
The Indonesian Journal of Computer Science
www.ijcs.net	

Volume	13,	Issue	5,	October	2024	
https://doi.org/10.33022/ijcs.v13i5.4351

Attribution-ShareAlike	4.0	International	License	 7219		

	
Enhancing	the	Functionality	of	Management	Internship	and	Community	Service	
Through	Maintenance	of	Web	Application		
	
Ahmad	Faris	Hisyam	Maulana1,	Tien	Fabrianti	Kusumasari	2,	Ekky	Novriza	Alam3	
farishisyam@student.telkomuniversity.ac.id1,	tienkusumasari@telkomuniversity.ac.id2,	
ekkynovrizalam@telkomuniversity.ac.id3	
1,2,3	Information	System	Department,	School	of	Industrial	and	System	Engineering,	Telkom	University	
	
Article	Information	 Abstract	

Submitted	:		17	Aug	2024	
Reviewed	:	 30	Aug	2024	
Accepted	:	 30	Sep	2024	

Universities	play	a	crucial	role	in	developing	high-quality	human	resources	
through	 Internship	 and	 Community	 Service	 Programs,	 which	 prepare	
students	 with	 professional	 skills	 and	 relevant	 competencies.	 However,	
implementing	 these	 programs	 often	 faces	 issues	 such	 as	 inefficiencies	 in	
registration,	 documentation,	 and	 progress	 reporting.	 To	 address	 these	
challenges,	 a	 university	 department	 developed	 and	 implemented	 a	
comprehensive	web-based	application	system.	This	research	aims	to	improve	
and	 refine	 the	 application	 through	 software	 maintenance	 processes,	
employing	an	iterative	incremental	method	with	phases	including	planning,	
requirements,	analysis	and	design,	 implementation,	testing,	and	evaluation,	
conducted	 repeatedly	 according	 to	 the	 prioritized	 order	 of	 feature	
improvements.	 	After	 being	 maintained,	 the	 application	 is	 tested	 through	
functional	testing	using	black	box	techniques	and	automation	tools.	Results	
indicate	 that	 the	maintenance	process	successfully	ensured	 the	application	
functions	 according	 to	 established	 scenarios	 and	 requirements,	 thereby	
enhancing	 support	 for	 administrative	 processes	 of	 internships	 and	
community	 service	 programs	 and	 overcomes	 previous	 management	
challenges.	

Keywords		

Software	Maintenance,	
Iterative	Incremental,	
Requirements	
Prioritization,	Testing.	
	
	

	

file:///C:/Users/ASUS/Downloads/www.ijcs.net
https://doi.org/10.33022/ijcs.v13i5.4351
https://creativecommons.org/licenses/by-sa/4.0/

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7220	

A. Introduction	
Universities	play	a	crucial	role	in	developing	human	resources	and	enhancing	

national	 competitiveness	 [1].	 Universities	 strive	 to	 produce	 quality	 graduates	 by	
enhancing	 learning	 processes	 and	 implementing	 internship	 programs	 [2].	 These	
programs	are	designed	to	develop	both	soft	and	hard	skills,	ensuring	graduates	can	
perform	well	in	professional	environments.	

However,	several	 issues	are	commonly	encountered	during	the	execution	of	
internship	 programs.	 Inefficient	 registration	 and	 documentation	 processes	 often	
lead	 to	 delays	 and	 data	 management	 errors	 [3].	 Manual	 and	 unscheduled	
monitoring	results	in	progress	reporting	delays	and	data	inaccuracies	[4].	Utilizing	
websites	 for	 internship	 management	 can	 improve	 information	 dissemination,	
registration,	and	progress	monitoring,	ensuring	data	accuracy	and	accessibility	[5].	

To	address	these	issues,	a	university	department	developed	and	implemented	
a	 comprehensive	web-based	application	system	 to	organize	 relevant	 information	
and	 data	 from	 students,	 academic	 mentors,	 and	 field	 mentors	 involved	 in	 the	
programs.	As	a	new	system,	it	contains	initial	development	bugs	and	imperfections.	
Therefore,	software	maintenance	is	essential	to	prevent	potential	issues	and	ensure	
efficient	software	operation	[6].	Effective	software	maintenance	helps	in	identifying	
and	 analyzing	 opportunities	 for	 functionality	 improvement.	 It	 pinpoints	
components	that	hinder	functionality	and	enhances	the	overall	system's	capabilities	
[7].	 Types	 of	 software	 maintenance	 include	 corrective,	 adaptive,	 perfective,	 and	
preventive	maintenance	[8].	

