obtained	 a	 higher	
accuracy	of	99.493%	as	opposed	to	98.723%	which	suggests	a	lower	total	error	rate.	
Additionally,	it	has	a	superior	precision	(99.591%	vs.	96.932%),	which	means	that	
there	are	fewer	false	positives	than	real	positives.	Furthermore,	NDE-EML's	recall	is	
marginally	higher	(97.859%	as	opposed	to	96.691%)	which	shows	that	it	accurately	
identifies	a	greater	percentage	of	true	positives.	For	NDE-EML,	the	F1	score	is	higher	
(98.718%	vs.	96.811%).	Interestingly,	NDE-EML's	false	positive	rate	of	0.099908%	
is	far	lower	than	EML's	of	0.76708%.	NDE-EML	is	the	best	model	in	this	scenario	
since	it	performs	better	than	EML	in	all	the	scenarios.	Figure	4	compares	NDE-EML	

Accuracy Precision Recall F1 Score False
Positives

QOFA ELM 0,98723 0,96932 0,96691 0,96811 0,0076708
QOFA NDE-ELM 0,99493 0,99591 0,97859 0,98718 0,00099908
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and	EML	in	a	network,	the	experiment	was	conducted	using	the	dataset	where	40%	
of	was	generated	by	DDoS	attackers.	
	

	
Figure		4.	Comparing	the	Performance	of	NDE-EML	and	Conventional	EML	on	Data	

with	40%	DDoS	Attack	Traffic	
	

Figure	4	shows	the	performance	of	EML	and	NDE-EML.	They	both	used	the	
QOFA	for	feature	selection	in	a	network	where	DDoS	attackers	generate	40%	of	the	
data.	In	every	metric,	the	NDE-EML	model	outperformed	EML.	With	an	accuracy	of	
99.307%	 as	 opposed	 to	 99.017%	 for	 EML,	 NDE-EML	 performed	 better	 and	 had	
fewer	 classification	 errors.	With	 a	 precision	 of	 99.693%,	 NDE-EML	 outperforms	
EML's	99.219%,	meaning	that	NDE-EML	has	a	lower	ratio	of	false	positives	to	true	
positives.	Despite	the	close	similarity	of	the	recall	results	for	both	models,	NDE-EML	
is	marginally	better	than	EML.	It	has	a	recall	of	98.550%	compared	to	98.318%.		The	
NDE-EML's	F1	score	is	higher	at	99.118%	compared	to	EML's	98.766%.	Moreover,	
compared	 to	EML's	0.51698%	false	positive	rate,	NDE-EML	 its	 rate	 is	0.19851%.	
Even	though	the	results	are	marginally	different,	Table	2	shows	that	NDE-EML	is	
superior.	Figure	5	depicts	the	comparison	of	NDE-EML	and	EML	in	a	network	where	
60%	of	data	was	generated	by	DDoS	attacks.	
	
	

Accuracy Precision Recall F1 Score False
Positives

QOFA ELM 0,99017 0,99219 0,98318 0,98766 0,0051698
QOFA NDE-ELM 0,99307 0,99693 0,9855 0,99118 0,0019851
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Figure		5.	Comparing	the	Performance	of	NDE-EML	and	Conventional	EML	on	Data	

with	60%	DDoS	Attack	Traffic	
	

In	 Figure	 5,	 the	 performance	 of	 EML	 is	 compared	 to	 NDE-EML.	 The	 two	
models	were	both	subjected	to	QOFA	feature	selection.	The	EML	model	achieved	an	
accuracy	of	99.13%.	It	also	had	a	precision	of	98.80%,	indicating	a	low	number	of	
false	positives,	and	a	recall	of	99.75%,	identifying	almost	all	 true	positives.	 Its	F1	
score	of	99.27%	reflects	a	balanced	measure	of	precision	and	recall.	However,	EML	
misclassified	1.79%	of	instances	as	false	positives.	On	the	other	hand,	the	NDE-EML	
model	achieved	a	slightly	lower	accuracy	of	98.70%,	with	a	precision	of	98.45%,	a	
recall	of	99.41%,	and	an	F1	score	of	98.93%.	Notably,	NDE-EML	had	a	higher	false	
positive	rate	of	2.38%.	Thus,	while	EML	demonstrated	superior	overall	performance	
and	a	 lower	 rate	of	 false	positives	 compared	 to	NDE-EML,	both	models	achieved	
good	classification	results	with	NDE-EML	being	slightly	less	effective	in	minimizing	
false	positives.	Figure	6	compares	NDE-EML	and	EML	results	in	a	network	where	
DDoS	attacks	generate	80%	of	data.	
	

