
The Indonesian Journal of Computer Science
www.ijcs.net

Volume 13, Issue 4, August 2024
https://doi.org/10.33022/ijcs.v13i4.4099

Attribution-ShareAlike 4.0 International License 5089

Implementation of Cloud Native Architecture in PT. XYZ's Accounting System

Tedy Tri Saputro1, Rizal Fathoni Aji2
tedy@saputro.dev1, rizal@cs.ui.ac.id2
1,2 Faculty of Computer Science, Universitas Indonesia, Jakarta, Indonesia

Article Information Abstract

Received : 7 Jun 2024
Reviewed : 14 Jun 2024
Accepted : 1 Jul 2024

Microservices are commonly used as an architectural style in SaaS
applications. Compared to monolithic architectures, they offer various
advantages, such as fault tolerance mechanisms, scalability, and ease of
customization. However, microservice architectures cannot stand alone. This
is because microservices are based on distributed services and data
isolation, and such systems will rely heavily on supporting infrastructure,
Therefore, a cloud-native architecture is necessary, taking a philosophical
approach to building applications that can fully leverage the cloud-native
application model, with the microservice architecture style as one of the key
components. This study delves into the integration of cloud-native
architecture into the accounting system application of PT XYZ, an IT
company specializing in consulting and software integration. The researcher
examined the five elements of cloud-native architecture, evaluated them
using the twelve-factor app, and identified areas for improvement for PT
XYZ.

Keywords

cloud-native,
microservice, software
as a service

www.ijcs.net
https://doi.org/10.33022/ijcs.v13i4.4099
https://creativecommons.org/licenses/by-sa/4.0/

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5090

A. Introduction
Despite the economic pressures stemming from inflation and uncertain

macroeconomic conditions in 2023, the projected growth of cloud services in
Indonesia presents a promising future. End-user companies are anticipated to
spend $679 billion on cloud services in 2024, with expenditures expected to
surpass $1 trillion by 2027. This growth not only signifies a significant market
potential but also a shift in the technological landscape. By 2028, cloud computing
is expected to evolve from a technological disruptor to a critical component for
sustaining corporate competitiveness, offering a wealth of opportunities for
stakeholders [1].

Indonesia, with its promising landscape, is set to become a hub for cloud
computing, offering significant potential for growth. As per Ravenry's analysis [2],
Cloud services in Indonesia are on the cusp of a significant growth phase, with a
projected increase of $400 million in 2023 and an annual growth rate of 31.9%.
This surge is propelled by the increasing number of companies embracing cloud
computing, a trend that is expected to drive software spending up by 33% to $900
million in 2023. The landscape is further enriched by the establishment of data
centers by world-class public cloud providers like Google Cloud Platform, Amazon
Web Services, Microsoft Azure, and Alibaba Cloud, who often collaborate with local
companies to promote their services. This promising scenario sets the stage for PT
XYZ to seize the business opportunities that lie ahead.

PT XYZ, a local company and an official partner of a leading cloud provider, is
making a strategic move. With ten years of experience in IT consulting and
software integration, PT XYZ has a product, the Accounting System application,
used by several client companies with customization according to client needs. In
2023, the company embarked on a plan to develop accounting system products to
be sold to more clients using the Software as a Service (SaaS) scheme. This
forward-thinking approach not only aligns with the industry's shift towards cloud-
based services but also positions PT XYZ for a more scalable and sustainable
future. Under the SaaS model, clients will only pay monthly service fees, while PT
XYZ will bear operational costs, maintenance, and infrastructure, a win-win
situation for both parties

The current accounting system of PT XYZ, while functional, has its limitations.
It consists of two separate applications: a backend and a frontend, both using a
monolithic architecture. Each application is deployed on a cloud service using a
single instance. If one of the applications fails, such as due to overload, the entire
system becomes inaccessible. The system remains down until the operations team
manually restarts it. Additionally, the accounting system's scaling process is done
manually based on client requests. These limitations underscore the need for a
more robust and flexible solution, which PT XYZ is addressing with its transition to
the SaaS model.