In	the	context	of	web-based	applications,	which	involve	client-side	and	server-
side	 components	 [9],	 a	 structured	 approach	 to	 development	 and	maintenance	 is	
required.	 One	 such	 approach	 is	 the	 Model-View-Controller	 (MVC)	 architecture	
pattern,	which	separates	the	application	into	three	interconnected	components:	the	
model	(data	logic),	the	view	(user	interface),	and	the	controller	(business	logic)	[10].	
This	separation	ensures	that	data	handling,	user	interaction,	and	business	processes	
are	managed	efficiently	[11].	Ensuring	that	all	components	function	correctly	and	
efficiently	through	regular	maintenance	is	crucial.	

Additionally,	 effective	 software	 maintenance	 also	 involves	 prioritizing	
software	requirements.	Prioritization	helps	ensure	 that	 the	most	critical	 features	
are	addressed	first	and	enhances	customer	satisfaction	[12].	This	process	varies	by	
organizational	perspective	and	 is	 influenced	by	 factors	such	as	 importance,	 time,	
risk,	 cost,	 value,	 penalty,	 and	 precedence	 [13].	 By	 prioritizing	 requirements,	
development	 teams	can	better	allocate	 resources	and	 improve	project	outcomes,	
ultimately	 supporting	 the	 ongoing	maintenance	 and	 enhancement	 of	 the	 system	
[14].	

The	purpose	of	 this	research	 is	 to	enhance	the	 functionality	of	a	web-based	
application	 for	 managing	 internships	 and	 community	 service	 programs	 through	
software	maintenance	as	outlined	in	the	Develop/Build	of	the	Information	System	
Research	Framework,	as	depicted	in	Figure	1.	The	expected	outcomes	include	more	
efficient	administrative	processes	and	enhanced	service	quality	in	these	programs,	
aligning	with	the	environment's	specific	needs.	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7221	

	
Figure	1.	Information	System	Research	Framework	[15]	

	
Furthermore,	the	contribution	of	this	research	lies	in	its	detailed	approach	to	

maintaining	 a	 web-based	 application	 for	 internship	 and	 community	 service	
management.	 By	 leveraging	 Applicable	 Knowledge,	 as	 depicted	 in	 Figure	 1,	 the	
research	 employs	 an	 iterative	 incremental	method	 for	 continuous	 improvement,	
prioritizes	requirements	to	address	key	issues,	and	integrates	various	maintenance	
strategies,	such	as	corrective,	adaptive,	perfective,	and	preventive.	Hopefully,	 this	
study	 will	 not	 only	 enhance	 the	 existing	 system	 but	 also	 serve	 as	 a	 valuable	
reference	 for	 other	 institutions	 looking	 to	 improve	 similar	 systems	 while	
contributing	to	both	practical	and	theoretical	knowledge	in	the	field	of	web-based	
application	maintenance.	

	
B. Research	Method	

	
Figure	2.	Iterative	Incremental	

	
This	 research	 employs	 the	 Iterative	 Incremental	 model,	 a	 software	

development	model	 that	builds	 the	product	gradually	 through	repeated	cycles	of	
planning,	requirements,	analysis	&	design,	implementation,	testing,	and	evaluation.	
This	 approach	 ensures	 that	 each	 iteration	 extends	 the	product's	 functionality	 by	
adding	 new	 features	 and	 refining	 existing	 ones.	 By	 constructing	 the	 product	
incrementally,	 the	 development	 process	 allows	 for	 early	 problem	 identification,	
quick	corrections,	and	visible	results	throughout	the	development	phases	[16].	This	
method	 offers	 adaptability	 for	 handling	 requirements	 change	 with	 continuous	
communication	for	success	[17].	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7222	

The	 research	 begins	 with	 the	 planning	 phase.	 This	 involves	 analyzing	 the	
business	processes	and	the	existing	system.	Analyzing	business	processes	is	needed	
to	understand	the	workflow	and	interactions	within	the	organization.	Analyzing	the	
existing	system	involves	documenting	issues	that	need	to	be	fixed	or	enhanced.	This	
analysis	is	necessary	for	defining	the	elements	that	require	maintenance.	