	

Accuracy Precision Recall F1 Score False
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Figure		6.	Comparing	the	Performance	of	NDE-EML	vs	traditional	EML	on	Data	
with	80%	DDoS	Attack	Traffic	

	
Figure	6	presents	the	performance	results	of	EML	and	NDE-EML	in	a	network	

scenario	where	80%	of	data	is	generated	by	a	DDoS	attack.	The	EML	model	achieved	
an	accuracy	of	98.45%,	with	a	precision	of	98.259%,	 indicating	a	reasonably	 low	
number	of	false	positives.	Its	recall	was	very	high	at	99.838%,	meaning	it	effectively	
identified	nearly	all	true	positives,	resulting	in	an	F1	score	of	99.042%.	However,	
EML	had	a	higher	false	positive	rate	of	7.1996%.	In	contrast,	the	NDE-EML	model	
significantly	 outperformed	 EML,	 with	 an	 accuracy	 of	 99.937%,	 and	 precision	 of	
99.979%,	suggesting	an	almost	negligible	number	of	false	positives.		
It	also	maintained	a	high	recall	of	99.942%,	and	its	F1	score	of	99.96%	demonstrates	
a	good	balance	between	precision	and	recall.	Moreover,	NDE-EML	had	a	low	false	
positive	 rate	 of	 0.083139%.	 Thus,	 NDE-EML's	 performance	 results	 indicate	 it	 is	
superior	 to	 EML,	 particularly	 in	 minimizing	 false	 positives	 and	 achieving	 good	
accuracy,	precision,	recall,	and	F1	score.	The	comparative	results	of	NDE-EML	and	
EML	in	various	network	scenarios	are	shown	in	Figures	7–11.	Figure	7	presents	an	
investigation	of	the	accuracy	of	the	models	in	various	network	configurations.	
	
	

	
Figure		7.	Accuracy	of	the	algorithm	in	different	network	scenarios.	

	
Figure	7	presents	the	accuracy	results	of	two	models,	QOFA-EML	and	QOFA-

NDE-EML	in	various	network	scenarios	where	the	percentage	levels	of	DDoS	attack-
generated	data	vary	from	10%	to	90%.	Accuracy	measures	the	proportion	of	correct	
predictions	out	of	 the	 total	predictions	made.	QOFA-EML's	 accuracy	 ranges	 from	
98.45%	(at	80%)	to	99.52%	(at	10%),	indicating	high	accuracy	in	all	the	scenarios.	
However,	its	accuracy	decreases	slightly	as	the	percentage	level	increases,	with	the	
lowest	 accuracy	 at	 80%.	 QOFA-NDE-EML's	 accuracy	 also	 ranges	 from	 98.7%	 (at	
60%)	 to	 99.93%	 (at	 80%),	 showing	 high	 accuracy	 across	 all	 levels.	 Notably,	 its	
accuracy	increases	as	the	percentage	increases,	with	the	highest	accuracy	at	80%	
(99.93%)	 and	 90%	 (99.75%).	 Comparing	 the	 two	 models,	 QOFA-NDE-EML	
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generally	 outperforms	QOFA-EML,	 particularly	 at	 higher	 percentage	 levels	 (80%	
and	 90%).	 This	 suggests	 that	 QOFA-NDE-EML	 is	 more	 accurate	 in	 predicting	
outcomes	when	 the	 DDoS	 traffic	 is	 high.	 Overall,	 both	models	 demonstrate	 high	
accuracy,	 but	QOFA-NDE-EML	appears	 to	have	 a	 slight	 edge,	 especially	 at	 higher	
percentage	levels.	Precision	results	of	QOFA-NBEML	and	QOFA-EML	are	presented	
in	Figure	8.	

