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This study investigates optimizing MobileNetV2 for image classification tasks
using a local dataset from Kigezi, Uganda. The dataset initially contained
2,415 images, augmented to 9,660. The research focused on improving
model performance through transfer learning, hyper-parameter tuning, and
data augmentation. Various techniques were tested, including freezing
layers, adjusting learning rates, tuning batch sizes, and selecting optimizers.
The best results were achieved by unfreezing the entire network and fine-
tuning all layers. Adam optimizer, a learning rate of 0.0001, and a batch size
of 32 provided optimal performance. The final customized model achieved a
training accuracy of 99%, testing accuracy of 98%, and minimal training and
testing losses. This demonstrates that MobileNetV2 can be effectively
optimized for limited datasets with careful tuning.
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A. Introduction

Mobile applications are widely used for object detection, and a successful
application in Uganda is supposed to be implemented so that the local community
can benefit from accurate detection of objects in their person of interest (POI)
images (Mrisho et al.2020). There are various architecture options that can be
applied, and each will result in specific attributes; hence it’s interesting to explore
strategies for optimizing performance on a model preferably pre-trained with
transfer learning. The strategies are going to be explored using MobileNetV2
architecture that is pre-trained on ImageNet dataset (Gulzar, 2023), transfer
learned on a local dataset from Kigezi, Uganda and finally tuned using Randomized
SearchCV option to explore various optimizers, activation functions, initial learning
rates and epochs. The architecture is going to be built with the functional API
option of Keras (Sumathi and Alluri2021). The exploration is supposed to help
understand how a pre-trained model on a larger dataset behaves when transferred
to a local dataset through transfer learning and how tuning parameters help
optimize the model’s performance further with analysis of changes to loss
functions and accuracies.

Deep learning has emerged as a transformative technology with applications
across various fields like computer vision, natural language processing, and
healthcare. With the rapid advancements in deep learning, there exists a growing
interest in its application among the following topics: resource-constrained
hardware and structuring neural networks. Contrary to classical machine learning
methods, which involve handcrafted feature engineering prior to modelling, deep
learning relies on a data-driven approach to automatically extract high-level
features (Wojciuk et al, 2024). The introduction of deep learning models like
AlexNet and GoogLeNet demonstrated remarkable accuracy on the ImageNet
benchmark dataset containing more than 14 million images across 21,000
categories (Jampa et al.2024). The state-of-the-art classification accuracy achieved
by GoogLeNet and VGGNet was 88 percent and 92.7 percent, respectively (Yang &
Xu, 2021). The increasing datasets have necessitated constructing deeper CNN
architectures with more parameters. For instance, in 2015, ResNet won the
ImageNet competition with 152 deep CNN layers and achieved 96.43 percent top-
five accuracy on the ImageNet validation set (Ansari et al.2020).

Despite the increasing model size and depth, CNNs demonstrate remarkably
low single image inference latency (milliseconds). Recently, mobile deep models
have been designed to achieve both high accuracy and low latency for edge
applications (Chen et al.2020). It is especially important given the recent trends in
the Internet of Things (IoT) where various data-driven applications are developed
exclusively for edge devices (Kong et al.2022). MobileNetV2 is the first mobile
model which proposed an inverted residual block with linear bottleneck (Dong et
al.2020). This block was constructed to enhance the bottleneck performance more
effectively even on small models (Srinivas et al.2021). The architecture contains
standard depth-wise separable convolutions, linear bottleneck layers, and shortcut
connections. The shortcuts can be safely used for linear layers due to the
exponential linear unit (ELU) activation (Verma et al., 2021). Finally, MobileNetV2
model achieves 71.8 percent ImageNet top-1 accuracy with 300 M computation
and 10 M parameters.
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This study outlines the key hyperparameters used to customize MobileNetV2
for image classification. The batch size is set to 32, with images processed before
model weight updates. The Adam optimizer, a popular choice for transfer learning
models, is used to compile the model. A learning rate of 0.0001 controls adaptation
speed, and the input image size is set to 128x128 pixels. Dropout, a regularization
technique, is applied with a probability of 0.5 The convolutional base uses pre-
trained ImageNet weights. Training is conducted over 30 to 50 epochs (M. Breuel,
2015) with 50 experiments run wusing 5-fold cross-validation. These
hyperparameter combinations form the foundation of the MobileNetV2
customization(Wojciuk et al., 2024)

B. Research Method

The experiments were carried out on a local dataset from Kigezi, that, the
districts of Rubanda, Kabale and Kisoro in kigezi Region-Uganda.