Following	 the	 planning	 phase,	 the	 requirements	 phase	 involves	 gathering	
detailed	 user	 and	 system	 requirements.	 This	 phase	 includes	 maintenance	
classification,	 requirements	 gap	 analysis,	 and	 requirements	 prioritization.	 The	
results	 from	 the	 analysis	 existing	 system	 and	 issues	 documentation	 are	 used	 to	
determine	 the	maintenance	 classification	 for	 each	 identified	 issue.	 Subsequently,	
the	details	from	the	maintenance	classification	are	prioritized	for	improvement	or	
enhancement	work	using	requirements	prioritization	techniques.	

The	maintenance	classification	involves	categorizing	the	identified	issues	into	
different	 types	of	maintenance.	This	 includes	corrective	maintenance	 to	 fix	 faults	
after	the	software	is	operational,	adaptive	maintenance	to	keep	the	software	usable	
in	 a	 changing	 environment,	 perfective	 maintenance	 to	 improve	 performance	 or	
maintainability,	 and	 preventive	 maintenance	 to	 detect	 and	 correct	 latent	 faults	
before	they	occur	[7].	The	following	bar	chart	in	Figure	3	illustrates	the	classification	
of	maintenance	tasks	by	different	roles	involved	in	the	system.	

	

	
Figure	3.	Maintenance	Classifications	

	
	
	
	
	

	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7223	

Factors	 for	 software	 requirement	 prioritization	 that	 serve	 as	 a	 basis	 for	
determining	priorities	have	given	rise	to	techniques	used	in	prioritizing	needs	from	
multiple	perspectives.	One	such	technique	is	Numerical	Assignment,	which	divides	
priority	 needs	 into	 a	 numerical	 scale.	 An	 example	 is	 using	 a	 scale	 of	 1	 to	 5	 to	
represent	the	significance	of	a	requirement	[11].	The	scatter	plot	in	Figure	4	shows	
the	priority	 scores	assigned	 to	various	maintenance	 codes.	The	assigned	priority	
scores	indicate	that	1	means	top	priority,	and	5	signifies	lowest	priority.	The	higher	
the	priority,	the	sooner	the	issue	will	be	addressed.	

	

	
Figure	4.	Requirement	Priority	Scores	

	
In	the	analysis	and	design	phase	involves	identifying	system	components	and	

designing	the	system	to	be	implemented.	System	diagrams	are	created	using	UML	
(Unified	Modeling	Language)	to	visualize	the	system.	Use	case	diagrams	illustrate	
the	primary	functions	of	a	system	and	show	how	external	users	interact	with	these	
internal	functions	[18].	Use	case	diagrams	assist	in	illustrating	how	users	interact	
with	a	system's	features	to	accomplish	their	objectives	and	clarify	the	distinctions	
between	various	system	behaviors	and	the	perspectives	of	different	stakeholders	
[19].	 The	 following	 use	 case	 diagram	 in	 Figure	 5	 provides	 an	 overview	 of	 the	
interactions	within	the	web	application	system,	highlighting	the	roles	of	different	
users	such	as	Admin,	Student,	Academic	Mentor,	and	Field	Mentor.	
	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7224	

	
Figure	5.	Use	Case	Diagram	

	
During	the	Implementation	stage,	maintenance	was	carried	out	for	each	type	

of	 task	 according	 to	 the	 assigned	 priority	 score	 order,	 while	 the	 Testing	 stage	
ensured	that	the	developed	system	met	the	requirements	through	black	box	testing,	
which	verified	the	system's	functionality.	

	
C. Result	and	Discussion	

The	web	application	was	 initially	built	 using	 the	Laravel	 framework,	which	
follows	 the	MVC	 pattern	 to	 separate	 business	 logic	 from	 presentation	 [20].	 The	
maintained	function	of	the	MVC	architecture	is	depicted	in	Figure	6,	highlighting	the	
components	 that	 have	 undergone	maintenance.	 The	View,	 Controller,	 and	Model	
sections	represent	the	list	of	key	elements	that	have	been	maintained	to	ensure	the	
system's	proper	functionality	and	efficiency.	
	

	
Figure	6.	Maintained	MVC	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7225	

	
Additionally,	 In	Figure	7,	 the	yellow-highlighted	sections	within	 the	database	

indicate	the	areas	that	were	corrected.	These	corrections	involved	adding	attributes	
and	 changing	 data	 types	 within	 the	 database	 to	 ensure	 more	 accurate	 data	
management.		

