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Deep learning models are well-known for their reliance on large training 
datasets to achieve optimal performance for specific tasks. These models 
have revolutionized the field of machine learning, including achieving high 
accuracy rates in image classification tasks. As a result, these models have 
been used for sign language recognition. However, the models often 
underperform in low-resource contexts. Given the country-specific nature of 
sign languages, this study examines the effectiveness and performance of 
Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN), 
hybrid model (CNN + Recurrent Neural Networks (RNN)), and VGG16 deep 
learning architectures in recognizing South African Sign Language (SASL) 
under a data-constrained context. The models were trained and evaluated 
using a dataset of 12420 training images representing 26 static SASL 
alphabets, and 4050 validation images. The paper's primary objective is to 
determine the optimal methods and settings for improving sign recognition 
models in low-resource contexts. The performance of the models was 
evaluated across multiple image dimensions trained for 60 epochs to analyze 
each model's adaptability and efficiency under varying computational 
parameters. The experiments showed that the ANN and CNN models 
consistently achieved high accuracy with lower computational requirements, 
making them well-suited for low-resource contexts. 
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A. Introduction 
Deep learning has emerged as one of the most transformative technologies in 

the field of machine learning, specifically in natural language processing tasks such 
as speech processing and text generation and in the computer vision field for 
image recognition and classification tasks [1]. Deep learning models and 
architectures have the ability to automatically extract relevant features from raw 
data through multiple layers of processing without the need for manual feature 
extraction. However, the success of these models often relies heavily on the 
availability of large training datasets that allow the models to learn patterns, 
features, and relationships within the training data [2-4]. This reliance on big data 
is both an advantage and a disadvantage, as it enables high accuracy rates in high-
resource data environments while presenting significant challenges in low-
resource contexts. 

Deep learning architectures and models have demonstrated a lot of success 
in several areas including image classification. Models such as Convolutional 
Neural Networks (CNNs), Artificial Neural Networks (ANNs), recurrent neural 
networks (RNNs), hybrid models, and, recently, transformer-based models such as 
VGG16 have achieved state-of-the-art accuracy rates in computer vision-related or 
image processing tasks [5, 6]. The success in these tasks has led to the application 
of deep learning models in more specialized tasks, such as sign language 
recognition, where interpreting visual gestures is critical for communication [7]. 

Sign language recognition is an important application of deep learning 
models. This task directly addresses communication barriers for individuals with 
hearing and speaking impairments. Deep learning models have enabled the 
development of end-to-end systems capable of automating the interpretation and 
translation of sign language gestures by using images or sometimes videos as input 
data [7]. These systems have the potential to improve accessibility and inclusion in 
various social and professional contexts. Similar to how translation tools help 
bridge language barriers, they can facilitate communication between individuals 
who understand sign language and those who do not [8]. Each country has its own 
unique set of gestures and alphabets. This means that models trained on one 
dataset may not generalize well to another sign language. The country-specific 
nature of sign languages requires the development of models tailored to specific 
languages, such as South African Sign Language (SASL). 

Another challenge in developing these systems is the large datasets required 
to train the models. Towards this end, the objective of this study is to evaluate the 
effectiveness of several deep learning models in recognizing SASL in low-resource 
conditions. This study experiments with CNNs, ANNs, a hybrid architecture 
combining CNNs and RNNs, and VGG16, a widely used CNN variant. Each model 
has distinct architectural strengths, which may influence their performance in 
recognizing static sign language alphabets with limited training data. CNNs are 
widely used due to their ability to extract spatial features [9] while RNNs perform 
well in capturing temporal dependencies [10]. On the other hand, ANNs provide 
the capability to model complex, non-linear relationships between inputs and 
outputs which provides versatility in recognizing patterns in sign language data 
[11]. VGG16 is mostly used for its functionality to extract fine-grained features 
from images [12]. 
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A dataset consisting of 12,420 training images and 4,050 images representing 
26 static SASL was used to conduct the experiments. The dataset presents a 
realistic low-resource scenario, allowing for the assessment of the models' 
adaptability and generalization in a data-constrained environment. The study aims 
to identify the optimal model and training configuration by experimenting with 
different image dimensions. These experiments are designed to reveal the impact 
of data scarcity on each model’s ability to learn and recognize signs accurately.  

This paper is organized as follows: Section B presents the related works. 
Section C outlines the research methodology, including the experimental 
framework, evaluation metrics, and experiments, along with the results. Lastly, 
Section D concludes the paper. 

