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This study investigates optimizing MobileNetV2 for image classification tasks 
using a local dataset from Kigezi, Uganda. The dataset initially contained 
2,415 images, augmented to 9,660. The research focused on improving 
model performance through transfer learning, hyper-parameter tuning, and 
data augmentation. Various techniques were tested, including freezing 
layers, adjusting learning rates, tuning batch sizes, and selecting optimizers. 
The best results were achieved by unfreezing the entire network and fine-
tuning all layers. Adam optimizer, a learning rate of 0.0001, and a batch size 
of 32 provided optimal performance. The final customized model achieved a 
training accuracy of 99%, testing accuracy of 98%, and minimal training and 
testing losses. This demonstrates that MobileNetV2 can be effectively 
optimized for limited datasets with careful tuning. 
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A. Introduction 
Mobile applications are widely used for object detection, and a successful 

application in Uganda is supposed to be implemented so that the local community 
can benefit from accurate detection of objects in their person of interest (POI) 
images (Mrisho et al.2020). There are various architecture options that can be 
applied, and each will result in specific attributes; hence it’s interesting to explore 
strategies for optimizing performance on a model preferably pre-trained with 
transfer learning. The strategies are going to be explored using MobileNetV2 
architecture that is pre-trained on ImageNet dataset (Gulzar, 2023), transfer 
learned on a local dataset from Kigezi, Uganda and finally tuned using Randomized 
SearchCV option to explore various optimizers, activation functions, initial learning 
rates and epochs. The architecture is going to be built with the functional API 
option of Keras (Sumathi and Alluri2021). The exploration is supposed to help 
understand how a pre-trained model on a larger dataset behaves when transferred 
to a local dataset through transfer learning and how tuning parameters help 
optimize the model’s performance further with analysis of changes to loss 
functions and accuracies. 

Deep learning has emerged as a transformative technology with applications 
across various fields like computer vision, natural language processing, and 
healthcare. With the rapid advancements in deep learning, there exists a growing 
interest in its application among the following topics: resource-constrained 
hardware and structuring neural networks. Contrary to classical machine learning 
methods, which involve handcrafted feature engineering prior to modelling, deep 
learning relies on a data-driven approach to automatically extract high-level 
features (Wojciuk et al., 2024). The introduction of deep learning models like 
AlexNet and GoogLeNet demonstrated remarkable accuracy on the ImageNet 
benchmark dataset containing more than 14 million images across 21,000 
categories (Jampa et al.2024). The state-of-the-art classification accuracy achieved 
by GoogLeNet and VGGNet was 88 percent and 92.7 percent, respectively (Yang & 
Xu, 2021). The increasing datasets have necessitated constructing deeper CNN 
architectures with more parameters. For instance, in 2015, ResNet won the 
ImageNet competition with 152 deep CNN layers and achieved 96.43 percent top-
five accuracy on the ImageNet validation set (Ansari et al.2020). 

Despite the increasing model size and depth, CNNs demonstrate remarkably 
low single image inference latency (milliseconds). Recently, mobile deep models 
have been designed to achieve both high accuracy and low latency for edge 
applications (Chen et al.2020). It is especially important given the recent trends in 
the Internet of Things (IoT) where various data-driven applications are developed 
exclusively for edge devices (Kong et al.2022). MobileNetV2 is the first mobile 
model which proposed an inverted residual block with linear bottleneck (Dong et 
al.2020). This block was constructed to enhance the bottleneck performance more 
effectively even on small models (Srinivas et al.2021). The architecture contains 
standard depth-wise separable convolutions, linear bottleneck layers, and shortcut 
connections. The shortcuts can be safely used for linear layers due to the 
exponential linear unit (ELU) activation (Verma et al., 2021). Finally, MobileNetV2 
model achieves 71.8 percent ImageNet top-1 accuracy with 300 M computation 
and 10 M parameters. 
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This study outlines the key hyperparameters used to customize MobileNetV2 
for image classification. The batch size is set to 32, with images processed before 
model weight updates. The Adam optimizer, a popular choice for transfer learning 
models, is used to compile the model. A learning rate of 0.0001 controls adaptation 
speed, and the input image size is set to 128x128 pixels. Dropout, a regularization 
technique, is applied with a probability of 0.5  The convolutional base uses pre-
trained ImageNet weights. Training is conducted over 30 to 50 epochs (M. Breuel, 
2015) with 50 experiments run using 5-fold cross-validation. These 
hyperparameter combinations form the foundation of the MobileNetV2 
customization(Wojciuk et al., 2024) 
 
B. Research Method 

The experiments were carried out on a local dataset from Kigezi, that, the 
districts of Rubanda, Kabale and Kisoro in kigezi Region-Uganda.  