In response to the product development plans and identified limitations in
the existing accounting system, PT XYZ shifted from a monolithic architecture to a
microservice architecture. Microservice architecture is a widely used style in SaaS
and boasts numerous advantages, such as enhanced fault tolerance mechanisms
due to its independent nature [3][4]. It also facilitates easier customization and
better scalability than monolithic architectures [5][6][7].

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5091

Despite its benefits, developing applications using microservice architecture
is more challenging than other architectures. This is because microservice
architecture is still a relatively new area of research [8]. Similarly, in the practical
world, as illustrated by the Stack Overflow question and answer forum, fewer
experts have mastered this field than other topics [3]. For instance, determining
the optimal service size is crucial for ensuring the microservice application's
Quality of Service (QoS) [8]. Another issue is related to deploying microservice
architectures and the mechanisms used to migrate from legacy applications.
[9][10][11][12].

One challenge in microservice architecture is designing the cloud
infrastructure to support the application. The effectiveness of microservices is
closely linked to the underlying infrastructure, and flaws in the infrastructure
design can significantly impact the overall architecture. The infrastructure should
have self-healing capabilities, fault tolerance, and adaptability to workload
changes. Factors like automated testing, DevOps readiness, and continuous
integration are also important. Establishing robust infrastructure and automating
the application lifecycle is essential due to the complexities of managing
distributed systems at scale [13]. This study will explore the cloud architecture
used by PT XYZ to support microservice applications in Accounting System
products. So, the research question asked in this study is, "What is cloud
architecture design for SaaS that meets the business needs of PT XYZ?"

B. Literature Review

Microservices

Microservice architecture is an approach to developing a single application as
a set of small services, each running on its process and communicating with each
other using lightweight mechanisms. Each service is designed around specific
business needs and can be deployed independently using an automated system
with minimal centralized management. Additionally, each service can be
programmed using different programming languages and utilize various data
storage technologies from one another [14]. According to Wu et al. [3],
microservices are an architectural style with two key characteristics:
decentralization and autonomy. Decentralization means that all services are not
centrally managed and controlled. Autonomy implies that each development team
can decide on the software or service it develops. This architecture is inspired by
SOA's architectural principles, which involve building complex systems as a
combination of small, loosely coupled components and communicating between
them using neutral APIs [15].

Cloud-Native Architecture

The term "cloud native" was first used in May 2010. Paul Freemantle, a cloud
industry expert, wrote on his blog titled "Cloud Native," explaining that cloud-
native applications are specifically designed to run on the cloud and have
properties that benefit from all the advantages of a cloud environment [16], [17].
Moving a traditional application to a cloud environment does not make the
application a cloud-native application [16], [18]. According to Toffetti et al. [18],

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5092

cloud-native applications should possess critical characteristics. These include the
capability to foresee failures and fluctuations in the quality of cloud resources and
third-party services. Moreover, they should be able to quickly adapt to changes in
workload and effectively utilize dependable infrastructure.

According to the CNCF definition, Cloud-Native Applications do not depend
on a specific technology as long as they comply with the CNCF's three main points
[17]:

1. Platform: cloud-native applications can run on various environments,
including public, private, or hybrid clouds.

2. Properties: The nature of cloud-native applications is designed to be
scalable, loosely coupled, resilient, manageable, and observable.

3. Practices: Practices in cloud-native applications include automation,
continuous delivery, and DevOps.

Meanwhile, Reznik et al. [19], state that cloud-native architecture adopts five
architectural principles along with two cultural principles.

1. Containerization. Encapsulate the application, its dependencies, and its
operational environment in a single package, making testing, moving, and
deploying easy.

2. Dynamic management. Using cloud-based servers that offer flexibility
3. Microservices. Design the application as a collection of separate small

service components. Each microservice can be deployed, upgraded,
scaled, and restarted independently of other services in the application
without affecting the end user. Microservices enable increased
development speed achieved by parallel component development.