	

	
Figure		8:	Precision	of	the	algorithm	in	different	network	scenarios.	

	
In	Figure	8,	QOFA-NDE-EML	outperformed	QOFA-EML	in	terms	of	precision,	

with	a	noticeable	difference	 in	all	network	scenarios.	QOFA-NDE-EML's	precision	
remains	stable,	ranging	from	0.98451	at	60%	to	0.99979	at	80%,	demonstrating	its	
reliability	and	consistency.	In	contrast,	QOFA-EML's	precision	varies.	It	ranges	from	
0.96388	at	50%	to	0.99385	at	90%,	indicating	some	fluctuations	in	its	performance.	
Notably,	both	models	achieved	higher	precision	at	higher	percentage	 levels,	with	
QOFA-NDE-EML	reaching	0.99979	at	80%,	indicating	its	good	accuracy	at	this	level.	
Overall,	 QOFA-NDE-EML's	 consistently	 high	 precision	 makes	 it	 a	 more	 reliable	
choice,	 while	 QOFA-EML's	 varying	 precision	 indicates	 its	 unreliability.	 Figure	 9	
presents	 an	 analysis	 of	 the	 recall	metric	 for	 both	 QOFA-NBEML	 and	QOFA-EML,	
providing	a	comparative	view	of	their	outcomes.	
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Figure		9.	Recall	of	the	algorithm	in	different	network	scenarios.	

	
It	is	evidenced	in	Figure	9	that	QOFA-EML's	recall	performance	is	good,	but	

it	 fluctuates	 slightly	 across	 different	 network	 scenarios.	 It	 starts	with	 a	 recall	 of	
0.99103	at	10%,	drops	to	0.95911	at	15%,	and	then	gradually	increases	to	0.99895	
at	 70%.	 However,	 it	 slightly	 decreases	 to	 0.99838	 at	 80%	 before	 increasing	 to	
0.99893	at	90%.	On	the	other	hand,	QOFA-NDE-EML's	recall	performance	exhibits	a	
consistent	and	steady	improvement	as	the	percentage	levels	increase.	It	starts	with	
a	recall	of	0.95866	at	10%,	increases	to	0.99483	at	30%,	and	continues	to	increase	
to	 0.9997	 at	 90%.	QOFA-NDE-EML's	 recall	 surpasses	QOFA-EML's	 at	most	 levels	
with	a	significant	margin	at	higher	percentage	levels	(80%	and	90%).	The	consistent	
improvement	in	QOFA-NDE-EML's	recall	suggests	that	it	is	better	at	detecting	true	
positives	as	the	percentage	levels	increase.		

This	 is	 particularly	 important	 in	 our	 study	 since	 false	 negatives	 have	
significant	 consequences,	which	 can	make	 the	 network	 unavailable.	 	 In	 contrast,	
QOFA-EML's	 fluctuating	 recall	 performance	 indicates	 that	 it	 is	more	 sensitive	 to	
changes	in	the	data	or	model	parameters.	While	it	still	achieves	high	recall	rates,	its	
performance	 is	 less	 reliable	 than	 QOFA-NDE-EML's	 performance	 especially	 at	
higher	percentage	levels.	In	Overall,	both	models	demonstrate	high	recall	rates,	but	
QOFA-NDE-EML's	 consistent	 improvement	 and	 superior	 performance	 at	 higher	
levels	make	 it	 a	more	 reliable	 in	 detecting	 true	 positives.	 Figure	 10	 presents	 an	
analysis	of	the	QOFA-NBEML	and	QOFA-EML	evaluation	results	which	compares	the	
F1-score	measures	of	the	models.	
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Figure		10.	F1-Score	of	the	algorithm	in	different	network	scenarios.	