Kigezi’s local Irish potato dataset of 9,660 images was split using a split ratio 
of 80:20 into training, validation, and testing subsets with indicated 
implementations of the training/validation/testing split and model training and 
evaluation datasets and 80% was training and 20% was testing/validation. The 
dataset was collected  

In the pursuit of optimizing the performance of the selected MobileNetV2 for 
the classification of task on the local dataset, extensive transfer learning and hyper 
parameter tuning were applied. This description provides a detailed justification of 
the steps taken, the rationale behind each decision, and the comparative results 
that led to the final optimized model. 
 
C. Result and Discussion 

This section reports and discusses the results of training the MobileNetV2 
model on the data collected from Kigezi, Uganda, including the local data 
augmentation, transfer learning and hyperparameter tuning procedures to 
improve the model performance. In addition, a sickle cell anaemia detection model 
using MobileNetV2 variant without regularization is trained on the same local 
dataset as a performance baseline. The models are then evaluated on the test split 
that is held off during training. 

 
Model With Transfer Learning And Hyperparameter Tuning   

The transfer learning aspect in the model 
Rationale: Transfer learning leverages pre-trained models, allowing us to 

use learned features from large datasets like ImageNet. This approach accelerates 
the training process and often results in better performance, especially when the 
dataset is small or similar to the pre-trained dataset. 

Process: 
1. Base Model Selection: The MobileNetV2 architecture was selected due to 

its efficiency and strong performance in initial trials, achieving high 
accuracy and low loss compared to other models. 

2. Layer Freezing: Initially, the pre-trained MobileNetV2 model was used 
with all layers frozen except for the last few layers. This allowed the model 
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to retain its pre-trained weights and focus on learning task-specific 
features. 

3. Layer Tuning Experiments: Multiple experiments were conducted by 
unfreezing different sets of layers to determine the optimal configuration. 
The configurations tested included;Freezing all layers except the final dense 
layer, Unfreezing the top 10 layers and Unfreezing the top 20 layers. 

 
The results for Freezing All Layers except Final Dense Layer: Training 

accuracy: 90%, Testing accuracy: 85%. The model was not flexible enough to adapt 
to the new dataset while Unfreezing Top 10 Layers: Training accuracy: 92%, 
Testing accuracy: 88%. Moderate improvement observed, but still 
underperforming, Unfreezing Top 20 Layers: Training accuracy: 95%, Testing 
accuracy: 91%. Significant improvement, suggesting that more layers need to be 
fine-tuned and Unfreezing Entire Network: Training accuracy: 98%, Testing 
accuracy: 96%. The model showed substantial improvement in learning task-
specific features as shown in graph below. 

 
Figure 1. Accuracy by Layer Configuration 

 
Conclusion: The optimal configuration was found by unfreezing the entire 

network, which allowed the model to fine-tune all layers, thus improving the 
model’s ability to generalize to the new dataset. 

b)  Hyper parameter Tuning: 
Rationale: Hyper parameter tuning is critical in enhancing the performance 

of the model. The goal was to find the optimal set of hyper parameters that would 
minimize the loss and maximize accuracy. 

Process: 
1. Learning Rate Tuning: Learning rate is one of the most crucial hyper 

parameters. An extensive grid search was performed over the following 
values: 0.1, 0.01, 0.001, 0.0001, and 0.00001. 
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2. Batch Size Tuning: Different batch sizes (16, 32, 64, and 128) were tested 
to determine the most efficient size for gradient updates. 

3. Optimizer Selection: Various optimizers were tested, including SGD, 
RMSprop, and Adam. The Adam optimizer was selected for its adaptive 
learning rate capabilities. 

4. Epochs and Early Stopping: The number of epochs was tuned along with 
early stopping criteria to prevent overfitting. Epochs were tested in the 
range of 10 to 100 with a patience of 5 for early stopping. 