4. Automation. It involves replacing manual work with scripts or code to
automate tasks such as maintenance and updates.

5. Orchestration. This process entails integrating all the principles by
automating containerized applications' deployment, scaling, and
management. For instance, it involves using Kubernetes or other
orchestration tools to manage and automate tasks such as container
availability, provisioning, and deployment, load balancing of containers
across infrastructure, and scaling up or down by adding or removing
containers as required.

The two cultural principles are as follows:
1. Delegation. Provide each technician with the necessary tools, training,

and autonomy to securely implement changes, deploy, and monitor
independently. This means they should be able to make changes without
involving other teams or obtaining slow management approvals.

2. Dynamic strategy. Communicate the plan to the team and remain open to
adjusting it based on results.

In addition to these components, cloud-native applications should adhere to
12 guidelines and best practices known as the Twelve-Factor App Manifesto.
Initially introduced by Heroku engineers, these principles are now widely
recognized as a crucial foundation for building cloud-native applications [20] [17].
The principles outlined in the twelve-factor app manifesto are as follows

1. Codebase. There is only one codebase per service, but it can be deployed
to different environments.

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5093

2. Dependencies. The application's dependencies should be explicitly
declared and made available for the dependency manager to download
from a central repository. Using containers can reduce issues with
dependencies.

3. Configurations. The configuration should be separated from the source
code. When the configuration changes, the code should not need to
change, and the build process does not need to be done from scratch.

4. Backing services. A backing service refers to an external resource used to
support an application's functionality. It is considered an attached
resource and can be easily replaced based on the environment without
modifying the source code.

5. Build, Release, and Run. The source code should undergo various stages
before entering the production environment. It is recommended that
automated build processes be used through CI/CD practices.

6. Stateless Processes. To ensure scalability, the application should be run
in a stateless process

7. Data Isolation. This is an essential pattern in microservices, where each
service should manage its data so that other services cannot access data
directly from other services but through APIs from that service.

8. Concurrency. The scaling process can be applied to independent and
horizontal services.

9. Disposability. Built services should be easily turned on and off as needed.
For example, if there is a failure, the instance should be able to be quickly
terminated and launched. Additionally, the services should allow for easy
scaling out and down as required.

10. Environment Parity. Keep all company environments as similar as
possible. Containers can overcome inconsistencies between
environments.

11. Logs. Logging is crucial in distributed systems. Ensuring components
provide correct data for remote monitoring is essential to managing
them.

12. Administrative Processes. Specific tasks, such as database migration,
batch jobs, maintenance jobs, and CI/CD processes, should be executed as
one-off processes. Once these tasks are completed, the associated service
can be terminated. Additionally, the source code for administrative tasks
should be tracked and stored in version control.

Relationship Between Microservices and Cloud Native

Because microservices is a software design pattern, microservice applications
can be deployed on traditional infrastructure or in a cloud environment, just like
monolithic applications, which can also be deployed to cloud environments or
conventional on-premises infrastructure. Cloud-native architecture is a
comprehensive approach to building applications that fully utilize the cloud
computing model, and microservices are one of the reference implementations of
this architecture [19].

The benefits of a microservice architecture can be challenging to realize
without proper implementation of cloud-native architecture elements. Designing a

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5094

microservice architecture requires careful consideration of infrastructure design
to support development and operations. For instance, infrastructure based on
microservice architectures should be self-healing, fault-tolerant, and capable of
adapting to changes in load. On the development side, adjustments should be made
to accommodate automation testing, DevOps readiness, and continuous integration
for effective management of microservice applications [13].

Previous Research

Microservice-based application development is often considered more
complex than applications with other architectures and has a broad scope.
Therefore, substantial research exists on case studies and methodologies for
converting monolithic architectures to microservices [11][21][22]. The research
emphasizes building microservice applications and lacks discussion of the
underlying infrastructure design. Research by Chen T [23] reviews DevOps
infrastructure, integrating GitLab, Jenkins, Docker, Kubernetes, and Harbot in a
private cloud for automation and maintenance. Meanwhile, Bharadwaj et al. [24]
Discusses the cloud-native approach and compares it to the traditional approach
for designing, building, and deploying applications. The variety of available
technologies has prompted Roselier et al. [25] to develop machine learning and
data science-based tools for automating and simplifying the consulting process in
selecting cloud-native designs.