	
Figure	9	shows	that	the	QOFA-EML's	F1-score	performance	is	good	at	lower	

percentage	 levels	 (0.98158	 at	 10%	 and	 0.96398	 at	 15%)	 which	 indicates	 good	
detection	 rates	 in	 network	 scenarios	 with	 few	 DDoS	 attackers.	 However,	 its	
performance	 fluctuates	 as	 the	 attack	 intensity	 increases	 with	 a	 notable	 drop	 to	
0.97247	at	50%	and	then	increase	to	0.99638	at	90%.	This	variability	suggests	that	
QOFA-EML	is	not	efficient	in	detecting	DDoS	attacks	of	varying	severity.	In	contrast,	
QOFA-NDE-EML's	F1-score	performance	 is	more	consistent	and	robust	across	all	
network	scenarios.	It	starts	strong	at	0.97628	at	10%	and	maintains	a	high	level	of	
performance,	with	a	slight	drop	to	0.98718	at	20%	and	then	a	steady	increase	to	
0.99852	 at	 90%.	 This	 consistent	 performance	 indicates	 that	 QOFA-NDE-EML	 is	
effective	 in	 detecting	 DDoS	 attacks	 in	 wide	 range	 of	 network	 scenarios	 with	
increasing	 intensity	 of	 attacks.	 The	 superior	 performance	 of	 QOFA-NDE-EML	 is	
particularly	notable	at	higher	percentage	levels	(80%	and	90%),	where	the	accuracy	
of	DDoS	attack	detection	is	critical.	QOFA-NDE-EML's	F1-score	of	0.9996	at	80%	and	
0.99852	at	90%	indicates	its	effectiveness	in	detecting	severe	DDoS	attacks.	Overall,	
the	 comparative	 F1-scores	 suggests	 that	 QOFA-NDE-EML	 is	 a	more	 reliable	 and	
effective	model	for	detecting	DDoS	attacks	particularly	in	high	DDoS	attack	intensity	
scenarios	where	detection	efficiency	is	crucial.	Figure	10	provides	a	comprehensive	
comparison	of	false	positive	rates	for	both	QOFA-NBEML	and	QOFA-EML	models.	
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Figure		11.	False	positive	rate	of	the	algorithm	in	different	network	scenarios.	

	
In	 Figure	 11,	 QOFA-EML's	 False	 positive	 rate	 (FPR)	 is	 high,	 indicating	 a	

significant	likelihood	of	misclassifying	legitimate	traffic	as	DDoS	attacks.	This	could	
lead	 to	 unnecessary	 resource	 waste,	 legitimate	 traffic	 blocking,	 and	 potential	
security	breaches.	The	FPR	fluctuates	across	different	attack	intensities,	suggesting	
that	QOFA-EML's	performance	is	inconsistent	and	may	be	affected	by	the	severity	of	
the	DDoS	attacks.	In	contrast,	QOFA-NDE-EML's	FPR	is	low	indicating	high	accuracy	
in	 detecting	 legitimate	 traffic.	 This	 suggests	 that	 QOFA-NDE-EML	 is	 effective	 in	
reducing	 false	 positives,	 which	 is	 critical	 in	 high-security	 networks	 where	 non	
malicious	traffic	must	be	prioritized.		

The	FPR	remains	relatively	stable	across	different	attack	intensities,	indicating	
that	 QOFA-NDE-EML's	 performance	 is	 robust	 and	 consistent,	 even	 in	 the	 face	 of	
increasing	attack	severity.	The	significant	difference	in	FPR	between	QOFA-EML	and	
QOFA-NDE-EML	 is	 particularly	 notable	 at	 higher	 attack	 intensities	 (50%-90%).	
QOFA-EML's	 FPR	 increases	 indicating	 a	 higher	 likelihood	 of	 misclassifying	
legitimate	traffic	while	QOFA-NDE-EML's	FPR	remains	relatively	stable,	depicting	a	
continued	high	accuracy	in	detecting	legitimate	traffic.	Overall,	figure	10	shows	that	
QOFA-NDE-EML	is	a	more	reliable	and	accurate	model	for	detecting	DDoS	attacks,	
with	a	lower	likelihood	of	misclassifying	legitimate	traffic.	QOFA-EML's	higher	FPR	
and	fluctuating	performance	make	it	less	suitable	for	high-security	networks	where	
accurate	detection	and	minimal	false	positives	are	crucial.	
	
