
The Indonesian Journal of Computer Science 
www.ijcs.net 

Volume 13, Issue 5, October 2024 
https://doi.org/10.33022/ijcs.v13i5.4380 

Attribution-ShareAlike 4.0 International License 7001  
      

 
Enhancing Inspection Tasks: A Dataset for Corrosion Defects in Pipelines 
 
Faten Aljalaud 1,2, Yousef Alohali2  
faten.aljaloud@gmail.com1, yousef@ksu.edu.sa2 
1Computer Science Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 
11564, Saudi Arabia 
2Computer Science Department, College of Computer and Information Sciences, King Saud 
University, Riyadh 11451, Saudi Arabia 
 

Article Information  Abstract 

Received : 24 Aug 2024 
Revised : 29 Aug 2024 
Accepted :   3  Sep 2024 

 

 
Inspection plays a crucial role in ensuring the longevity, security, and 
dependability of critical public infrastructure for both governments and 
businesses. However, traditional inspection processes are often labor-
intensive and pose various risks. Consequently, there is a growing need for 
automation in such tasks. This research paper presents a comprehensive 
dataset that can be utilized to develop algorithms and systems for automating 
the inspection process, a critical area in the field of computer vision. The 
dataset encompasses a diverse range of inspection scenarios and serves as a 
valuable resource for advancing automation technology specifically for the 
inspection of steel pipes to detect corrosion defects. Real-life pipe maps have 
been used to derive scenarios that represent varying levels of corrosion. By 
leveraging this dataset, researchers and practitioners can contribute to the 
development of more efficient and accurate automated inspection systems, 
thus greatly improving the overall efficiency and long-term safety of 
infrastructure inspection.  
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A. Introduction 
Inspection tasks play a crucial role in the civil world, ensuring the safety, 

reliability, and longevity of infrastructure. They serve as a proactive approach to 
identifying and addressing potential issues before they escalate into more 
significant problems. By conducting regular inspections, engineers and 
professionals can detect structural defects, corrosion, deterioration, and other 
forms of damage that may compromise the integrity of buildings, bridges, dams, and 
other structures. 

The typical maintenance and inspection processes of civil infrastructure and 
mechanical systems face challenges due to the bureaucratic and labor-intensive 
nature of the methodologies and protocols used [1]. Several studies emphasize the 
significance of employing robots, such as UAVs, to mitigate the hazards of inspection 
duties and other challenges related to inspection [1], [2], [3]. In this study, we will 
focus on steel pipes in this research since they are the most common type of pipe 
[4], [5]. According to one assessment of damage, the corrosion factor is responsible 
for more than half of the failures in oil and gas pipelines [6], [7], [8]. 

Because pipeline corrosion management is becoming more expensive in the 
oil and gas industry, operators are becoming increasingly concerned about 
corrosion management planning at all stages of production [9]. There are many 
types of corrosion in oil and gas pipelines, but mainly stress corrosion cracking, 
pitting corrosion, and erosion–corrosion [9], [10]. Corrosion in pipelines manifests 
in different distribution patterns. For instance, when a pit begins to form, the 
corrosive attack concentrates in that area [10]. 

Pipes are used in many fields, such as oil and gas fields [11], water 
infrastructure [12], sewer pipes [13], and firefighting systems [14]. Automatic or 
fixed sprinkler systems are safety measures in buildings required by most civil 
defense groups worldwide. Since corrosion is one of the main defects that affects 
steel pipes [15], it is our primary focus. 

To the best of our knowledge, there are currently no publicly accessible 
datasets documenting the inspection of indoor pipes made of steel in sprinkler 
systems. The closest dataset we have discovered that is accessible to the public is 
Sun’s dataset [16], [17]. They offer a dataset that comprises a grand total of 1,819 
photos, consisting of 990 images showing corrosion and 829 images depicting no 
corrosion. This dataset can be used to build automated corrosion detection models. 