Several researchers have conducted studies that did not discuss the practical
implementation of cloud-native architecture in industrial environments,
particularly in public cloud settings. The author's research addresses this gap by
examining PT XYZ's experience in establishing DevOps infrastructure on AWS and
GCP to support microservice architecture for accounting system software

C. Research Method

This research is qualitative and aims to explore the architecture of the cloud
infrastructure used by PT. XYZ compares it to Cloud Native architectural principles
based on CNCF and evaluates them based on Twelve-Factor Apps. In the initial
stage of this research, we will prepare background information and identify
problems by collecting initial data to describe the company's profile and
conditions. Our specific focus is to investigate the architecture of the DevOps
infrastructure used by PT XYZ to support the Accounting System application. The
subsequent steps will involve conducting a thorough literature review and in-
depth research on the principles of cloud-native architecture based on CNCF.

The findings from the literature review will be applied in the result and
analysis chapter, where we will analyze the architecture implemented by PT XYZ
and compare it with the principles of Cloud Native architecture. In this section, the
researcher was assisted by a cloud engineer leader in exploring the infrastructure
that PT XYZ uses to support its accounting system. The summary section of this
research presents a conclusion of the different findings from the previous chapter,
providing recommendations for the subsequent improvement of a cloud
infrastructure architecture to enhance the operation of the Accounting System
application for PT XYZ.

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5095

D. Result and Discussion

In this section, the author interviews technical cloud leaders about the cloud
services used by PT XYZ to support its operations. The author analyzes these
infrastructure services based on five technical principles of cloud-native
architecture: containerization, dynamic management, microservices, automation,
and orchestration. Furthermore, the author will assess it according to the Twelve-
Factor App principles

Implemented Architecture

1. Containerization

All business services related to accounting systems use Linux containers and
are deployed using Cloud Run, while some services associated with CI/CD and
Jenkins still use VMs. This decision is based on technical and economic
considerations from PT XYZ. Jenkins is a stateful application, and from an
operational perspective, it is not yet possible to use Cloud Run. Additionally, using
Kubernetes, such as GKE and EKS, has a higher cost than using VMs through
Amazon EC2. Table 1 Provides a complete list of services that are identified using
containers and VMs

Table 1 List of services using containers and virtual machines.

Services Container/VM Image/OS
Backend Services Container jre-alpine
Frontend Services Container nginx-alpine
SonarScanner VM Ubuntu
Selenium VM Ubuntu
JMeter VM Ubuntu
Maven VM Ubuntu
SonarQube VM Amazon Linux

2. Dynamic Management

PT XYZ utilizes two public cloud services: AWS and GCP. AWS is used for the
CI/CD infrastructure with Jenkins (Master) and SonarQube deployed on Amazon
EC2 services. Meanwhile, GCP is used in microservices for Jenkins Agent and
accounting system applications. Each business service from the Accounting System
is deployed into Google Cloud Run.

Google Cloud Run was chosen as the computing resource for deploying
microservice applications because it offers a container-based serverless
environment, which is considered cheaper than using GKE; this is possible because
Google Cloud Run bases the billing cost on the number of API requests. Also, the
decision to choose Google Cloud Run is based on the fact that Cloud Run provides a
cloud-neutral environment. This means that companies are not locked into one
vendor (vendor lock-in) and still have the freedom to switch cloud providers if
needed.

Details of the cloud services used by PT XYZ, as presented in the Table 2,
show that all of the services used by PT XYZ. Some services used are container as a
service (CaaS), such as Google Cloud Run, a serverless service. In a serverless
architecture, users don't need to manage the underlying infrastructure of Google

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5096

Cloud Run. Some technologies related to CI/CD and using Jenkins are deployed on
Amazon EC2 services, which is a type of infrastructure as a Service (IaaS). In
contrast, some other services that utilize the Jenkins agent, such as Maven,
Selenium, and Jmeter, are deployed to Google Cloud Engine. The use of Google
Cloud Engine rather than Amazon EC2 for services used by Jenkins agents is based
on practical considerations to facilitate the deployment of all business services
used for the accounting system, which is deployed to Google Cloud Run