	

	
Figure	7.	Maintained	Database	Structure	

	
To	provide	a	clearer	understanding	of	the	maintenance	activities	performed,	

Table	1	presents	a	detailed	breakdown	of	each	task	during	the	research.	This	table	
lists	the	specific	maintenance	codes	and	their	corresponding	descriptions,	offering	
insight	 into	 how	each	 implementation	 of	maintenance	 contributed	 to	 the	 overall	
improvement	functionality	of	the	system.	
	

Table	1.	Detail	of	Each	Maintenance	
No	 Maintenance	Code	 Description	
1	 A01	 Fixes	access	to	the	assessment	guideline	
2	 A02	 Fixes	access	to	the	assessment	interval	guideline	
3	 A03	 Fixes	access	to	the	assessment	score	
4	 A04,	A05,	A11		 Prevents	schedule	confusion	due	to	date	input	errors	
5	 A06,	A09	 Prevents	incomplete	data	input	for	create	assessments	
6	 A07,	A10	 Prevents	incomplete	data	input	for	create	intervals	
7	 A08	 Prevents	incomplete	data	input	for	create	study	programs	
8	 A12	 Prevents	student	data	addition	errors	
9	 A13	 Fixes	inability	to	view	mentor	assessment	details	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7226	

10	 A14,	A15	 Fixes	inaccuracies	in	student	assessment	unweighted	scores	
11	 A16	 Fixes	errors	in	updating	the	sent	email	column	
12	 A17	 Enhances	access	to	assessment	data	
13	 A18	 Enhances	access	to	external	topic	data	
14	 A19,	S10,	FM06	 Prevents	user	misunderstanding	of	date	interpretation	
15	 A20,	S11,	FM08	 Reduces	navigation	confusion	for	performing	operations	
16	 A21,	S12,	AM05,	FM09	 Reduces	navigation	confusion	for	menu	selection	
17	 A22	 Prevents	user	misunderstanding	of	text	interpretation	
18	 A23	 Prevents	navigation	confusion	after	menu	selection	
19	 A24.	AM06,	FM11	 Prevents	user	discomfort	when	accessing	pages	
20	 A25,	S13,	AM07,	FM12	 Prevents	user	confusion	about	system	identity	
21	 S01,	AM02,	FM02	 Prevents	unauthorized	access	to	sensitive	data	
22	 S02	 Prevents	sensitive	data	leaks	
23	 S03	 Fixes	the	ability	for	students	to	apply	for	internal	topics	
24	 S04	 Prevents	incomplete	data	input	
25	 S05,	S06	 Prevents	file	uploads	that	do	not	match	the	format	
26	 S07	 Prevents	activity	logging	date	errors	
27	 S08	 Prevents	invalid	external	topic	date	periods	
28	 S09	 Enhances	access	to	activity	logs	
29	 AM01	 Fixes	access	to	the	assessment	score	
30	 AM03	 Fixes	inaccuracies	in	student	assessment	values	
31	 AM04	 Enhances	access	to	assessment	data	
32	 FM01	 Fixes	access	to	the	assessment	score	
33	 FM03,	FM04	 Prevents	invalid	data	input	for	date	
34	 FM05	 Fixes	inaccuracies	in	student	assessment	scores	
35	 FM07	 Enhances	access	to	assessment	data	
36	 FM10	 Prevents	user	misunderstanding	of	text	interpretation	

	
It	 is	 essential	 to	 outline	 the	 specific	 application	 features	 impacted	 by	 the	

maintenance	 activities	 to	 provide	 a	 more	 comprehensive	 view	 of	 the	 system	
enhancements.	After	describing	each	maintenance	task,	it	is	important	to	highlight	
the	features	that	were	directly	affected	by	these	tasks.	This	approach	helps	illustrate	
how	 the	 targeted	 maintenance	 efforts	 have	 contributed	 to	 improving	 the	
functionality	 of	 the	 system,	 ensuring	 it	 effectively	 meets	 user	 needs.	 Table	 2	
summarizes	the	features	impacted	by	each	maintenance	activity.	