 
B. Related Works 

Several comparative studies have been conducted to analyze the 
performance of the different machine and deep-learning models for automated 
sign-language recognition. Authors in [13] conducted research to compare the 
performance of a CNN model and support vector machine (SVM) model on the 
recognition and translation of Tanzanian Swahili sign language words. The CNN 
model attained a 96% accuracy rate compared to the SVM model, which performed 
at a 95% accuracy rate. The research that was done by [14] examined the 
performance of two methods, namely SVM and K-Nearest Neighbors (KNN), using 
scale-invariant feature transform (SIFT) as a feature extraction methodology. The 
SVM classifier outperformed the K-NN classifier in the context of Arabic sign 
language. Based on these two studies, CNN demonstrated superior performance 
compared to SVM, while SVM outperformed KNN. 

In their study, [15] compared single deep learning architecture with a hybrid 
architecture. The authors employed a hybrid architecture of a fusion layer (FL), a 
bidirectional gated recurrent unit (BGRU), and a temporal convolution (TCOV). 
The fusion of these features allows the model to combine information from both 
short-term and long-term temporal contexts, enhancing its ability to capture 
intricate patterns in sign language gestures. The TCOV records change in the 
immediate past, the BGRU keeps track of changes in the context that happen over 
longer periods of time and across other dimensions of time, while the FL learns the 
correlations between the TCOV and BGRU outputs by linking (fusing) the 
embedded features. The results of the study indicated that the hybrid architecture 
outperformed the single deep learning model by 6.1 in terms of word error rate 
(WER). 

In other studies, a model trained on one sign language is fine-tuned for 
another sign language. Authors in [16] did this, where a model trained for Arabic 
sign language was fined tuned for Indian sign language. The authors employed 
transfer learning to extend the model's capacity to recognize additional classes, 
effectively addressing the shortage of training data needed for retraining. For 
recognizing sign languages from video streams, [17] used CNN and bidirectional 
long short-term memory (BiLSTM) to learn complex dynamic gestures by 
calculating the forward and backward hidden sequences to iterate long short-term 
memory (LSTM) combinations. Bi-LSTMs were used since unidirectional recurrent 
neural networks (RNNs) can only compute hidden steps from previous time steps. 
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Authors in [18] employed CNN and RNN hybrid architecture for American 
sign language. In this study, CNN was used to extract spatial characteristics from a 
video feed that was intended for sign language identification. For the 
experimentation, LSTM and RNN models were used to extract time-related 
information from video sequences using the softmax function, and the CNN's 
pooling layer. The researchers reported a highest accuracy of 93% with softmax 
layer and 58% with the pool layer. The researchers noted the potential for 
improvement, suggesting that alternative RNN architectures, such as GRU and 
independent RNNs, could enhance the performance of the pooling layer. 
Additionally, they proposed that replacing the Inception model with Capsule 
Networks might further improve the CNN's accuracy. 

A unique methodology that was centered on isolating the hand by using 
depth information derived from RGB images was proposed in [19] for the ASL 
fingerspelling dataset. The authors proposed a principal component analysis 
network (PCANet), a modified version of CNN that retrieved characteristics from 
depth images instead of immediately categorizing them. In another study by [20],  
CNN was used as the fundamental framework for ASL recognition by utilizing a 
pre-trained VGG-16 transfer model for static gesture recognition and a 
sophisticated deep learning-based architecture for dynamic gesture identification. 
Their method incorporated spatiotemporal characteristics by including 
components such as ConvLSTM and 3D CNN. 

 
C. Materials and Methods 
Experimental Framework 

To conduct the experiment, the SASL dataset was sourced from Realsals.com. 
The dataset was pre-processed and augmented following the procedure outlined in 
[21]. It was then split into training and validation sets to evaluate the performance 
of the models. Figure 1 depicts an illustration of the experimental framework. 

 
Figure 1. Experimental Framework 

 
The dataset consists of static images representing each letter in the SASL 

alphabet, illustrated in Figure 2. 
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Figure 2. SASL static images 

 
In the dataset, each alphabet letter has 460 images generated for training and 

150 for testing using data augmentation. The total dataset consisted of 12 420 
images for model training and 4 050 for validation. 

