
The Indonesian Journal of Computer Science
www.ijcs.net

Volume 14, Issue 1, February 2025
https://doi.org/10.33022/ijcs.v14i1.4493

Attribution-ShareAlike 4.0 International License 234

Evaluating the Impact of Deep Learning Model Architecture on Sign Language
Recognition Accuracy in Low-Resource Context

Tebatso Gorgina1, Absolom Muzambi2, Bester Chimbo3
moapetg@unisa.ac.za1, 50417347@mylife.unisa.ac.za2, chimbb@unisa.ac.za3
1,2,3School of Computing, University of South Africa, Johannesburg, South Africa

Article Information Abstract

Received : 7 Nov 2024
Revised : 28 Jan 2025
Accepted : 7 Feb 2025

Deep learning models are well-known for their reliance on large training
datasets to achieve optimal performance for specific tasks. These models
have revolutionized the field of machine learning, including achieving high
accuracy rates in image classification tasks. As a result, these models have
been used for sign language recognition. However, the models often
underperform in low-resource contexts. Given the country-specific nature of
sign languages, this study examines the effectiveness and performance of
Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN),
hybrid model (CNN + Recurrent Neural Networks (RNN)), and VGG16 deep
learning architectures in recognizing South African Sign Language (SASL)
under a data-constrained context. The models were trained and evaluated
using a dataset of 12420 training images representing 26 static SASL
alphabets, and 4050 validation images. The paper's primary objective is to
determine the optimal methods and settings for improving sign recognition
models in low-resource contexts. The performance of the models was
evaluated across multiple image dimensions trained for 60 epochs to analyze
each model's adaptability and efficiency under varying computational
parameters. The experiments showed that the ANN and CNN models
consistently achieved high accuracy with lower computational requirements,
making them well-suited for low-resource contexts.

Keywords

Sign Language
Recognition (SLR), Deep
Learning Models,
Transformer Models,
Low-Resource Datasets
Environments

https://doi.org/10.33022/ijcs.v14i1.4493
https://doi.org/10.33022/ijcs.v14i1.4493
https://creativecommons.org/licenses/by-sa/4.0/

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 235

A. Introduction
Deep learning has emerged as one of the most transformative technologies in

the field of machine learning, specifically in natural language processing tasks such
as speech processing and text generation and in the computer vision field for
image recognition and classification tasks [1]. Deep learning models and
architectures have the ability to automatically extract relevant features from raw
data through multiple layers of processing without the need for manual feature
extraction. However, the success of these models often relies heavily on the
availability of large training datasets that allow the models to learn patterns,
features, and relationships within the training data [2-4]. This reliance on big data
is both an advantage and a disadvantage, as it enables high accuracy rates in high-
resource data environments while presenting significant challenges in low-
resource contexts.

Deep learning architectures and models have demonstrated a lot of success
in several areas including image classification. Models such as Convolutional
Neural Networks (CNNs), Artificial Neural Networks (ANNs), recurrent neural
networks (RNNs), hybrid models, and, recently, transformer-based models such as
VGG16 have achieved state-of-the-art accuracy rates in computer vision-related or
image processing tasks [5, 6]. The success in these tasks has led to the application
of deep learning models in more specialized tasks, such as sign language
recognition, where interpreting visual gestures is critical for communication [7].

Sign language recognition is an important application of deep learning
models. This task directly addresses communication barriers for individuals with
hearing and speaking impairments. Deep learning models have enabled the
development of end-to-end systems capable of automating the interpretation and
translation of sign language gestures by using images or sometimes videos as input
data [7]. These systems have the potential to improve accessibility and inclusion in
various social and professional contexts. Similar to how translation tools help
bridge language barriers, they can facilitate communication between individuals
who understand sign language and those who do not [8]. Each country has its own
unique set of gestures and alphabets. This means that models trained on one
dataset may not generalize well to another sign language. The country-specific
nature of sign languages requires the development of models tailored to specific
languages, such as South African Sign Language (SASL).