Table 2 Cloud services used

Category Services Cloud Service Operational
CI/CD Jenkins Amazon EC2 24 hours
Static code analysis SonarQube Amazon EC2 24 hours
Build tools Maven Google Compute Engine On-demand
Automation
functional test

Selenium
Google Compute Engine On-demand

Performance test Jmeter Google Compute Engine On-demand
Container build Google Cloud Build Google Cloud Build On-demand
Container registry

Google Container Registry
Google Container
Registry

On-demand

Backend and
Frontend service

Spring Boot and VueJS
Google Cloud Run On-demand

Database
PostgreSQL

Google Cloud SQL Managed-
service

Monitoring
Google Cloud Monitoring

Google Cloud
Monitoring

Managed-
service

Configuration Spring Cloud Config Google Cloud Run On-demand
Gateway Spring Cloud Gateway Google Cloud Run On-demand

Some services, such as Jenkins and SonarQube, which use Amazon EC2, run

continuously for 24 hours. On the other hand, some services that use Jenkins
agents launch upon receiving a request and then terminate after a certain period of
idleness. This configuration can be achieved by setting the node retention time
within the Google Compute Engine plugin installed on Jenkins. In services using
Cloud Run, the business service will only run when it receives a request from the
client by default

3. Microservice

As illustrated on Figure 1, the Accounting System utilizes a microservice
architecture constructed with the Spring Cloud framework for the backend and
Vue JS for the front end. The microservice application consists of 3 supporting
services and three business services. The supporting services include gateways,
authentication, and configuration that facilitate the operation of microservice
systems. The main application comprises three business services: inventory,
accounting, and purchasing. The number of business services being developed will
continue to increase as the application development process continues. Some other
services are managed by GCP, including Cloud SQL (a database as a service) and
Cloud Monitoring (which monitors and checks the service condition).

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5097

Figure 1. PT XYZ Microservice Application

Every request from the frontend application to the backend must first go

through the gateway. At the gateway, the service undergoes the authorization and
authentication process with the auth, and then it is forwarded to the business
service, which includes purchasing, accounting, and inventory functions. The
Configuration service is utilized to externalize configurations. Each time the
service runs, it will read the configuration from the Config service.

4. Automation
The diagram of the automation includes the CI/CD infrastructure shown in

Figure 2. Jenkins controls the CI/CD process, divided into three stages. The first
stage starts with the developer who wants to integrate their source code changes
into the development branch; this process is called a pull request. The pull request
process triggers Jenkins to perform a static code analysis using SonarQube to
check the code quality and unit tests. The technical leader and developer will be
informed about the results of the process. The technical leader will manually
review the submitted source code to ensure it complies with the functional
requirement. After the technical leader merges the developer's requests, they will
proceed to the second stage. This involves running the CI/CD pipeline to execute
the build process and perform unit tests. Following this, the containerization
process and deployment to the Cloud Run environment will occur

Figure 1 CI/CD infrastructure
The third stage, which involves functional and performance testing, is

scheduled in the development/staging environment using Selenium and JMeter.
The QA engineer develops the scripts for these tests separately. This process

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5098

ensures that the deployed application meets the expected quality standards in
terms of both functionality and performance

5. Orchestration
Google Cloud Run, the infrastructure where business services in accounting

system applications run, has several orchestrator features that are functionally
similar to those in Kubernetes. Users are able to define the minimum and
maximum number of instances needed for scaling purposes. In the Accounting
System application, you can adjust and evaluate these settings over time. One
limitation of Cloud Run is the lack of a scheduling feature, which would allow cloud
runs to be executed at specific times. These capabilities are typically utilized by
services that perform processing at specific times. Users can utilize Google Cloud
Scheduler and Google Cloud Function to incorporate these capabilities into Cloud
Run

Discussion

After analyzing the architecture of PT XYZ's Accounting System, we reviewed
to determine if PT XYZ's design aligns with the principles outlined by CNCF and the
12 Factor App. Overall, PT XYZ's architecture meets most of the principles of Cloud
Native architecture, with some areas identified for potential improvement.