CNNs have been proven to process visual data effectively and are commonly 
used for sign language recognition tasks [22, 23]. They are artificial neural 
networks designed to process grid-like data, such as photographs, by using 
convolutional layers that learn hierarchical features from the data they are trained 
on. The term "convolutional neural network" refers to a specialized type of 
artificial neural network designed to process and analyze visual data by mimicking 
the human visual system. Compared to traditional neural networks, CNN layers 
detect features and patterns automatically, enabling them to identify key features 
from hand gestures, such as finger positions and movements, enabling accurate 
classification of signs [23]. This eliminates the need for manual feature extraction, 
which can be time-consuming and less accurate, especially with complex image 
backgrounds. They have been proven to achieve high accuracy in classifying static 
sign language images. However, they are not effective in capturing temporal 
dependencies in sign language sequences, which are crucial for understanding the 
dynamic nature of signs. 

VGG16 architecture is an extension of CNN architecture specifically designed 
to capture complex features from images REF. The trained VGG16 model is used 
for various tasks, including sign language recognition, particularly for classifying 
static hand gestures by extracting spatial features from input images. While CNNs 
are primarily developed to process visual data such as images and videos using 
convolutional layers, pooling layers, and fully connected layers in the network, the 
VGG16 has a more defined architecture with 16 weight layers [5]. 

RNNs are mostly used to process sequential data, such as words, phrases, or 
time series data that are defined by the complex rules of grammar and semantics 
REF [10]. They mimic sequential data conversion similar to the way humans 
process data. RNNs contain a memory that stores information about previous 
states’ computations, which is one of its key features, the feedback connections. 
The hidden units feed into themselves via feedback loops where there is only one 
set of input, hidden, and output units for each layer. In sign language recognition, 
RNNs process temporal sequences where Long Short-Term Memory (LSTM) or 
Gated Recurrent Units (GRU) capture long-range dependencies and temporal 
progression of gestures across frames [1, 10]. 

ANNs use principles borrowed from biological neural networks to simulate 
the way the human brain is structured. Neurons in an artificial neural network are 
linked in a hierarchical structure, much like the human brain. These network 
nodes are often referred to as nodes. The knowledge of a network is represented 
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by the weights of these links or connections [21]. Artificial neural networks 
(ANNs) differ in type based on their topology and learning techniques. In sign 
language recognition, ANNs learn and extract relevant features from sign language 
gestures, such as the shape, position, and motion of hands or fingers. This study 
used a feedforward neural network with three node levels: input, hidden, and 
output layers. With the exception of the input nodes, every node is a neuron that 
has a non-linear activation function. Information is introduced into the network at 
the input layer and progresses sequentially through each subsequent layer until it 
reaches the ultimate output layer [21]. 

Hybrid models leverage the strengths of the combined architectures. In this 
case, the combination of CNNs and RNNs allows for both spatial and temporal 
feature extraction, which is particularly useful in tasks like sign language 
recognition [24]. This combination enables the model to process both individual 
frame details and the overall gesture dynamics, improving accuracy and 
robustness in recognizing complex sign language gestures. 

 
 

Evaluation Metrics 
To evaluate the performance of the proposed model, metrics such as 

accuracy (A), precision (P), recall (R), and F1-score (F) were employed. These 
metrics rely on values like true negatives (tn), true positives (tp), false negatives 
(fn), and false positives (fp). A true positive occurs when the model correctly 
classifies a positive instance, whereas a false positive happens when a negative 
instance is wrongly classified as positive. True negatives indicate the correct 
classification of negative instances, and false negatives represent positive 
instances misclassified as negative. The following equations were used to calculate 
the metrics: accuracy (1), precision (2), recall (3), and F1-score (4). 

 
A = (tn + tp)/(tp + fp + tn + fn)  
                                (1) 
Accuracy is the proportion of true predictions, which are the correctly 

predicted instances, to the total number of predictions made by the model. It 
quantifies the overall correctness of the model's predictions. 

 
P = (tp)/(tp + fp)                                                              (2) 
  
Precision is the ratio of true positive predictions, the correctly predicted 

positive instances to the sum of true positive and false positive predictions which 
are all instances predicted as positive, irrespective of the result. It measures the 
accuracy of positive predictions made by the model. 

 
R = (tp)/(tp + fn)                                  (3) 
 
Recall is the ratio of true positive predictions to the sum of true positive and 

false negative predictions, instances that are positive but incorrectly predicted as 
negative. It measures the model's ability to identify all positive instances in the 
dataset. 
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 F1 = 2(P*R)/(P+R)                                                           (4)                                  
 
The F1 score is the harmonic mean of precision and recall. It provides a 

balance between precision and recall. 
 