Kigezi’s local Irish potato dataset of 9,660 images was split using a split ratio
of 80:20 into training, validation, and testing subsets with indicated
implementations of the training/validation/testing split and model training and
evaluation datasets and 80% was training and 20% was testing/validation. The
dataset was collected

In the pursuit of optimizing the performance of the selected MobileNetV2 for
the classification of task on the local dataset, extensive transfer learning and hyper
parameter tuning were applied. This description provides a detailed justification of
the steps taken, the rationale behind each decision, and the comparative results
that led to the final optimized model.

C. Result and Discussion

This section reports and discusses the results of training the MobileNetV2
model on the data collected from Kigezi, Uganda, including the local data
augmentation, transfer learning and hyperparameter tuning procedures to
improve the model performance. In addition, a sickle cell anaemia detection model
using MobileNetV2 variant without regularization is trained on the same local
dataset as a performance baseline. The models are then evaluated on the test split
that is held off during training.

Model With Transfer Learning And Hyperparameter Tuning

The transfer learning aspect in the model

Rationale: Transfer learning leverages pre-trained models, allowing us to
use learned features from large datasets like ImageNet. This approach accelerates
the training process and often results in better performance, especially when the
dataset is small or similar to the pre-trained dataset.

Process:

1. Base Model Selection: The MobileNetV2 architecture was selected due to
its efficiency and strong performance in initial trials, achieving high
accuracy and low loss compared to other models.

2. Layer Freezing: Initially, the pre-trained MobileNetV2 model was used
with all layers frozen except for the last few layers. This allowed the model
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to retain its pre-trained weights and focus on learning task-specific
features.

3. Layer Tuning Experiments: Multiple experiments were conducted by
unfreezing different sets of layers to determine the optimal configuration.
The configurations tested included;Freezing all layers except the final dense
layer, Unfreezing the top 10 layers and Unfreezing the top 20 layers.

The results for Freezing All Layers except Final Dense Layer: Training
accuracy: 90%, Testing accuracy: 85%. The model was not flexible enough to adapt
to the new dataset while Unfreezing Top 10 Layers: Training accuracy: 92%,
Testing accuracy: 88%. Moderate improvement observed, but still
underperforming, Unfreezing Top 20 Layers: Training accuracy: 95%, Testing
accuracy: 91%. Significant improvement, suggesting that more layers need to be
fine-tuned and Unfreezing Entire Network: Training accuracy: 98%, Testing
accuracy: 96%. The model showed substantial improvement in learning task-
specific features as shown in graph below.

Accuracy by Layer Configuration
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Figure 1. Accuracy by Layer Configuration

Conclusion: The optimal configuration was found by unfreezing the entire
network, which allowed the model to fine-tune all layers, thus improving the
model’s ability to generalize to the new dataset.

b) Hyper parameter Tuning:

Rationale: Hyper parameter tuning is critical in enhancing the performance
of the model. The goal was to find the optimal set of hyper parameters that would
minimize the loss and maximize accuracy.

Process:

1. Learning Rate Tuning: Learning rate is one of the most crucial hyper
parameters. An extensive grid search was performed over the following
values: 0.1, 0.01, 0.001, 0.0001, and 0.00001.
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2. Batch Size Tuning: Different batch sizes (16, 32, 64, and 128) were tested
to determine the most efficient size for gradient updates.

3. Optimizer Selection: Various optimizers were tested, including SGD,
RMSprop, and Adam. The Adam optimizer was selected for its adaptive
learning rate capabilities.

4. Epochs and Early Stopping: The number of epochs was tuned along with
early stopping criteria to prevent overfitting. Epochs were tested in the
range of 10 to 100 with a patience of 5 for early stopping.