The architecture used by PT XYZ indicates that all business services built on
the Accounting system application share the same database schema. This is not in
accordance with the seventh principle, which is data isolation. In data isolation,
each service manages its data. Therefore, one service cannot access data belonging
to another service directly; it must go through the API provided by the service.

The next point is about the first principle, which is the codebase. According to
this principle, each service should be kept in a separate code repository. Currently,
all services are stored in the same code repository, but this could create difficulties
in the future as the number of services grows.

All evaluations for this research have been submitted to PT XYZ as part of the
future application development process. PT XYZ has received the evaluation as
material for its upcoming development roadmap.

E. Conclusion

Implementing the PT XYZ accounting system application's microservice
architecture needs to be accompanied by the appropriate underlying
infrastructure. Therefore, it is essential to incorporate a cloud-native architecture
that includes elements such as containerization, dynamic management,
microservices, automation, and orchestration.

PT XYZ has successfully incorporated cloud-native architecture and most
twelve-factor app principles. They have implemented containerization using
Google Cloud Run, dynamic management using AWS and GCP services, and
automated CI/CD processes through Jenkins. This shows a strong integration of
cloud technology in supporting their accounting system operations.

However, several areas require improvement to achieve full optimization of
cloud-native architecture. One of them is the principle of data isolation, which has
not been fully implemented, where all business services share the same database
schema. In addition, the use of separate code repositories in each service needs to

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5099

be reviewed, as it may pose development difficulties in the future as the number of
developed services increases

F. References
[1] Gartner, “Gartner Forecasts Worldwide Public Cloud End-User Spending to

Reach $679 Billion in 2024.” Accessed: Jun. 05, 2024. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/11-13-2023-
gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-679-
billion-in-20240

[2] Ravenry, “SaaS Wave in Indonesia,” 2020. Accessed: Mar. 06, 2024. [Online].
Available: https://theravenry.com/wp-content/uploads/2020/08/SaaS-
Wave-in-Indonesia-Booklet.pdf

[3] M. Wu et al., “On the Way to Microservices: Exploring Problems and Solutions
from Online Q&A Community,” in 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), Mar. 2022, pp.
432–443. doi: 10.1109/SANER53432.2022.00058.

[4] P. Mangwani, N. Mangwani, and S. Motwani, “Evaluation of a Multitenant SaaS
Using Monolithic and Microservice Architectures,” SN Comput Sci, vol. 4, no.
2, Mar. 2023, doi: 10.1007/s42979-022-01610-2.

[5] P. H. Nguyen, H. Song, F. Chauvel, R. Muller, S. Boyar, and E. Levin, “Using
Microservices for Non-Intrusive Customization of Multi-Tenant SaaS,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, in ESEC/FSE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 905–915. doi: 10.1145/3338906.3340452.

[6] F. and N. P. H. Song Hui and Chauvel, “Using Microservices to Customize
Multi-tenant Software-as-a-Service,” in Microservices: Science and
Engineering, N. and D. S. and L. P. and M. M. and R. V. and S. A. Bucchiarone
Antonio and Dragoni, Ed., Cham: Springer International Publishing, 2020, pp.
299–331. doi: 10.1007/978-3-030-31646-4_12.

[7] P. Mangwani and V. Tokekar, “Container Based Scalability and Performance
Analysis of Multitenant SaaS Applications,” in 2022 13th International
Conference on Computing Communication and Networking Technologies,
ICCCNT 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi:
10.1109/ICCCNT54827.2022.9984214.

[8] M. I. Josélyne, D. Tuheirwe-Mukasa, B. Kanagwa, and J. Balikuddembe,
“Partitioning microservices: A domain engineering approach,” in Proceedings
- International Conference on Software Engineering, IEEE Computer Society,
May 2018, pp. 43–49. doi: 10.1145/3195528.3195535.

[9] V. M. Niño-Martínez, J. O. Ocharán-Hernández, X. Limón, and J. C. Pérez-
Arriaga, “A Microservice Deployment Guide,” Programming and Computer
Software, vol. 48, no. 8, pp. 632–645, Dec. 2022, doi:
10.1134/S0361768822080151.