v. Analytical	Results	

	
t-statistics	

This	 section	 presents	 the	 results	 of	 a	 statistical	 analysis	 where	 the	
performance	 of	 QOFA-EML	 and	 QOFA-NDE-EML	 in	 detecting	 DDoS	 attacks	were	
compared.	 The	 analysis	 includes	 t-test	 results	 for	 accuracy,	 precision,	 recall,	 F1-
score,	 and	 false	positive	 rate	presented	 in	Tables	1	 to	5.	The	 results	validate	 the	
simulation	 results	 and	 show	 that	 QOFA-NDE-EML	 outperforms	 QOFA-EML	 in	 all	
scenarios.	The	difference	is	also	significant	in	all	scenarios.	The	study	highlights	that	

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08

10% 15% 20% 30% 40% 50% 60% 70% 80% 90%

Pr
ob

ab
ili

ty

The amount of data generated by DDoS attack

False positive rate

QOFA-EML QOFA-NBEML

https://doi.org/10.33022/ijcs.v14i2.4538


	 	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v14i2.4538	 	 2019	

QOFA-NDE-EML	outperforms	 other	 detection	methods	 in	 terms	 of	 detection	 and	
reliability.	 The	 significant	 differences	 in	 performance	 between	 the	 two	 models	
confirm	 that	 QOFA-NDE-EML	 is	 a	 more	 accurate	 and	 reliable	 model	 for	 DDoS	
detection.	Table	1	compares	QOFA-EML	and	QOFA-NDE-EML	accuracy	using	a	t-Test	
Two-tale	 and	 Assuming	 Equal	 Variances	 which	 shows	 a	 significant	 difference	
between	the	two	methods.	

	
Table		1:	t-Test	Two-tale	Assuming	Equal	Variances	for	Accuracy	

	 QOFA-EML	
QOFA-NDE-
EML	

Mean	 0,989827	 0,992414	
Stand	deviation	 0,0034116	 0,004770875	
Variance	 1,164E-05	 2,27612E-05	
Observations	 10	 10	
t	Stat	 1,394812304	
t-Critical	(two	tail)	 0,180048044	

	
Table	1	presents	the	t-test	results	where	the	accuracy	means	of	QOFA-EML	

and	QOFA-NDE-EML	are	compared.	The	mean	of	QOFA-EML	is	0.989827,	while	the	
mean	of	QOFA-NDE-EML	is	0.992414.	The	standard	deviations	are	0.0034116	and	
0.004770875	respectively.	With	10	observations	 in	each	sample,	 the	 t-statistic	 is	
1.394812304	highlighting	a	statistically	significant	difference	between	the	means.	
The	critical	 t-value	 for	a	 two-tailed	 test	 is	0.180048044,	which	 is	 lower	 than	 the	
observed	 t-statistic	 which	 suggests	 that	 the	 difference	 between	 QOFA-EML	 and	
QOFA-NDE-EML	 is	 significant.	 These	 analytical	 results	 are	 a	 confirmation	 of	 the	
findings	 in	Figure	6.	 	Table	2	presents	 the	comparison	of	 the	precision	results	of	
QOFA-EML	and	QOFA-NDE-EML	using	a	t-Test	Two-tale.	
	