Another dataset in this context is the InsPLAD dataset for inspecting power 
lines [18]. This dataset contains 10,607 images. Its task involves utilizing object 
detection to identify powerline components in UAV photos, categorizing defects in 
the extracted powerline component images, and implementing unsupervised 
anomaly detection on the extracted asset images. This dataset provides annotated 
powerline components that are divided into 17 distinct classes for object detection. 

The general automated framework of infrastructure is explained in the steps 
listed in Figure 1 [19]. Previous datasets have effectively addressed the deficiencies 
in the data collection and decision-making capabilities of this system. Nevertheless, 
they have not contributed to the navigation component of this framework, which is 
a crucial stage of any automated inspection system. 
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Figure 1. An infrastructure inspection framework that includes automation. 

 
This paper introduces a dataset designed for pipe corrosion detection that 

addresses a critical gap in the field of automated infrastructure inspection. With a 
focus on the navigation and decision-making components of automated systems, 
this dataset accurately simulates the real-life distribution of corrosion in steel pipes. 
Its compatibility with various systems handling pipe defects makes this dataset 
remarkably versatile, offering significant advantages for infrastructure 
maintenance. 

This paper is organized as follows: Section 2 presents the significant and 
application of the dataset. Section 3 outlines the methods employed. Section 4 
presents a discussion on where the dataset has been applied before and how it can 
be used. Finally, Section 5 provides the conclusion of the paper. 

 
 
B. Significance and Applications  

Early detection and intervention facilitated by the proposed dataset can lead 
to substantial cost reductions and heightened safety in key sectors like construction 
and public utilities. By providing early warning signs of material degradation or 
structural issues, infrastructure owners and operators can take proactive measures 
to address problems before they escalate. This can minimize the need for costly 
repairs, reduce the risk of service disruptions, and prevent catastrophic failures that 
could endanger public safety. Furthermore, the dataset can enable more targeted 
and efficient maintenance scheduling, optimizing resource allocation and 
minimizing operational downtime. 

In the realm of robotics, this dataset can refine the accuracy of autonomous 
inspection systems, enhancing their safety and efficiency. The detailed information 
on material properties, environmental conditions, and degradation patterns can 
help train computer vision algorithms and predictive models to better identify and 
classify infrastructure defects. This, in turn, can improve the reliability and decision-
making capabilities of robotic inspection platforms, allowing them to navigate 
complex environments, detect subtle issues, and recommend appropriate 
interventions with a higher degree of precision. 

By exploiting this dataset, there is a significant opportunity for substantial 
improvements in infrastructure inspection practices, yielding better efficiency, 
accuracy, and safety. The adoption and use of this dataset have the potential to drive 
significant advancements in automated inspection techniques, ultimately enhancing 
the quality and reliability of infrastructure inspection practices. This can lead to 
more proactive and data-driven maintenance strategies, reducing the risk of 
unexpected failures, prolonging the useful life of assets, and ensuring the continued 
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safe and reliable operation of critical infrastructure systems. Machine learning 
applications are also substantial, with potential for the dataset to train algorithms 
in recognizing and predicting patterns of material wear and decay. 

However, while poised to revolutionize maintenance and safety protocols, the 
utility of the dataset is limited by its scope and the genesis of its creation. It may not 
fully reflect the complexities of corrosion processes encountered in the field. 
Consequently, algorithms and models that rely on this data may need further 
refinement and rigorous testing against real-world conditions to ensure their 
efficacy. Nonetheless, by exploiting this dataset, there is an opportunity for 
substantial improvements in infrastructure inspection practices, yielding better 
efficiency, accuracy, and safety. The adoption and use of this dataset have the 
potential to drive significant advancements in automated inspection techniques, 
ultimately enhancing the quality and reliability of infrastructure inspection 
practices. 
 
C. Data Description  

The initial dataset comprised 18 files that were utilized in the author's earlier 
research [20]; however, they were not published at that time. Those files correspond 
to two real-life sprinkler system layouts, which will be further discussed in the next 
section. The files are in the csv format and named after each scenario number. The 
dataset was expanded to include 1,300 instances. 

The folder structure of the dataset is shown in Figure 2. 