	
Table	2.	Features	Impacted	

No	 Maintenance	Code	 Features	Impacted	
1	 A01	 View	Assessment	Guidelines	
2	 A02	 View	Assessment	Interval	Guidelines	
3	 A03	 View	Assessment	Score	
4	 A04,	A05,	A11		 Create	Period	Data	
5	 A06,	A09	 Create	Assessment	Guidelines	
6	 A07,	A10	 Create	Assessment	Interval	Guidelines	
7	 A08	 Create	Study	Program	Data	
8	 A12	 Create	Student	Data	
9	 A13	 View	Field	Mentor	Assessment	Details	
10	 A14,	A15	 View	Assessment	Reports	
11	 A16	 View	External	Topic	Details	
12	 A17	 View	Assessment	Report	Data	
13	 A18	 View	External	Internship	Data	
14	 A19,	S10,	FM06	 Date	Display	in	Table	
15	 A20,	S11,	FM08	 Show,	Edit,	and	Delete	Actions	in	Table	
16	 A21,	S12,	AM05,	FM09	 View	Sidebar	Menu	
17	 A22	 Rubrics	Display	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7227	

18	 A23	 Sidebar	Display	
19	 A24.	AM06,	FM11	 Footer	Display	
20	 A25,	S13,	AM07,	FM12	 Title	Name	
21	 S01,	AM02,	FM02	 Master	Data	
22	 S02	 Export	External	Internship	Data	
23	 S03	 Apply	Internal	Topic	
24	 S04	 Internal	Topic	Submission	
25	 S05,	S06	 Internal	and	External	Topic	Submission	
26	 S07	 Create	Activity	Log	
27	 S08	 Create	External	Topic	Data	
28	 S09	 View	Activity	Logs	
29	 AM01	 Academic	Mentor	Assessment	Score	
30	 AM03	 Calculation	of	Academic	Mentor	Assessment	
31	 AM04	 View	Academic	Mentor	Assessment	
32	 FM01	 Field	Mentor	Assessment	Score	
33	 FM03,	FM04	 Create	Internal	Topic	
34	 FM05	 Calculation	of	Field	Mentor	Assessment	
35	 FM07	 View	Field	Mentor	Assessment	
36	 FM10	 Display	of	Internal	Topic	Submission	Details		

	
After	 implementing	 the	 maintenance,	 the	 application	 undergoes	 testing	 to	

ensure	it	meets	all	requirements	and	achieves	high-quality	assurance	[21].	Among	
various	testing	techniques,	black	box	testing	focuses	on	the	functional	specifications	
of	 software	programs	 [22],	which	 is	 a	 valuable	 approach	 for	 improving	 software	
quality	and	user	experience	 [23].	To	 support	 this,	Laravel	Dusk	as	an	automated	
testing	tool,	is	used	to	enhance	quality,	reliability,	and	performance	by	optimizing	
time	efficiency,	boosting	accuracy,	and	allowing	for	repeatable	testing	[24].	Table	3	
summarizes	 the	 testing	 results	 for	 each	maintenance	 case	with	 the	maintenance	
code	related	to	the	case.	

	
Table	3.	Testing	

No	 Case	 Maintenance	Code	Related		 Status	
1	 Manage	Students	Data	 A12,	A20,	A21,	A25	 Pass	
2	 Manage	Mentors	Data	 A20,	A21,	A25	 Pass	
3	 Manage	Study	Programs	Data	 A08,	A12,	A20,	A21,	A25	 Pass	
4	 Manage	Periods	Data	 A04,	A05,	A11,	A19,	A20,	A21,	A23,	A25	 Pass	
5	 Manage	Role	Access	 A19,	A20,	A21,	A25	 Pass	
6	 Manage	External	Topics	 A18,	A19,	A20,	A21,	A25	 Pass	
7	 Verify	External	Topic	Submissions	 A18,	A19,	A20,	A21,	A25	 Pass	
8	 Manage	Assessment	Guidelines	 A01,	A06,	A09,	A20,	A21,	A22,	A24,	A25	 Pass	
9	 Manage	Assessment	Intervals	Guideline	 A01,	A02,	A07,	A10,	A20,	A21,	A24,	A25		 Pass	
10	 View	Reports	of	Assessment	Score		 A03,	A13,	A14,	A15,	A17,	A21,	A24,	A25	 Pass	
11	 External	Topic	Submission	 S05,	S06,	S08,	S11,	S12,	S13		 Pass	
12	 View	External	Topic	Submission	Logs	 S02,	S10,	S11,	S12,	S13	 Pass	
13	 Apply	Internal	Topic	 S03,	S04,	S05,	S06,	S10,	S11,	S12,	S13	 Pass	
14	 View	Internal	Topic	Applied	Logs	 S10,	S11,	S12,	S13	 Pass	
15	 Add	Activity	Log	 S07,	S09,	S10,	S11,	S12,	S13	 Pass	
16	 Manage	Internal	Topics	 FM03,	FM04,	FM06,	FM08,	FM09,	FM12	 Pass	
17	 Verify	Applied	Internal	Topic	 FM06,	FM08,	FM09,	FM10,	FM12	 Pass	
18	 Verify	Activity	Log	 FM06,	FM08,	FM09,	FM12	 Pass	
19	 Giving	Scores	(Field	Mentor)	 FM01,	FM05,	FM07,	FM09,	FM11,	FM12	 Pass	
20	 Giving	Scores	(Academic	Mentor)	 AM01,	AM03,	AM04,	AM05,	AM06,	AM07	 Pass	
	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7228	