Table		2.	t-Test	Two-Sample	Assuming	Equal	Variances	for	Precision	
		 QOFA-EML	 QOFA-NDE-EML	
Mean	 0,980017	 0,992911	
stand	deviation	 0,0112882	 0,005317258	
Variance	 0,0001274	 2,82732E-05	
Observations	 10	 10	
t	Stat	 3,267749116	
t-Critical	(two	tail)	 0,004274879	
	 	

	
The	precision	analytical	results	in	Table	2	illustrate	that	QOFA-NDE-EML	is	a	

more	 accurate	model	 in	 detecting	DDoS	 attacks	with	 a	 higher	mean	precision	 of	
0.992911	compared	to	QOFA-EML's	0.980017.	This	means	that	QOFA-NDE-EML	can	
detect	 a	 higher	 percentage	 of	 DDoS	 attacks	 which	 reduces	 the	 number	 of	 false	
negatives	and	improves	overall	detection	accuracy.	Furthermore,	QOFA-NDE-EML's	
lower	standard	deviation	(0.005317258)	and	variance	(2.82732E-05)	indicate	that	
its	precision	 is	more	 consistent	 and	 reliable	 in	 all	 network	 scenarios	 and	 testing	
conditions.	 In	 contrast,	 QOFA-EML's	 higher	 standard	 deviation	 (0.0112882)	 and	
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variance	 (0.0001274)	 suggest	 that	 its	 precision	 may	 be	 more	 variable	 and	 less	
reliable.		

The	significant	difference	in	precision	between	the	two	models	as	indicated	
by	 the	 t-statistic	 (3.267749116)	and	 t-critical	 value	 (0.004274879)	 suggests	 that	
QOFA-NDE-EML's	 improved	 accuracy	 is	 superior	 in	 DDoS	 detection.	 Overall,	 the	
results	 suggest	 that	 QOFA-NDE-EML	 is	 a	 more	 accurate	 and	 reliable	 model	 for	
detecting	DDoS	attacks	making	it	a	better	choice	for	network	security	applications	
where	 accurate	 detection	 is	 critical.	 Table	 3	 presents	 a	 comparison	 of	 the	 recall	
results	of	QOFA-EML	and	QOFA-NDE-EML	using	a	t-Test	Two-tale.	

	
Table		3.	t-Test	Two-Sample	Assuming	Equal	Variances	for	Recall	

		 QOFA-EML	 QOFA-NDE-EML	
Mean	 0,986427	 0,988836	
stand	deviation	 0,0140292	 0,012932537	
Variance	 0,0001968	 0,000167251	
Observations	 10	 10	
t	Stat	 0,399250129	
t-Critical	(two	tail)	 0,694406134	

	
The	recall	statistics	results	in	Table	3	show	that	QOFA-NDE-EML	is	slightly	

superior	 at	 detecting	DDoS	 attacks	with	 a	mean	 recall	 of	 0.988836	 compared	 to	
QOFA-EML's	 0.986427.	 This	 suggests	 that	 QOFA-NDE-EML	 is	 more	 effective	 in	
detecting	DDoS	attacks	which	reduces	the	number	of	false	negatives	and	improves	
overall	detection	accuracy.	Moreover,	QOFA-NDE-EML's	lower	standard	deviation	
(0.012932537)	 and	 variance	 (0.000167251)	 indicate	 that	 its	 recall	 is	 more	
consistent	and	reliable	across	different	scenarios	and	testing	conditions.		

This	means	that	QOFA-NDE-EML's	performance	is	more	stable	less	prone	to	
fluctuations	and	more	effective	in	detecting	DDoS	attacks.	Although	the	difference	
in	recall	between	the	two	models	 is	not	statistically	significant,	QOFA-NDE-EML's	
consistent	 performance	 and	 slightly	 higher	 recall	 suggest	 that	 it	 may	 be	 more	
reliable	 and	 effective	 in	 detecting	 DDoS	 attacks.	 The	 results	 suggest	 that	 both	
models	are	effective	in	detecting	DDoS	attacks	however,	QOFA-NDE-EML's	slightly	
higher	 recall	 and	 lower	 variability	 make	 it	 more	 ideal	 for	 network	 security	
applications	where	accurate	and	reliable	detection	is	crucial.	F1-Score	comparison	
results	using	the	t	test	are	presented	in	Table	4.	