 
• map#: Instances generated based on a certain map, where # is the map 

number. 
• map#_ nwloc.csv: The coordination of the locations corresponds to the 

pipes on the map with a certain number, #. The data in each row are 
separated by commas (,) and include the following information: the x 
coordinates of the network location of the pipes and the y coordinates 
of the network location of the pipes. 

• map#/ 

o map#_ nwloc.csv 

o simple/ 

▪ instanceX/ 

o instanceX_defects.csv 

o instanceX_seeds.csv 

o average/ 

▪ instanceX/ 

o instanceX_defects.csv 

o instanceX_seeds.csv 

o advanced/ 

▪ instanceX/ 

o instanceX_defects.csv 

o instanceX_seeds.csv 

Figure 2. Folder structure of the dataset 
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• simple: Instances generated with a simple severity level in the defects 
(represented by number of defects). 

• average: Instances generated with an average severity level in the 
defects (represented by the number of defects). 

• Advanced: Instances generated with an advanced severity level in the 
defects (represented by the number of defects). 

• instanceX: A file that is labeled with a number ranging from 1 to 200.
  

• instanceX_defects.csv: Every row consists of the following data, which 
is separated by commas (,): the x coordinates of a defect location in the 
pipes and the y coordinates of a defect location in the pipes. 

• instanceX_seeds.csv: Each row contains the following data, delimited 
by commas (,): the x and y coordinates of the seed position that 
corresponds to the defect in the pipes. 

 
D. Methods  

The data were generated based on a template of a fire sprinkler system (RCP) 
using the Edrawmax tool. This template was used as an input map to mimic a 
realistic scenario as much as possible [21] [22]. The first input map is shown in 
Figure 3, and the second input map is shown in Figure 4. The maps were handled as 
an occupancy matrix after preprocessing (as per Figure 5 and Figure 6) to form a 
500 × 500 grid. 

 
Figure 3. Input map#1 of the pipe network. 
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Figure 4. Input map#2 of the pipe network. 

 
Figure 5. Input map#1 after preprocessing. 

 
Figure 6. Input map#2 after preprocessing. 
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The network locations served as inspection locations, and the defect locations 
were randomly distributed within these points to guarantee representative samples 
in all tests. Moreover, the defect locations were randomly created by employing 
uniformly distributed within a disc using the Polar Coordinates Method [23] to 
simulate a homogeneous spatial distribution within the given radius, where defects 
were concentrated and had a higher probability of being detected. The method 

involves two steps: First, a random angle θ is generated, uniformly distributed 

between 0 and 2π , using Equation(1) where 𝑈1 is a random number uniformly 
distributed between 0 and 1.  

 

𝜃 =  2𝜋 ∗ 𝑈1             (1) 

Second, a random radius 𝑟 is generated using Equation (2), where 𝑟𝑎𝑑𝑢𝑖𝑠 is the 
given radius of the disc and 𝑈2 is another random number uniformly distributed 
between 0 and 1. These polar coordinates (𝜃, 𝑟) are then converted to Cartesian 
coordinates (𝑥, 𝑦) using the equations (3) and (4). By employing Equations (1) 
through (4), we ensure that the points are uniformly distributed over the area of the 
disc. 

 

𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠 ∗  √𝑈2        (2) 

𝑥 = 𝑟 ∗ cos 𝜃         (3) 
𝑦 = 𝑟 ∗ sin 𝜃         (4) 

 
The scenarios were generated by varying the total defect count, incorporating 

both hotspots and the concentration of defects within a single hotspot. The mean 
corrosion rate of the steel samples was 1.53% [24], although another study reported 
a maximum corrosion rate of 17.5% [25].  

We chose a range of numbers, specifically, from 1% to 30%, from all the network 
locations to ensure that all potential severity levels were represented in the steel 
systems. The values corresponding to the various severity levels of the faults 
(indicated by the number of defects) can be found in Table 1.  

The visual representation of random instances of the dataset can be seen in 
Figure 7 and Figure 8. The coordinations depicted in this picture correlate to the 
seeds, defects, and network locations, represented by the colors red, blue, and 
yellow, respectively. 