Another challenge in developing these systems is the large datasets required
to train the models. Towards this end, the objective of this study is to evaluate the
effectiveness of several deep learning models in recognizing SASL in low-resource
conditions. This study experiments with CNNs, ANNs, a hybrid architecture
combining CNNs and RNNs, and VGG16, a widely used CNN variant. Each model
has distinct architectural strengths, which may influence their performance in
recognizing static sign language alphabets with limited training data. CNNs are
widely used due to their ability to extract spatial features [9] while RNNs perform
well in capturing temporal dependencies [10]. On the other hand, ANNs provide
the capability to model complex, non-linear relationships between inputs and
outputs which provides versatility in recognizing patterns in sign language data
[11]. VGG16 is mostly used for its functionality to extract fine-grained features
from images [12].

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 236

A dataset consisting of 12,420 training images and 4,050 images representing
26 static SASL was used to conduct the experiments. The dataset presents a
realistic low-resource scenario, allowing for the assessment of the models'
adaptability and generalization in a data-constrained environment. The study aims
to identify the optimal model and training configuration by experimenting with
different image dimensions. These experiments are designed to reveal the impact
of data scarcity on each model’s ability to learn and recognize signs accurately.

This paper is organized as follows: Section B presents the related works.
Section C outlines the research methodology, including the experimental
framework, evaluation metrics, and experiments, along with the results. Lastly,
Section D concludes the paper.

B. Related Works

Several comparative studies have been conducted to analyze the
performance of the different machine and deep-learning models for automated
sign-language recognition. Authors in [13] conducted research to compare the
performance of a CNN model and support vector machine (SVM) model on the
recognition and translation of Tanzanian Swahili sign language words. The CNN
model attained a 96% accuracy rate compared to the SVM model, which performed
at a 95% accuracy rate. The research that was done by [14] examined the
performance of two methods, namely SVM and K-Nearest Neighbors (KNN), using
scale-invariant feature transform (SIFT) as a feature extraction methodology. The
SVM classifier outperformed the K-NN classifier in the context of Arabic sign
language. Based on these two studies, CNN demonstrated superior performance
compared to SVM, while SVM outperformed KNN.

In their study, [15] compared single deep learning architecture with a hybrid
architecture. The authors employed a hybrid architecture of a fusion layer (FL), a
bidirectional gated recurrent unit (BGRU), and a temporal convolution (TCOV).
The fusion of these features allows the model to combine information from both
short-term and long-term temporal contexts, enhancing its ability to capture
intricate patterns in sign language gestures. The TCOV records change in the
immediate past, the BGRU keeps track of changes in the context that happen over
longer periods of time and across other dimensions of time, while the FL learns the
correlations between the TCOV and BGRU outputs by linking (fusing) the
embedded features. The results of the study indicated that the hybrid architecture
outperformed the single deep learning model by 6.1 in terms of word error rate
(WER).

In other studies, a model trained on one sign language is fine-tuned for
another sign language. Authors in [16] did this, where a model trained for Arabic
sign language was fined tuned for Indian sign language. The authors employed
transfer learning to extend the model's capacity to recognize additional classes,
effectively addressing the shortage of training data needed for retraining. For
recognizing sign languages from video streams, [17] used CNN and bidirectional
long short-term memory (BiLSTM) to learn complex dynamic gestures by
calculating the forward and backward hidden sequences to iterate long short-term
memory (LSTM) combinations. Bi-LSTMs were used since unidirectional recurrent
neural networks (RNNs) can only compute hidden steps from previous time steps.

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 237

Authors in [18] employed CNN and RNN hybrid architecture for American
sign language. In this study, CNN was used to extract spatial characteristics from a
video feed that was intended for sign language identification. For the
experimentation, LSTM and RNN models were used to extract time-related
information from video sequences using the softmax function, and the CNN's
pooling layer. The researchers reported a highest accuracy of 93% with softmax
layer and 58% with the pool layer. The researchers noted the potential for
improvement, suggesting that alternative RNN architectures, such as GRU and
independent RNNs, could enhance the performance of the pooling layer.
Additionally, they proposed that replacing the Inception model with Capsule
Networks might further improve the CNN's accuracy.