Results for the learning rate: 
• Learning Rate: 

Figure 2. Accuracy by Learning Rate 
 

o 0.1: Training accuracy: 60%, Testing accuracy: 55%. The model was 
unable to converge. 

o 0.01: Training accuracy: 80%, Testing accuracy: 75%. Improved but 
still underperforming. 

o 0.001: Training accuracy: 90%, Testing accuracy: 88%. Further 
improvement, but overfitting observed. 

o 0.0001: Training accuracy: 99%, Testing accuracy: 98%. Optimal 
performance achieved. 

o 0.00001: Training accuracy: 95%, Testing accuracy: 92%. Learning 
was too slow. 

https://doi.org/10.33022/ijcs.v14i1.4436
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Results for the Batch Size: 

Figure 3. Accuracy by Batch Size 
 

o 16: Training accuracy: 97%, Testing accuracy: 94%. Good 
performance but higher computational cost. 

o 32: Training accuracy: 99%, Testing accuracy: 98%. Optimal balance 
between performance and efficiency. 

o 64: Training accuracy: 95%, Testing accuracy: 93%. Slightly reduced 
performance. 

o 128: Training accuracy: 90%, Testing accuracy: 87%. The model 
struggled with larger batch sizes. 

 
The  results for the Optimizers: 
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Figure 4. Accuracy by Optimizer 
 

o SGD optimizer shows the Training accuracy: 85%, Testing 
accuracy: 80%. Slower convergence,the RMSprop optimizer shows 
the training accuracy: 92%, Testing accuracy: 88%. Moderate 
performance and the Adam optimizer shows the Training accuracy: 
99%, Testing accuracy: 98%. Best performance due to adaptive 
learning rate. 

The results for Epochs and Early Stopping: 
o 10-30 epochs with early stopping (patience 5): Training 

accuracy: 99%, Testing accuracy: 98%. Optimal number of epochs to 
avoid overfitting while ensuring model convergence. 

o Below is the graph showing the accurancy by the number of 
epochs starting from 5. 
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Figure 5. Accuracy by Number of Epochs 
 
Through systematic hyper parameter tuning, the learning rate of 0.0001, 

batch size of 32, Adam optimizer, and early stopping with a patience of 5 were 
selected as the optimal settings. These configurations provided the best balance 
between training accuracy (99%), testing accuracy (98%), training loss (0.02), and 
testing loss (0.04). 

 
Final Model Performance after selecting the high performing 

parameters 
The final customized model, after applying transfer learning and extensive 

hyper parameter tuning, achieved outstanding results with a training Accuracy: 
99%,Testing Accuracy: 98%,Training Loss: 0.02,Testing loss: 0.02. 
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Figure 6. Final Model 
 
The line beginning from 0.090 on the Y-axis show the training accurancy of 

the model and while the one beginning from 0.88 on the Y-axis show the testing 
accurancy of the model. 

Below is a graph showing the final model loss. 
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Figure 7. Final Model Loss 
 
These results demonstrate that the model was able to learn effectively from 

the training data and generalize well to new data, achieving near-perfect accuracy 
and minimal loss. 

Below  is the confusion matrix of the final model. 
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Figure 8. Confusion Matrix 
 
The confusion Matrix was drawn from the validation dataset which is equal 

to 480 images of the local dataset from Kigezi-Uganda. 
The True positive is equal to 238 predictions and True negative is 95 

predictions and Fasle positive is 107 prediction and the Fasle negative is 40 
predictions. 

 
D. Conclusion 

This study demonstrates the effectiveness of optimizing MobileNetV2 through 
transfer learning and hyper-parameter tuning for image classification using a local 
dataset from Kigezi, Uganda. Employing 2,415 base images, increased to 9,660 
through data augmentation, the study optimized key parameters, including layer 
freezing, learning rate, batch size, and optimizer selection. Through iterative 
experimentation, the model achieved an impressive training accuracy of 99% and 
testing accuracy of 98%, with minimal losses of 0.02, indicating a strong ability to 
generalize well on new data. 

The results highlight that unfreezing all layers and selecting Adam as the 
optimizer with a learning rate of 0.0001 significantly enhanced the model's 
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performance. Batch size tuning further optimized computational efficiency, with 
32 yielding the best balance between speed and accuracy. Overall, these findings 
confirm the feasibility of customizing MobileNetV2 for computationally 
constrained environments while achieving high precision. This approach offers 
promising potential for deep learning applications using locally sourced datasets in 
resource-limited settings, fostering the scalability of similar models across diverse 
regions and fields. Future research could explore further optimizations on other 
lightweight architectures and assess their adaptability to varied local datasets for 
expanded applicability. 
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