Experiments 
This study used Keras to conduct the experiments. Keras is an open-source 

library for developing deep-learning applications coded in Python [18]. The code 
was implemented in a Colab environment. The Colab environment provides free 
access to computing resources, including GPU, however, additional GPUs were 
purchased. 

 
 
 
 
 

Table 1. Experiment 1: 224x224 images with 60 epochs 
Experiment 1: 224x224 images with 60 

epochs 
 

CNN  ANN  

  
Hybrid VGG16 

  
 

  
Table 2. Experiment 2: 128x128 images with 60 epochs 

Experiment 2: 128x128 images with 60 
epochs 

 

CNN  ANN  
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Hybrid VGG16 

  
Table 3. Experiment 1: 50x50 images with 60 epochs 

Experiment 2: 50x50 images with 60 epochs  
CNN  ANN  

 
 

Hybrid VGG16 

  
 

 
Experiment Results and Discussion 

The results for Experiment 1 are presented in Table 4, for Experiment 2 in 
Table 5, and for Experiment 3 in Table 6. 
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Table 4. Experiment 1 results: 224x224 images with 60 epochs 
Model Training 

time (s) 
Accuracy Validation 

accuracy 
Training 
loss 

Validation 
loss 

Precision Recall F1_score 

CNN 15288 0.9915 0.9995 0.0331 0.0017 0.9607 0.9700 0.9653 
ANN 11556 0.9992 0.98883 0.0046 0.0594 0.97 0.97 0.97 

CNN+RNN(hybrid) 13824 1.000 0.9469 0.00037 0.1730 0.9852 0.9825 0.9838 

VGG16 64910 0.9021 1.00000 0.4204 0.00000015 0.8925 0.8900 0.8912 

 
The 224x224 pixels images experiment demonstrated high accuracy levels 

but required significant computational resources and took the longest training 
time. The image size of 224x224 was chosen to accommodate the VGG16 pre-
trained model as this was the required image size for the model. The CNN achieved 
a high training accuracy of 99.15% and an almost perfect validation accuracy of 
99.95%. This suggests that the model can generalize well when using larger 
images. However, the training time was substantial at 15.288 seconds, indicating 
that high accuracy with this model comes at a computational cost. On the other 
hand, the ANN performed comparably in terms of accuracy, with a training 
accuracy of 99.92%. Despite this, its validation accuracy fluctuated. This 
fluctuation can be attributed to the challenges in maintaining consistency across 
training and validation data. This instability suggests that while ANN models are 
computationally efficient, their performance may be affected in low-resource 
settings where stable generalization is essential. The hybrid model (CNN + RNN) 
achieved 100% training accuracy but had a reduced validation accuracy of 94.69%, 
which can be the result of overfitting. The high accuracy paired with long training 
times (13.824 seconds) indicates that this model might require further 
adjustments, such as regularization, to better generalize while remaining 
computationally efficient. VGG16, while showing excellent validation accuracy of 
100%, had the lowest training accuracy at 90.21% and the longest training time of 
64.910 seconds, making it less suited for low-resource environments without 
further optimization. 
 

Table 5. Experiment 2 results: 128x128 images with 60 epochs 
Model Training 

time (s) 
Training 
accuracy 

 

Validation 
accuracy 

Training 
loss 

Validation 
loss 

Precision Recall F1_score 

CNN 4560 0.9895 0.9995 0.0311 0.0026 0.9789 0.9767 0.9775 
ANN 1340 1.000 0.9964 0.000083 0.0164 0.9845 0.9833 0.9838 

CNN+RNN(hybrid) 5112 1.000 0.9778 0.000106 0.0778 0.9923 0.9825 0.9874 

VGG16 46860 0.9906 1.0000 0.0290 0.00000035 0.9711 0.9828 0.9769 

 
In Experiment 2, the models were trained on smaller, 128x128 images. This 

led to reductions in training time but maintained good performance. CNN’s 
training accuracy was slightly lower at 98.95%, but its validation accuracy 
remained stable at 99.95%, and the training time decreased to 4.560 seconds. This 
result highlights CNN’s adaptability and suggests that it performs efficiently with 
reduced computational demands when image size is optimized. ANN achieved 
perfect training accuracy at 100% and showed stable validation accuracy at 
99.64%, with a drastically reduced training time of only 1.340 seconds. This 
performance reflects ANN’s potential for high accuracy and fast processing in low-

https://doi.org/10.33022/ijcs.v14i1.4493


  The Indonesian Journal of Computer Science 

https://doi.org/10.33022/ijcs.v14i1.4493  243   

resource environments. This is important to note, given that the reduced image 
size did not significantly impact its ability to generalize. The hybrid model also 
showed strong results with 100% training accuracy and an improved validation 
accuracy of 97.78%, alongside a training time of 5.112 seconds. However, the need 
for a slightly longer training time compared to ANN suggests that, while effective, 
the hybrid model requires more computational resources. VGG16 showed an 
improvement, achieving a training accuracy of 99.06% and perfect validation 
accuracy, with a reduced training time of 46.860 seconds. Despite the 
improvement, its extended training time still indicates potential limitations for its 
application in low-resource settings. 