A unique methodology that was centered on isolating the hand by using
depth information derived from RGB images was proposed in [19] for the ASL
fingerspelling dataset. The authors proposed a principal component analysis
network (PCANet), a modified version of CNN that retrieved characteristics from
depth images instead of immediately categorizing them. In another study by [20],
CNN was used as the fundamental framework for ASL recognition by utilizing a
pre-trained VGG-16 transfer model for static gesture recognition and a
sophisticated deep learning-based architecture for dynamic gesture identification.
Their method incorporated spatiotemporal characteristics by including
components such as ConvLSTM and 3D CNN.

C. Materials and Methods
Experimental Framework

To conduct the experiment, the SASL dataset was sourced from Realsals.com.
The dataset was pre-processed and augmented following the procedure outlined in
[21]. It was then split into training and validation sets to evaluate the performance
of the models. Figure 1 depicts an illustration of the experimental framework.

Figure 1. Experimental Framework

The dataset consists of static images representing each letter in the SASL

alphabet, illustrated in Figure 2.

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 238

Figure 2. SASL static images

In the dataset, each alphabet letter has 460 images generated for training and

150 for testing using data augmentation. The total dataset consisted of 12 420
images for model training and 4 050 for validation.

CNNs have been proven to process visual data effectively and are commonly
used for sign language recognition tasks [22, 23]. They are artificial neural
networks designed to process grid-like data, such as photographs, by using
convolutional layers that learn hierarchical features from the data they are trained
on. The term "convolutional neural network" refers to a specialized type of
artificial neural network designed to process and analyze visual data by mimicking
the human visual system. Compared to traditional neural networks, CNN layers
detect features and patterns automatically, enabling them to identify key features
from hand gestures, such as finger positions and movements, enabling accurate
classification of signs [23]. This eliminates the need for manual feature extraction,
which can be time-consuming and less accurate, especially with complex image
backgrounds. They have been proven to achieve high accuracy in classifying static
sign language images. However, they are not effective in capturing temporal
dependencies in sign language sequences, which are crucial for understanding the
dynamic nature of signs.

VGG16 architecture is an extension of CNN architecture specifically designed
to capture complex features from images REF. The trained VGG16 model is used
for various tasks, including sign language recognition, particularly for classifying
static hand gestures by extracting spatial features from input images. While CNNs
are primarily developed to process visual data such as images and videos using
convolutional layers, pooling layers, and fully connected layers in the network, the
VGG16 has a more defined architecture with 16 weight layers [5].

RNNs are mostly used to process sequential data, such as words, phrases, or
time series data that are defined by the complex rules of grammar and semantics
REF [10]. They mimic sequential data conversion similar to the way humans
process data. RNNs contain a memory that stores information about previous
states’ computations, which is one of its key features, the feedback connections.
The hidden units feed into themselves via feedback loops where there is only one
set of input, hidden, and output units for each layer. In sign language recognition,
RNNs process temporal sequences where Long Short-Term Memory (LSTM) or
Gated Recurrent Units (GRU) capture long-range dependencies and temporal
progression of gestures across frames [1, 10].

ANNs use principles borrowed from biological neural networks to simulate
the way the human brain is structured. Neurons in an artificial neural network are
linked in a hierarchical structure, much like the human brain. These network
nodes are often referred to as nodes. The knowledge of a network is represented

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 239

by the weights of these links or connections [21]. Artificial neural networks
(ANNs) differ in type based on their topology and learning techniques. In sign
language recognition, ANNs learn and extract relevant features from sign language
gestures, such as the shape, position, and motion of hands or fingers. This study
used a feedforward neural network with three node levels: input, hidden, and
output layers. With the exception of the input nodes, every node is a neuron that
has a non-linear activation function. Information is introduced into the network at
the input layer and progresses sequentially through each subsequent layer until it
reaches the ultimate output layer [21].