 
Table 1. Values of the different severity levels of the defects. 

Severity 
Level 

Number of 
Hotspots 

Radius of Hotspot Number of Defects 

Simple 3 30 10 

Average 9 30 20 

Advanced 27 30 30 
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(a) (b) 

 

                           (c) 
Figure 7. Maps of different severity levels corresponding to the original map#1: 

(a) simple settings; (b) average settings; (c) advanced settings. 
 

  

(a) (b) 
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                                  (c) 

Figure 8. Maps of different severity levels corresponding to the original map#2: 
(a) simple settings; (b) average settings; (c) advanced settings. 

 
E. Discussion  

In our previous research, we developed a novel multi-UAV path planning method 
that leveraged a dataset unique for its comprehensive coverage of various 
operational scenarios and UAV behaviors [20]. This dataset was instrumental in 
enabling the UAVs to autonomously assume diverse roles and efficiently navigate 
through different zones, adapting their strategies to minimize the total distance 
traveled. By integrating established algorithms such as Ant Colony Optimization, 
Particles Swarm Optimization, and OTA strategy, and a baseline random method, 
adapted for multi-UAV contexts, we were able to rigorously compare their 
performances using our dataset. The outcomes were compelling; our method 
significantly outperformed all benchmarks, particularly in energy efficiency and 
defect detection speed.  

For instance, in basic severity settings, our approach enhanced mean detection 
times by 59% and increased operational speed threefold compared to the random 
algorithm. These improvements were even more pronounced with a scaling number 
of UAVs, demonstrating the dataset's critical role in optimizing and scaling UAV 
operations. The dataset not only supported the development of this innovative path 
planning technique but also proved essential in establishing the method's 
superiority across different severity levels and operational metrics. The clear and 
consistent performance advantages observed in our experiments underscore the 
dataset's value, marking it as a pivotal asset in pushing the boundaries of UAV path 
planning research. 

     To facilitate the reproducibility and further adaptation of our innovative 
approach, we have carefully designed the dataset using Python, a popular 
programming language known for its versatility and robust data handling 
capabilities. We provide a clear, step-by-step guide on how to access and utilize this 
dataset within Python scripts, aiming to integrate seamlessly into a variety of 
research workflows. To ensure ease of use and enhance compatibility across 
different systems, we recommend organizing the dataset within a data_instances 
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folder located in the working directory of your Python project, utilizing relative 
paths for all file references. 

The initial step in the data handling process involves loading the 
model_nwloc.csv file. This file is crucial as it contains the geographical coordinates 
of various locations within the network or pipeline system, each marked as a point. 
Following the data loading, our script employs a structured approach to iterate 
through the dataset. In each iteration, the script processes a segment of the dataset, 
carefully extracting and categorically storing data regarding the positions of seeds 
and defects. These positions are stored in designated arrays, allowing for systematic 
access and analysis. 

This structured data processing method not only facilitates an organized 
exploration and manipulation of the dataset but also ensures that researchers can 
easily adapt the dataset to fit their specific experimental setups. By providing these 
details, we aim to support other researchers in navigating the dataset effectively, 
enabling them to leverage it for enhancing the accuracy and efficiency of their own 
UAV path planning or similar studies. 

 
F. Conclusion 

The focus of this study is on the inspection of steel pipes, which are widely used 
in different industries. Corrosion has been identified as a major issue affecting the 
integrity of pipelines, particularly in the oil and gas sector. The presented dataset 
provides a valuable resource for developing algorithms and systems to automate the 
inspection process, specifically for detecting corrosion defects in steel pipes. 

By accurately representing various levels of corrosion derived from real-life pipe 
maps, this dataset offers researchers and practitioners the opportunity to advance 
automation technology in the field of infrastructure inspection. The dataset's 
inclusion of a range of inspection scenarios contributes to the development of 
efficient and accurate automated inspection systems. 
 
Data Availability Statement: The data presented in this study are openly available 
https://doi.org/10.5281/zenodo.10809418 
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