 
Table 6. Experiment 3 results: 50x50 images with 60 epochs 

Model Training 
time 
(s) 

Accuracy Validation 
accuracy 

Training 
loss 

Validation 
loss 

Precision Recall F1_score 

CNN 4280 0.9880 0.9995 0.0391 0.0010 0.9651 0.9542 0.9775 

ANN 1080 1.000 0.9964 0.000082 0.0162 0.9876 0.9833 0.9854 

CNN+RNN(hybrid) 5390 1.000 0.90000 0.000052 1.2938 0.9923 0.9825 0.9873 

VGG16 model 8328 0.9797 0.9864 0.0592 0.0370 0.9711 0.9828 0.9769 

 
Using 50x50 images in experiment 3 yielded the fastest training times across all 
models, enhancing computational efficiency. CNN maintained a high training 
accuracy of 98.80% and a stable validation accuracy of 99.95%, with a training 
time of only 4.280 seconds. This suggests that CNN’s performance can be 
preserved even with minimal image resolutions, making it well-suited for low-
resource environments where efficiency is important. ANN continued to excel with 
100% training accuracy and a stable validation accuracy of 99.64%, requiring only 
1.080 seconds to complete training. This reinforces ANN’s suitability for low-
resource settings, where computational efficiency and generalization stability are 
important. The hybrid model achieved 100% training accuracy, but validation 
accuracy fell to 90%, indicating that the model struggled to generalize effectively 
with smaller images despite a reduced training time of 5.390 seconds. This 
performance suggests that while hybrid models are effective in richer data 
environments, they may be less ideal in low-resource contexts with smaller image 
inputs. VGG16 showed a training accuracy of 97.97% and a validation accuracy of 
98.64%, with a significantly reduced training time of 8.328 seconds. Although 
VGG16’s accuracy metrics were high, its training time suggests it is still relatively 
computationally resource-intensive. Figure 3 visually illustrates training time for 
all the models. 
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Figure 3. Model training time 

 
As illustrated, VGG16 takes more training time across all image sizes, 

indicating that it is the most computationally intensive model among those tested. 
This extended training time proves that VGG16 requires higher processing power 
and memory capacity, which can be a limitation in low-resource environments, 
both in datasets and computation. Despite its high validation accuracy, the model’s 
efficiency is compromised when compared to lighter models like ANN and CNN, 
which achieve similar accuracy with significantly less processing time. Figure 4 
illustrates model accuracy across all models and image sizes. 

 

 
Figure 4. Model accuraries 

 
 Hybrid model has the highest rounded accuracy among the models as 

depicted in Figure 4. This is due to its combined architecture of CNN and RNN 
layers, these enables it to capture both spatial and temporal features effectively. 
This combination of the two architectures allows the model to generalize well and 
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recognize complex patterns within the dataset, making it effective for sign 
language recognition. However, the hybrid model requires more training time than 
both the CNN and ANN models because of the additional computational complexity 
involved in processing sequential dependencies through RNN layers alongside 
spatial features with CNN layers. This increased training time results in higher 
accuracy, but it can be a drawback in low-resource environments where efficiency 
is essential. 

 
D. Conclusion 

The conducted experiments indicated that optimizing model performance with 
smaller image sizes balances accuracy and computational demands. Across all 
experiments, the results indicate that the ANN and CNN models offer the most 
consistent performance while requiring lower training times, especially with 
128x128 and 50x50 images. As per the experiment, these models appear better 
suited for environments with limited computational resources and datasets as they 
achieve high accuracy with minimal compromise on validation stability. The 
hybrid model and VGG16 were computationally intensive, this indicates that the 
model requires further optimization, such as transfer learning or fine-tuning, to be 
more practical in low-resource settings. One factor that played a role in this 
context was reducing image size. This effectively decreased training time across all 
four models, with minimal impact on accuracy. This further proves the feasibility 
of using smaller image resolutions for sign language recognition tasks in data-
scarce contexts. 
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