Hybrid models leverage the strengths of the combined architectures. In this
case, the combination of CNNs and RNNs allows for both spatial and temporal
feature extraction, which is particularly useful in tasks like sign language
recognition [24]. This combination enables the model to process both individual
frame details and the overall gesture dynamics, improving accuracy and
robustness in recognizing complex sign language gestures.

Evaluation Metrics
To evaluate the performance of the proposed model, metrics such as

accuracy (A), precision (P), recall (R), and F1-score (F) were employed. These
metrics rely on values like true negatives (tn), true positives (tp), false negatives
(fn), and false positives (fp). A true positive occurs when the model correctly
classifies a positive instance, whereas a false positive happens when a negative
instance is wrongly classified as positive. True negatives indicate the correct
classification of negative instances, and false negatives represent positive
instances misclassified as negative. The following equations were used to calculate
the metrics: accuracy (1), precision (2), recall (3), and F1-score (4).

A = (tn + tp)/(tp + fp + tn + fn)
 (1)
Accuracy is the proportion of true predictions, which are the correctly

predicted instances, to the total number of predictions made by the model. It
quantifies the overall correctness of the model's predictions.

P = (tp)/(tp + fp) (2)

Precision is the ratio of true positive predictions, the correctly predicted

positive instances to the sum of true positive and false positive predictions which
are all instances predicted as positive, irrespective of the result. It measures the
accuracy of positive predictions made by the model.

R = (tp)/(tp + fn) (3)

Recall is the ratio of true positive predictions to the sum of true positive and

false negative predictions, instances that are positive but incorrectly predicted as
negative. It measures the model's ability to identify all positive instances in the
dataset.

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 240

 F1 = 2(P*R)/(P+R) (4)

The F1 score is the harmonic mean of precision and recall. It provides a

balance between precision and recall.

Experiments
This study used Keras to conduct the experiments. Keras is an open-source

library for developing deep-learning applications coded in Python [18]. The code
was implemented in a Colab environment. The Colab environment provides free
access to computing resources, including GPU, however, additional GPUs were
purchased.

Table 1. Experiment 1: 224x224 images with 60 epochs
Experiment 1: 224x224 images with 60

epochs

CNN ANN

Hybrid VGG16

Table 2. Experiment 2: 128x128 images with 60 epochs

Experiment 2: 128x128 images with 60
epochs

CNN ANN

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 241

Hybrid VGG16

Table 3. Experiment 1: 50x50 images with 60 epochs

Experiment 2: 50x50 images with 60 epochs
CNN ANN

Hybrid VGG16

Experiment Results and Discussion

The results for Experiment 1 are presented in Table 4, for Experiment 2 in
Table 5, and for Experiment 3 in Table 6.