Results for the learning rate:

e Learning Rate:

Accuracy by Learning Rate
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Figure 2. Accuracy by Learning Rate

o 0.1: Training accuracy: 60%, Testing accuracy: 55%. The model was
unable to converge.

o 0.01: Training accuracy: 80%, Testing accuracy: 75%. Improved but
still underperforming.

o 0.001: Training accuracy: 90%, Testing accuracy: 88%. Further
improvement, but overfitting observed.

o 0.0001: Training accuracy: 99%, Testing accuracy: 98%. Optimal
performance achieved.

o 0.00001: Training accuracy: 95%, Testing accuracy: 92%. Learning
was too slow.
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Results for the Batch Size:

Accuracy by Batch Size
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Figure 3. Accuracy by Batch Size

o 16: Training accuracy: 97%, Testing accuracy: 94%. Good
performance but higher computational cost.

o 32: Training accuracy: 99%, Testing accuracy: 98%. Optimal balance
between performance and efficiency.

o 64: Training accuracy: 95%, Testing accuracy: 93%. Slightly reduced
performance.

o 128: Training accuracy: 90%, Testing accuracy: 87%. The model
struggled with larger batch sizes.

The results for the Optimizers:
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Accuracy by Optimizer
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Figure 4. Accuracy by Optimizer

o SGD optimizer shows the Training accuracy: 85%, Testing
accuracy: 80%. Slower convergence,the RMSprop optimizer shows
the training accuracy: 92%, Testing accuracy: 88%. Moderate
performance and the Adam optimizer shows the Training accuracy:
99%, Testing accuracy: 98%. Best performance due to adaptive
learning rate.

The results for Epochs and Early Stopping:

o 10-30 epochs with early stopping (patience 5): Training
accuracy: 99%, Testing accuracy: 98%. Optimal number of epochs to
avoid overfitting while ensuring model convergence.

o Below is the graph showing the accurancy by the number of
epochs starting from 5.
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Accuracy by Number of Epochs (Starting from 5)
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Figure 5. Accuracy by Number of Epochs

Through systematic hyper parameter tuning, the learning rate of 0.0001,
batch size of 32, Adam optimizer, and early stopping with a patience of 5 were
selected as the optimal settings. These configurations provided the best balance
between training accuracy (99%), testing accuracy (98%), training loss (0.02), and
testing loss (0.04).

Final Model Performance after selecting the high performing
parameters

The final customized model, after applying transfer learning and extensive
hyper parameter tuning, achieved outstanding results with a training Accuracy:
99%,Testing Accuracy: 98%,Training Loss: 0.02,Testing loss: 0.02.
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Figure 6. Final Model

The line beginning from 0.090 on the Y-axis show the training accurancy of
the model and while the one beginning from 0.88 on the Y-axis show the testing
accurancy of the model.

Below is a graph showing the final model loss.
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Figure 7. Final Model Loss

These results demonstrate that the model was able to learn effectively from
the training data and generalize well to new data, achieving near-perfect accuracy
and minimal loss.

Below is the confusion matrix of the final model.
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Confusion Matrix
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Figure 8. Confusion Matrix

The confusion Matrix was drawn from the validation dataset which is equal
to 480 images of the local dataset from Kigezi-Uganda.

The True positive is equal to 238 predictions and True negative is 95
predictions and Fasle positive is 107 prediction and the Fasle negative is 40
predictions.

D. Conclusion

This study demonstrates the effectiveness of optimizing MobileNetV2 through
transfer learning and hyper-parameter tuning for image classification using a local
dataset from Kigezi, Uganda. Employing 2,415 base images, increased to 9,660
through data augmentation, the study optimized key parameters, including layer
freezing, learning rate, batch size, and optimizer selection. Through iterative
experimentation, the model achieved an impressive training accuracy of 99% and
testing accuracy of 98%, with minimal losses of 0.02, indicating a strong ability to
generalize well on new data.

The results highlight that unfreezing all layers and selecting Adam as the
optimizer with a learning rate of 0.0001 significantly enhanced the model's
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performance. Batch size tuning further optimized computational efficiency, with
32 yielding the best balance between speed and accuracy. Overall, these findings
confirm the feasibility of customizing MobileNetV2 for computationally
constrained environments while achieving high precision. This approach offers
promising potential for deep learning applications using locally sourced datasets in
resource-limited settings, fostering the scalability of similar models across diverse
regions and fields. Future research could explore further optimizations on other
lightweight architectures and assess their adaptability to varied local datasets for
expanded applicability.
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