	
Table		4.	t-Test	Two-Sample	Assuming	Equal	Variances	for	F1-Score	

	 QOFA-EML	 QOFA-NDE-EML	
Mean	 0,983186	 0,990817	
stand	deviation	 0,0116089	 0,006479271	
Variance	 0,0001348	 4,1981E-05	
Observations	 10	 10	
t	Stat	 1,815115994	
t-Critical	(two	tail)	 0,086205482	
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The	F1-score,	a	harmonic	mean	of	precision	and	recall	provides	an	evaluation	
of	a	model's	performance.	In	the	DDoS	dataset,	QOFA-NDE-EML's	higher	mean	F1-
score	 (0.990817)	 shows	 that	 it	 achieves	 a	 better	 balance	 between	 precision	
(0.992911)	 and	 recall	 (0.988836)	 compared	 to	 QOFA-EML	 (mean	 F1-score:	
0.983186,	 precision:	 0.980017,	 recall:	 0.986427).	 This	 is	 presented	 in	 Table	 4.	
QOFA-NDE-EML's	lower	variability	in	F1-score	(standard	deviation:	0.006479271,	
variance:	4.1981E-05)	shows	that	 its	performance	 is	more	consistent	 in	different	
scenarios	and	testing	conditions,	making	it	more	reliable	for	DDoS	detection.		

The	significant	difference	 in	F1-score	between	 the	 two	models	 (t-statistic:	
1.815115994,	t-critical:	0.086205482)	depicts	that	QOFA-NDE-EML's	improvement	
in	the	balance	between	precision	and	recall	is	superior.	QOFA-NDE-EML's	higher	F1-
score	and	lower	variability	depict	that	it	is	a	more	effective	and	reliable	model	for	
DDoS	detection.	It	achieves	a	better	balance	between	detecting	attacks	and	reducing	
false	 positives.	 This	 makes	 QOFA-NDE-EML	 a	 more	 suitable	 choice	 for	 network	
security	 applications	 where	 accurate	 and	 reliable	 detection	 is	 crucial.	 Table	 5	
presents	the	t-test	results	of	the	false	positive	rate	of	QOFA-NDE-EML	and	QOFA-
EML.	
	
Table		5.	t-Test	Two-Sample	Assuming	Equal	Variances	for	False	positive	rate	

		 QOFA-EML	 QOFA-NDE-EML	
Mean	 0,025687	 0,012735062	
stand	deviation	 0,0234893	 0,014313386	
Variance	 0,0005517	 0,000204873	
Observations	 10	 10	
t	Stat	 1,489003744	
t-Critical	(two	tail)	 0,153798621	

	
Table	5	presents	the	results	of	the	false	positive	rate	statistical	analysis	which	

shows	 that	 QOFA-NDE-EML	 performs	 significantly	 better	 than	 QOFA-EML.	
Specifically,	QOFA-NDE-EML	has	a	lower	mean	false	positive	rate	(0.012735062	vs	
0.025687),	 with	 less	 false	 alarms.	 Additionally,	 QOFA-NDE-EML	 performs	 more	
consistently	 and	 reliably	 as	 evidenced	 by	 its	 lower	 variance	 (0.000204873	 vs	
0.0005517)	and	standard	deviation	(0.014313386	vs	0.0234893).	The	significant	
difference	 in	 the	 false	 positive	 rate	 (t-statistic:	 1.489003744,	 t-critical:	
0.153798621)	 confirms	 the	 improvement	 in	 QOFA-NDE-EML.	 The	 lower	 false	
positive	rate	depicts	better	detection	accuracy	and	fewer	false	alarms	making	QOFA-
NDE-EML	a	more	effective	and	reliable	model	for	DDoS	detection	which	improves	
overall	network	security.	
	
Effect	Size:	A	Measure	of	the	Magnitude	of	Difference	
	

Effect	size	(ES)	falls	under	the	umbrella	of	statistical	theories	which	can	be	
used	to	analyse	and	interpret	the	performance	of	machine	learning	algorithms.	This	
statistical	theory	provides	a	more	meaningful	in	the	interpretation	of	results	beyond	
simply	determining	 if	 the	performance	difference	of	 the	 algorithm	 is	 statistically	
significance	 by	 quantifying	 the	 magnitude	 of	 the	 different	 groups.	 Above	 we	
performed	a	t-test	to	check	if	there	is	a	statistical	difference	in	the	performance	of	
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the	 machine	 learning	 algorithm.	 Effective	 size	 (ES)	 assesses	 and	 checks	 if	 the	
difference	is	large	enough	to	be	practical	and	important.	It	also	helps	by	combining	
results	 from	 multiple	 scenarios	 in	 the	 meta-analysis	 as	 it	 allows	 standardized	
comparisons	across	different	studies.		