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 242

Table 4. Experiment 1 results: 224x224 images with 60 epochs
Model Training

time (s)
Accuracy Validation

accuracy
Training
loss

Validation
loss

Precision Recall F1_score

CNN 15288 0.9915 0.9995 0.0331 0.0017 0.9607 0.9700 0.9653
ANN 11556 0.9992 0.98883 0.0046 0.0594 0.97 0.97 0.97

CNN+RNN(hybrid) 13824 1.000 0.9469 0.00037 0.1730 0.9852 0.9825 0.9838

VGG16 64910 0.9021 1.00000 0.4204 0.00000015 0.8925 0.8900 0.8912

The 224x224 pixels images experiment demonstrated high accuracy levels

but required significant computational resources and took the longest training
time. The image size of 224x224 was chosen to accommodate the VGG16 pre-
trained model as this was the required image size for the model. The CNN achieved
a high training accuracy of 99.15% and an almost perfect validation accuracy of
99.95%. This suggests that the model can generalize well when using larger
images. However, the training time was substantial at 15.288 seconds, indicating
that high accuracy with this model comes at a computational cost. On the other
hand, the ANN performed comparably in terms of accuracy, with a training
accuracy of 99.92%. Despite this, its validation accuracy fluctuated. This
fluctuation can be attributed to the challenges in maintaining consistency across
training and validation data. This instability suggests that while ANN models are
computationally efficient, their performance may be affected in low-resource
settings where stable generalization is essential. The hybrid model (CNN + RNN)
achieved 100% training accuracy but had a reduced validation accuracy of 94.69%,
which can be the result of overfitting. The high accuracy paired with long training
times (13.824 seconds) indicates that this model might require further
adjustments, such as regularization, to better generalize while remaining
computationally efficient. VGG16, while showing excellent validation accuracy of
100%, had the lowest training accuracy at 90.21% and the longest training time of
64.910 seconds, making it less suited for low-resource environments without
further optimization.

Table 5. Experiment 2 results: 128x128 images with 60 epochs
Model Training

time (s)
Training
accuracy

Validation
accuracy

Training
loss

Validation
loss

Precision Recall F1_score

CNN 4560 0.9895 0.9995 0.0311 0.0026 0.9789 0.9767 0.9775
ANN 1340 1.000 0.9964 0.000083 0.0164 0.9845 0.9833 0.9838

CNN+RNN(hybrid) 5112 1.000 0.9778 0.000106 0.0778 0.9923 0.9825 0.9874

VGG16 46860 0.9906 1.0000 0.0290 0.00000035 0.9711 0.9828 0.9769

In Experiment 2, the models were trained on smaller, 128x128 images. This

led to reductions in training time but maintained good performance. CNN’s
training accuracy was slightly lower at 98.95%, but its validation accuracy
remained stable at 99.95%, and the training time decreased to 4.560 seconds. This
result highlights CNN’s adaptability and suggests that it performs efficiently with
reduced computational demands when image size is optimized. ANN achieved
perfect training accuracy at 100% and showed stable validation accuracy at
99.64%, with a drastically reduced training time of only 1.340 seconds. This
performance reflects ANN’s potential for high accuracy and fast processing in low-

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 243

resource environments. This is important to note, given that the reduced image
size did not significantly impact its ability to generalize. The hybrid model also
showed strong results with 100% training accuracy and an improved validation
accuracy of 97.78%, alongside a training time of 5.112 seconds. However, the need
for a slightly longer training time compared to ANN suggests that, while effective,
the hybrid model requires more computational resources. VGG16 showed an
improvement, achieving a training accuracy of 99.06% and perfect validation
accuracy, with a reduced training time of 46.860 seconds. Despite the
improvement, its extended training time still indicates potential limitations for its
application in low-resource settings.

Table 6. Experiment 3 results: 50x50 images with 60 epochs

Model Training
time
(s)

Accuracy Validation
accuracy

Training
loss

Validation
loss

Precision Recall F1_score

CNN 4280 0.9880 0.9995 0.0391 0.0010 0.9651 0.9542 0.9775

ANN 1080 1.000 0.9964 0.000082 0.0162 0.9876 0.9833 0.9854

CNN+RNN(hybrid) 5390 1.000 0.90000 0.000052 1.2938 0.9923 0.9825 0.9873

VGG16 model 8328 0.9797 0.9864 0.0592 0.0370 0.9711 0.9828 0.9769

Using 50x50 images in experiment 3 yielded the fastest training times across all
models, enhancing computational efficiency. CNN maintained a high training
accuracy of 98.80% and a stable validation accuracy of 99.95%, with a training
time of only 4.280 seconds. This suggests that CNN’s performance can be
preserved even with minimal image resolutions, making it well-suited for low-
resource environments where efficiency is important. ANN continued to excel with
100% training accuracy and a stable validation accuracy of 99.64%, requiring only
1.080 seconds to complete training. This reinforces ANN’s suitability for low-
resource settings, where computational efficiency and generalization stability are
important. The hybrid model achieved 100% training accuracy, but validation
accuracy fell to 90%, indicating that the model struggled to generalize effectively
with smaller images despite a reduced training time of 5.390 seconds. This
performance suggests that while hybrid models are effective in richer data
environments, they may be less ideal in low-resource contexts with smaller image
inputs. VGG16 showed a training accuracy of 97.97% and a validation accuracy of
98.64%, with a significantly reduced training time of 8.328 seconds. Although
VGG16’s accuracy metrics were high, its training time suggests it is still relatively
computationally resource-intensive. Figure 3 visually illustrates training time for
all the models.