The	testing	of	the	application	revealed	that	all	20	test	cases	passed	successfully,	
confirming	 that	 the	 maintained	 application	 performed	 well	 according	 to	 the	
established	scenarios	and	requirements.	Each	test	case	validated	key	aspects	such	
as	data	management	and	every	activity	that	related	to	the	actors	involved,	ensuring	
optimal	 system	 functionality.	 Laravel	 Dusk	 facilitated	 comprehensive	 automated	
testing,	 which	 verified	 that	 the	 system	 meets	 all	 criteria	 and	 maintains	 high	
standards	 of	 quality.	 These	 results	 demonstrate	 the	 effectiveness	 of	 the	
maintenance	strategies	and	affirm	the	system's	readiness	for	continued	use.	

	
D. Conclusion	

This	 research	 successfully	 enhanced	 the	 functionality	 of	 a	 web-based	
application	 for	 managing	 internship	 and	 community	 service	 programs.	 Through	
comprehensive	 software	 maintenance,	 key	 issues	 such	 as	 inefficiencies	 in	
registration,	 documentation,	 and	 progress	 reporting	 were	 addressed.	 These	
enhancements	 streamlined	 administrative	 tasks,	 improving	 the	 efficiency	 and	
effectiveness	of	managing	internships	and	community	service	activities.	

Software	maintenance	was	carried	out	 for	each	 type	of	 task	according	 to	 the	
assigned	priority	score	order.	These	efforts	addressed	issues	for	key	system	actors,	
including	 Admin,	 Student,	 Academic	 Mentor,	 and	 Field	 Mentor.	 Maintenance	
targeted	the	application's	components	built	using	the	Laravel	MVC	framework,	with	
specific	modifications	made	to	the	View,	Controller,	and	Model	elements,	as	well	as	
adjustments	to	the	underlying	database	structure	to	optimize	system	functionality	
and	ensure	more	accurate	data	management.	Corrective	Maintenance	resolved	12	
issues	affecting	Admin,	4	issues	for	Students,	3	for	Academic	Mentors,	and	4	for	Field	
Mentors.	Perfective	Maintenance	addressed	6	issues	for	Admin,	4	for	Students,	3	for	
Academic	 Mentors,	 and	 5	 for	 Field	 Mentors.	 Preventive	 Maintenance	 handled	 7	
issues	for	Admin,	5	for	Students,	1	for	Academic	Mentors,	and	3	for	Field	Mentors.	

To	validate	the	effectiveness	of	these	maintenance	activities,	rigorous	black	box	
testing	was	conducted	using	the	Laravel	Dusk	automation	tool.	The	testing	validated	
20	cases	of	testing	functionality	in	the	system,	confirming	that	the	application	met	
the	 established	 scenarios	 and	 requirements	 from	 the	user's	 perspective,	 thereby	
demonstrating	the	success	of	the	maintenance	efforts.	

	
E. References	
[1]	 M.	Arifin,	 “Strategi	Manajemen	Perubahan	dalam	Meningkatkan	Disiplin	 di	

Perguruan	Tinggi,”	EduTech:	Jurnal	Ilmu	Pendidikan	dan	Ilmu	Sosial,	vol.	3,	no.	
1,	2017.	