Multiple	ES	measures	can	be	used	such	as	Cohen's	d,	Pearson's	r,	and	Eta-
squared	(η²).	Cohen's	d	is	used	for	the	comparison	of	the	means	of	two	groups	of	
which	the	three	different	interpretations	from	the	findings	if	we	find	d	being	0.2	it	
means	 that	 there	 is	 a	 small	 effect,	0.5	medium	effect,	 and	a	 larger	effect	0.8.	d	 is	
calculated	as	follows.	
	

	
Where:	
	

𝑚(	and	𝑚%	are	the	means	of	the	two	groups	and	𝑠CGGH?I 	is	the	pooled	standard	
deviation	 which	 is	 the	 weighted	 average	 of	 the	 standard	 deviations	 of	 the	 two	
groups.	𝑠CGGH?I 	is	calculated	as		

	
Where:	𝑛(	and	𝑛%	,	𝑠(	and	𝑠%	are	the	sample	size	and	standard	deviation	of	the	

two	 groups.	 Figure	 12	 presents	 Cohen’s	 value	 for	 metrics	 used	 to	 compare	 the	
effectiveness	of	QOFA-EML	and	QOFA-NDE-EML	in	several	network	scenarios.	t-test	
has	demonstrated	 that	 there	 is	 a	 significant	difference	 in	 the	precision	of	QOFA-
NDE-EML	 compared	 to	QOFA-EML.	 	 Figure	 12	 shows	 the	 highest	 recorded	ES	 of	
1,461382.	This	proves	that	QOFA-NDE-EML	is	good	at	identifying	positive	instances	
accurately.	ES	 for	 accuracy	and	F1-Score	 is	moderate	 indicating	 that	QOFA-NDE-
EML	performs	well	but	 lower	 than	precision.	Recall	and	False	Positive	Rate	have	
smaller	Cohen's	d	values	indicating	a	less	significant	effect	or	difference	compared	
to	the	baseline.		
	

d	=	𝑚(	-	𝑚%	/	𝑠CGGH?I 	
	

(8)	

𝑠CGGH?I 	=W((𝑛( 	− 	1) ∗ 𝑠(% + (𝑛% − 1) ∗ 𝑠%%)/(n( + n% − 2)		
	

(9)	
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Figure		12.	effect	size	of	different	matrices	

	
D. Conclusions		

In	this	work,	we	have	demonstrated	that	the	improvement	of	the	EML	algorithm	
leads	 to	 improved	 performance	 in	 addressing	 DDoS	 attacks.	 Neighbourhood	
differential	evolution	was	utilised	to	initialise	the	input-hidden	layer	weights	and	
hidden	biases.	The	NDE-EML	was	designed	and	implemented	in	MATLAB	to	detect	
and	classify	the	traffic	as	normal	or	DDoS	attacks.	The	model	was	trained	and	tested	
using	a	synthetic	dataset.		
The	results	demonstrate	that	QOFA-NDE-EML	outperforms	QOFA-EML	particularly	
at	 higher	 percentage	 levels	 (80%	 and	 90%).	 This	 shows	 that	 QOFA-NDE-EML	 is	
more	accurate	in	predicting	outcomes	at	these	levels.	This	is	a	good	in	the	reduction	
latency	in	MEC	caused	by	DDoS	attacks.		
Analytical	results	of	both	t-test	and	Effect	Size	also	confirm	the	simulation	results	in	
showing	that	 there	 is	a	significant	difference	 in	 the	performance	of	 the	proposed	
model.	The	proposed	model	may	also	be	evaluated	using	other	datasets.			
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