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 244

Figure 3. Model training time

As illustrated, VGG16 takes more training time across all image sizes,

indicating that it is the most computationally intensive model among those tested.
This extended training time proves that VGG16 requires higher processing power
and memory capacity, which can be a limitation in low-resource environments,
both in datasets and computation. Despite its high validation accuracy, the model’s
efficiency is compromised when compared to lighter models like ANN and CNN,
which achieve similar accuracy with significantly less processing time. Figure 4
illustrates model accuracy across all models and image sizes.

Figure 4. Model accuraries

 Hybrid model has the highest rounded accuracy among the models as

depicted in Figure 4. This is due to its combined architecture of CNN and RNN
layers, these enables it to capture both spatial and temporal features effectively.
This combination of the two architectures allows the model to generalize well and

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 245

recognize complex patterns within the dataset, making it effective for sign
language recognition. However, the hybrid model requires more training time than
both the CNN and ANN models because of the additional computational complexity
involved in processing sequential dependencies through RNN layers alongside
spatial features with CNN layers. This increased training time results in higher
accuracy, but it can be a drawback in low-resource environments where efficiency
is essential.

D. Conclusion

The conducted experiments indicated that optimizing model performance with
smaller image sizes balances accuracy and computational demands. Across all
experiments, the results indicate that the ANN and CNN models offer the most
consistent performance while requiring lower training times, especially with
128x128 and 50x50 images. As per the experiment, these models appear better
suited for environments with limited computational resources and datasets as they
achieve high accuracy with minimal compromise on validation stability. The
hybrid model and VGG16 were computationally intensive, this indicates that the
model requires further optimization, such as transfer learning or fine-tuning, to be
more practical in low-resource settings. One factor that played a role in this
context was reducing image size. This effectively decreased training time across all
four models, with minimal impact on accuracy. This further proves the feasibility
of using smaller image resolutions for sign language recognition tasks in data-
scarce contexts.

E. References

[1] I. Goodfellow, "Deep learning," ed: MIT press, 2016.
[2] O. Koller, N. C. Camgoz, H. Ney, and R. Bowden, "Weakly supervised learning

with multi-stream CNN-LSTM-HMMs to discover sequential parallelism in
sign language videos," IEEE transactions on pattern analysis and machine
intelligence, vol. 42, no. 9, pp. 2306-2320, 2019.

[3] L. Liu, L. Gao, W. Lei, F. Ma, X. Lin, and J. Wang, "A Survey on Deep Multi-
modal Learning for Body Language Recognition and Generation," arXiv
preprint arXiv:2308.08849, 2023.

[4] M. D. Nareshkumar and B. Jaison, "A Light-Weight Deep Learning-Based
Architecture for Sign Language Classification," Intelligent Automation & Soft
Computing, vol. 35, no. 3, 2023.

[5] D. Alexey, "An image is worth 16x16 words: Transformers for image
recognition at scale," arXiv preprint arXiv: 2010.11929, 2020.

[6] L. Liu, W. Zhou, W. Zhao, H. Hu, and H. Li, "Multi-modal sign language
spotting by multi/one-shot learning," in European Conference on Computer
Vision, 2022: Springer, pp. 256-270.

[7] T. Ananthanarayana et al., "Deep learning methods for sign language
translation," ACM Transactions on Accessible Computing (TACCESS), vol. 14,
no. 4, pp. 1-30, 2021.

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 246

[8] S. Albanie et al., "BSL-1K: Scaling up co-articulated sign language
recognition using mouthing cues," in Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI
16, 2020: Springer, pp. 35-53.