[10] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating Towards Microservice
Architectures: An Industrial Survey,” in Proceedings - 2018 IEEE 15th
International Conference on Software Architecture, ICSA 2018, Institute of

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5100

Electrical and Electronics Engineers Inc., Jul. 2018, pp. 29–38. doi:
10.1109/ICSA.2018.00012.

[11] S. G. Haugeland, P. H. Nguyen, H. Song, and F. Chauvel, “Migrating Monoliths
to Microservices-based Customizable Multi-tenant Cloud-native Apps,” in
2021 47th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Sep. 2021, pp. 170–177. doi:
10.1109/SEAA53835.2021.00030.

[12] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and Issues for
Migrating to Microservices Architectures: An Empirical Investigation,” IEEE
Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017, doi:
10.1109/MCC.2017.4250931.

[13] A. Henry and Y. Ridene, “Migrating to Microservices,” in Microservices, Cham:
Springer International Publishing, 2020, pp. 45–72. doi: 10.1007/978-3-030-
31646-4_3.

[14] S. Wells, Enabling Microservice Success: Managing Technical, Organizational
and Cultural Challenges, Early Release. O’Reilly Media, Inc., 2024.

[15] Y. Wang, H. Kadiyala, and J. Rubin, “Promises and challenges of microservices:
an exploratory study,” Empir Softw Eng, vol. 26, no. 4, Jul. 2021, doi:
10.1007/s10664-020-09910-y.

[16] E. Jiang, A. McCright, J. Alcorn, D. Chan, and A. Nottingham, Practical Cloud-
Native Java Development with MicroProfile. Packt Publishing, 2021.

[17] T. Vitale, Cloud Native Spring in Action. Manning Publications, 2023.
[18] G. Toffetti, S. Brunner, M. Blöchlinger, J. Spillner, and T. M. Bohnert, “Self-

managing cloud-native applications: Design, implementation, and
experience,” Future Generation Computer Systems, vol. 72, pp. 165–179, Jul.
2017, doi: 10.1016/j.future.2016.09.002.

[19] P. Reznik, J. Dobson, and M. Gienow, Cloud Native Transformation. O’Reilly
Media, Inc., 2019.

[20] B. Scholl, T. Swanson, and P. Jausovec, Cloud Native. O’Reilly Media, Inc.,
2019.

[21] Z. Lyu, H. Wei, X. Bai, and C. Lian, “Microservice-Based Architecture for an
Energy Management System,” IEEE Syst J, vol. 14, no. 4, pp. 5061–5072, Dec.
2020, doi: 10.1109/JSYST.2020.2981095.

[22] V. Kornuta, E. Sobotnyk, I. M. Katamai, and Y. Katamai, “Using Microservice
Architecture for High-Load Information Systems on the Example of
MedicinePlanner Service,” in 2022 12th International Conference on
Advanced Computer Information Technologies, ACIT 2022, Institute of
Electrical and Electronics Engineers Inc., 2022, pp. 437–442. doi:
10.1109/ACIT54803.2022.9913185.

[23] T. Chen and H. Suo, “Design and Practice of DevOps Platform via Cloud Native
Technology,” in 2022 IEEE 13th International Conference on Software
Engineering and Service Science (ICSESS), IEEE, Oct. 2022, pp. 297–300. doi:
10.1109/ICSESS54813.2022.9930226.

[24] D. Bharadwaj, S. Premananda B., D. of Electronics, T. Department, of
Electronics, and Telecommunication, “Transition of Cloud Computing from
Traditional Applications to the Cloud Native Approach,” in 2022 IEEE North

https://doi.org/10.33022/ijcs.v13i4.4099

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v13i4.4099 5101

Karnataka Subsection Flagship International Conference (NKCon), IEEE,
2022

[25] A. Rosilier, M. Demir, and J. Prevost, “Automated Consulting for Cloud Native
Architectures.” IEEE, Jun. 2022.

https://doi.org/10.33022/ijcs.v13i4.4099