[2]	 C.	 Suharyanti,	 “Pengaruh	 Proses	 Pembelajaran	 dan	 Program	Kerja	 Praktek	
Terhadap	 Pengembangan	 Soft	 Skills	 Mahasiswa,”	 Jurnal	 Pendidikan	
Administrasi	Perkantoran	Universitas	Sebelas	Maret,	vol.	4,	no.	1,	p.	118291,	
2015.	

[3]	 A.	K.	Rasyid,	N.	P.	Dewi,	B.	Said,	and	U.	Ubaidi,	“Sistem	Informasi	Manajemen	
Kerja	 Praktek	 dan	 Tugas	 Akhir	 di	 Prodi	 Informatika	 Universitas	 Madura	
Berbasis	 Web,”	 Insand	 Comtech:	 Information	 Science	 and	 Computer	
Technology	Journal,	vol.	7,	no.	2,	2023.	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7229	

[4]	 N.	 Nurhasanah,	 S.	 D.	 Budiwati,	 and	 T.	 D.	 Tambunan,	 “Aplikasi	 Monitoring	
Peserta	Kerja	Praktek	Berbasis	Web	di	PT.	Industri	Telekomunikasi	Indonesia	
(PERSERO),”	eProceedings	of	Applied	Science,	vol.	3,	no.	2,	2017.	

[5]	 I.	Ruslianto	and	S.	Al	Rasyid,	“Aplikasi	Monitoring	Kerja	Praktik	Mahasiswa	
Program	Studi	Sistem	Komputer,”	SEMIRATA	2015,	vol.	5,	no.	1.	

[6]	 Mohammed	AL	Mashhadani	and	Dr.	Prof.	Ali	Yazici,	“Software	Maintenance	
Process	Towards	Cloud	Environment:	A	Review	Study,”	International	Journal	
For	 Multidisciplinary	 Research,	 vol.	 4,	 no.	 6,	 Dec.	 2022,	 doi:	
10.36948/ijfmr.2022.v04i06.1184.	

[7]	 C.-P.	 Bezemer	 and	 A.	 Zaidman,	 “Performance	 Optimization	 of	 Deployed	
Software-as-a-Service	Applications,”	Journal	of	Systems	and	Software,	vol.	87,	
pp.	87–103,	2014,	doi:	https://doi.org/10.1016/j.jss.2013.09.013.	

[8]	 R.	Pressman	and	B.	Maxim,	Software	Engineering:	A	Practitioner’s	Approach	
9th	Edition.	2019.	

[9]	 N.	 R.	 Dissanayake	 and	 G.	 Dias,	 “Web-Based	 Applications:	 Extending	 the	
General	 Perspective	 of	 the	 Service	 of	 Web,”	 10th	 International	 Research	
Conference	of	KDU	(KDU-IRC	2017),	2017.	

[10]	 I.	H.	Sarker	and	K.	Apu,	“Mvc	architecture	driven	design	and	implementation	
of	java	framework	for	developing	desktop	application,”	International	Journal	
of	Hybrid	Information	Technology,	vol.	7,	no.	5,	pp.	317–322,	2014.	

[11]	 P.	Ouyang,	W.	Cao,	M.	Wu,	C.	Gan,	and	F.	Wang,	“Design	of	Intelligent	Drilling	
System	Software	Framework	and	Data	Architecture	Based	on	MVC	Pattern,”	
in	2019	Chinese	Control	Conference	(CCC),	IEEE,	2019,	pp.	7075–7078.	

[12]	 A.	 Hudaib,	 R.	 Masadeh,	 M.	 H.	 Qasem,	 and	 A.	 Alzaqebah,	 “Requirements	
Prioritization	Techniques	Comparison,”	Mod	Appl	Sci,	vol.	12,	no.	2,	p.	62,	Jan.	
2018,	doi:	10.5539/mas.v12n2p62.	

[13]	 I.	Olaronke,	I.	Rhoda,	and	G.	Ishaya,	“An	Appraisal	of	Software	Requirement	
Prioritization	Techniques,”	Asian	Journal	of	Research	in	Computer	Science,	pp.	
1–16,	Apr.	2018,	doi:	10.9734/ajrcos/2018/v1i124717.	

[14]	 P.	 Berander	 and	A.	 Andrews,	 “Requirements	 Prioritization,”	 in	Engineering	
and	Managing	Software	Requirements,	A.	Aurum	and	C.	Wohlin,	Eds.,	Berlin,	
Heidelberg:	Springer	Berlin	Heidelberg,	2005,	pp.	69–94.	doi:	10.1007/3-540-
28244-0_4.	