[9] M. M. Rahman, M. S. Islam, M. H. Rahman, R. Sassi, M. W. Rivolta, and M.
Aktaruzzaman, "A new benchmark on american sign language recognition
using convolutional neural network," in 2019 International Conference on
Sustainable Technologies for Industry 4.0 (STI), 2019: IEEE, pp. 1-6.

[10] C. K. Lee, K. K. Ng, C.-H. Chen, H. C. Lau, S. Y. Chung, and T. Tsoi, "American
sign language recognition and training method with recurrent neural
network," Expert Systems with Applications, vol. 167, p. 114403, 2021.

[11] J. Ekbote and M. Joshi, "Indian sign language recognition using ANN and
SVM classifiers," in 2017 International conference on innovations in
information, embedded and communication systems (ICIIECS), 2017: IEEE,
pp. 1-5.

[12] T. N. Abu-Jamie and S. S. Abu-Naser, "Classification of sign-language using
vgg16," 2022.

[13] K. Myagila and H. Kilavo, "A comparative study on performance of SVM and
CNN in Tanzania sign language translation using image recognition,"
Applied Artificial Intelligence, vol. 36, no. 1, p. 2005297, 2022.

[14] A. Tharwat, T. Gaber, A. E. Hassanien, M. K. Shahin, and B. Refaat, "Sift-
based arabic sign language recognition system," in Afro-European
Conference for Industrial Advancement: Proceedings of the First International
Afro-European Conference for Industrial Advancement AECIA 2014, 2015:
Springer, pp. 359-370.

[15] S. Wang, D. Guo, W.-g. Zhou, Z.-J. Zha, and M. Wang, "Connectionist temporal
fusion for sign language translation," in Proceedings of the 26th ACM
international conference on Multimedia, 2018, pp. 1483-1491.

[16] A. Shahin and S. Almotairi, "Automated Arabic sign language recognition
system based on deep transfer learning," IJCSNS Int. J. Comput. Sci. Netw.
Secur, vol. 19, no. 10, pp. 144-152, 2019.

[17] R. Cui, H. Liu, and C. Zhang, "A deep neural framework for continuous sign
language recognition by iterative training," IEEE Transactions on
Multimedia, vol. 21, no. 7, pp. 1880-1891, 2019.

[18] K. Bantupalli and Y. Xie, "American sign language recognition using deep
learning and computer vision," in 2018 IEEE international conference on big
data (big data), 2018: IEEE, pp. 4896-4899.

[19] O. K. Oyedotun and A. Khashman, "Deep learning in vision-based static hand
gesture recognition," Neural Computing and Applications, vol. 28, no. 12, pp.
3941-3951, 2017.

[20] D. Bendarkar, P. Somase, P. Rebari, R. Paturkar, and A. Khan, "Web based
recognition and translation of American sign language with CNN and RNN,"
2021.

[21] T. G. Moape, A. Muzambi, and B. Chimbo, "Convolutional Neural Network
Approach for South African Sign Language Recognition and Translation," in
2024 Conference on Information Communications Technology and Society
(ICTAS), 2024: IEEE, pp. 101-106.

https://doi.org/10.33022/ijcs.v14i1.4493

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i1.4493 247

[22] A. Jana and S. S. Krishnakumar, "Sign language gesture recognition with
convolutional-type features on ensemble classifiers and hybrid artificial
neural network," Applied Sciences, vol. 12, no. 14, p. 7303, 2022.

[23] B. Bhandari, "Comparative study of popular deep learning models for
machining roughness classification using sound and force signals,"
Micromachines, vol. 12, no. 12, p. 1484, 2021.

[24] A. M. Buttar, U. Ahmad, A. H. Gumaei, A. Assiri, M. A. Akbar, and B. F.
Alkhamees, "Deep learning in sign language recognition: a hybrid approach
for the recognition of static and dynamic signs," Mathematics, vol. 11, no. 17,
p. 3729, 2023.

https://doi.org/10.33022/ijcs.v14i1.4493