[15]	 A.	R.	Hevner,	S.	T.	March,	J.	Park,	and	S.	Ram,	“Design	Science	in	Information	
Systems	Research,”	MIS	quarterly,	pp.	75–105,	2004.	

[16]	 A.	P.	Izzulhaq,	R.	Fauzi,	S.	Suakanto,	A.	K.	H.	Disina,	H.	Mahdin,	and	I.	A.	Salihu,	
“Development	of	User	Management	in	Ihya	Digital	Ecosystem	Using	Iterative	
Incremental	Method,”	in	2022	International	Conference	Advancement	in	Data	
Science,	 E-learning	 and	 Information	 Systems	 (ICADEIS),	 2022,	 pp.	 1–6.	 doi:	
10.1109/ICADEIS56544.2022.10037391.	

[17]	 S.-T.	 Lai,	 “A	 Maintainability	 Enhancement	 Procedure	 for	 Reducing	 Agile	
Software	Development	Risk,”	International	Journal	of	Software	Engineering	&	
Applications,	vol.	6,	no.	4,	pp.	29–40,	Jul.	2015,	doi:	10.5121/ijsea.2015.6403.	

[18]	 E.	R.	Aquino,	P.	de	Saqui-Sannes,	 and	R.	A.	Vingerhoeds,	 “A	Methodological	
Assistant	 for	UML	and	SysML	Use	Case	Diagrams,”	2021,	pp.	298–322.	doi:	
10.1007/978-3-030-67445-8_13.	

https://doi.org/10.33022/ijcs.v13i5.4351

	 The	Indonesian	Journal	of	Computer	Science	

https://doi.org/10.33022/ijcs.v13i5.4351	 	 7230	

[19]	 O.	Kautz,	B.	Rumpe,	and	L.	Wachtmeister,	“Semantic	Differencing	of	Use	Case	
Diagrams.,”	The	Journal	of	Object	Technology,	vol.	21,	no.	3,	p.	3:1,	2022,	doi:	
10.5381/jot.2022.21.3.a5.	

[20]	 D.	 Jain,	 Ultimate	 Laravel	 for	 Modern	 Web	 Development:	 Build	 Robust	 and	
Interactive	 Enterprise-Grade	Web	 Apps	 using	 Laravel’s	MVC,	 Authentication,	
APIs,	and	Cloud	Deployment	(English	Edition).	Orange	Education	Pvt	Limited,	
2024.	

[21]	 S.	 Joshi	 and	 I.	Kumari,	 “Analyses	of	 Software	Testing	Approaches,”	 in	2022	
International	 Interdisciplinary	 Humanitarian	 Conference	 for	 Sustainability	
(IIHC),	 IEEE,	 Nov.	 2022,	 pp.	 1276–1281.	 doi:	
10.1109/IIHC55949.2022.10060147.	

[22]	 T.	 Hidayat	 and	M.	Muttaqin,	 “Pengujian	 Sistem	 Informasi	 Pendaftaran	 dan	
Pembayaran	Wisuda	Online	menggunakan	Black	Box	Testing	dengan	Metode	
Equivalence	 Partitioning	 dan	 Boundary	 Value	 Analysis,”	 2018.	 [Online].	
Available:	www.ccssenet.org/cis	

[23]	 F.	 C.	 Ningrum,	 D.	 Suherman,	 S.	 Aryanti,	 H.	 A.	 Prasetya,	 and	 A.	 Saifudin,	
“Pengujian	 Black	 Box	 pada	 Aplikasi	 Sistem	 Seleksi	 Sales	 Terbaik	
Menggunakan	Teknik	Equivalence	Partitions,”	Jurnal	Informatika	Universitas	
Pamulang,	 vol.	 4,	 no.	 4,	 p.	 125,	 Dec.	 2019,	 doi:	
10.32493/informatika.v4i4.3782.	

[24]	 S.	K.	Alferidah	and	S.	Ahmed,	 “Automated	Software	Testing	Tools,”	 in	2020	
International	 Conference	 on	 Computing	 and	 Information	 Technology	 (ICCIT-
1441),	 IEEE,	 Sep.	 2020,	 pp.	 1–4.	 doi:	 10.1109/ICCIT-
144147971.2020.9213735.	

		
	

https://doi.org/10.33022/ijcs.v13i5.4351

