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Autonomous driving technology has gained significant attention, offering 
opportunities to modernize transportation systems worldwide. Deep 
reinforcement learning (DRL) has emerged as a robust approach to design 
smart driving policies for intricate and changeable environments. This paper 
provides a detailed investigation of state-of-the-art DRL methodologies that 
are effectively applied to autonomous driving. It begins by providing a clear 
explanation of the fundamental concepts of deep learning and reinforced 
learning, highlighting their application for control of self-driving vehicles. 
Consequently, the paper presents an overview of various DRL algorithms, 
including Deep Q-Networks (DQN), Deep Deterministic Policy Gradients 
(DDPG), and Actor-Critic methods, describing their structures, training 
approaches, and applications in autonomous driving situations. Recent 
advancements in DRL research, such as domain adaptation, imitation 
learning, and meta-learning, have also been addressed in the study, with an 
investigation of their potential implications for autonomous driving. Via a 
thorough assessment of current literature, key trends, challenges, and 
research directions have been identified for exploiting DRL in autonomous 
car development. This review intends to provide a comprehensive 
understanding of the current and future possibilities of DRL for self-driving 
vehicles to researchers, practitioners, and enthusiasts. 
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A. Introduction 
Autonomous driving technology is a significant milestone in the progress of 

transportation systems across the globe. As it guarantees better safety, 
productivity, and availability, it has excited the interest of researchers, industry 
personnel, policymakers, and the general public. The core of this revolution in 
technology relies on the state-of-the-art method of DRL, which enables vehicles to 
steer and make choices in intricate and ever-changing settings [1][2][3][4]. 

The fusion of deep neural networks [5]with reinforcement learning concepts 
has advanced autonomous driving technology to unparalleled heights of 
refinement. By contrast to conventional rule-based systems that depend on 
manually constructed algorithms and heuristic principles, DRL empowers the 
vehicles with the ability to develop optimal driving techniques via trial and error, 
just like human drivers hone their capacities via practice [6][7][8]. Through 
leveraging data-supported decision-making [9][10][11], DRL has the potential of 
opening up novel realms in autonomy, permitting the vehicles to respond to 
varying traffic situations, unanticipated occurrences, and adjustments in road 
conditions [12][13]. 

 

 
Figure 1. The structure of autonomous driving based on reinforcement learning 

from end to end. 
 
The purpose of this review paper is to present a thorough analysis of current 

cutting-edge DRL techniques that are used in autonomous driving. By delving 
deeply into the concepts, recent developments, advanced algorithms, and 
upcoming research trends, we aim to provide readers with a comprehensive 
understanding of the benefits and challenges involved in utilizing DRL for the 
progress of autonomous vehicle technology. 

Our aim is to allow researchers, practitioners, and enthusiasts to gain a 
deeper understanding of the significance of DRL in shaping the future of 
autonomous driving. We hope to encourage them to explore new ways to further 
the progress of autonomous vehicle technology by providing a synthesis of insights 
from existing literature along with critical analysis. Ultimately, we seek to pave the 
way for safer, more efficient, and sustainable transportation systems through this 
review paper. 

The subsequent sections of this paper are organized as follows: Section 2 
explains the fundamentals of Reinforcement Learning. Section 3 provides an 
overview of DRL Algorithms. Section 4 covers Applications of Reinforcement 
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Learning in Autonomous Driving, while Section 5 delves into Recent 
Advancements in DRL. 
 
B. Fundamentals of Reinforcement Learning  

Reinforcement Learning is a type of machine learning that focuses on how an 
agent can learn to achieve a goal by interacting with its environment [14]. Through 
trial and error, the agent takes actions in the environment and receives either 
rewards or penalties as feedback. The purpose of the agent is to learn a policy that 
will enable it to acquire the highest amount of cumulative reward over time. 

At the core of RL are several fundamental concepts: 
• Agent: The entity in charge of decision-making and taking actions within 

the environment. 
• Environment: The external system with which the agent interacts 
• State: A representation of the current situation or configuration of the 

environment. 
• Action: The choices made by the agent that influence the state of the 

environment. 
• Reward: Numeric feedback provided by the environment to indicate the 

desirability of a particular action taken by the agent. 
•  

 
Figure 2. The (POMDP) model applied to autonomous driving using deep 

reinforcement learning [15] 
 
Markov Decision Processes (MDPs) offer a numerical methodology to 

emulate RL problems. An MDP includes states, actions, transition probabilities, and 
rewards. An MDP [16]can be described by a tuple (S, A, P, R, γ), where S denotes 
the set of states, A represents the set of actions, and P is the function governing 
state transitions, determining the probability of transitioning to the next state, s` ∈ 
S, when action a ∈ A is chosen in response to observing state s ∈ S. In cases 
involving continuous actions or state spaces, the mathematical formulation 
becomes more intricate. Additionally, R denotes the reward function mapping from 
state-action-state tuples to real numbers (R: S × A × S → R), and γ ∈ [0, 1] 
represents the discount rate. 

The objective of the agent is to acquire a policy, πθ: S × A 7→ [0, 1], that 
relates states to actions in such a manner that the expected cumulative reward is 
maximized. 

1. For the state-value function V∗(s): 
V∗(s)=maxπθ E[∑k rt+k ∣ st = s]                                                                           (1) 

2. For the action-value function Q∗(s, a): 
Q∗(s,a)=maxπθ E[∑k rt+k ∣ st = s, at = a]                                               (2) 
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Here: 
• V∗(s) represents the optimal value function for state s, 
• Q∗(s, a) represents the optimal action-value function for state-action pair (s, 

a), 
• πθ represents the policy parameterized by θ, 
• E[⋅] represents the expected value operator, 
• γ is the discount factor, 
• rt+k represents the reward at time t + k, 
• st represents the state at time t, 
• at represents the action at time t, 
• S is the state space, and 
• A is the action space. 
In this context, the state s corresponds to the input from car sensors, such as 

cameras and distance sensors. The steering angle is denoted by a continuous 
parameter a ∈ R, which represents an action. The transition probability P is the 
probability of the car's state and action interacting. Based on the car's current state 
s and the action a, the reward function R provides feedback to the algorithm. The 
discount rate γ measures the significance of long-term rewards relative to 
immediate rewards, ranging from considering only immediate rewards (γ = 0) to 
considering both immediate and long-term rewards equally (γ = 1). The 
interaction between the agent and the environment is illustrated in this diagram 
[16]. 
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let's consider a simplified example with two states: "Stop" and "Go." The 
autonomous vehicle can take two actions: "Brake" or "Accelerate." 
The transition probabilities and immediate rewards associated with each action 
are as follows: 

1. Stop State: 
• If the vehicle brakes, it remains in the stop state with a high 

probability (e.g., 0.9) and may transition to the go state with a lower 
probability (e.g., 0.1). 

• Braking in the stop state incurs a negative reward due to the delay in 
reaching the destination (e.g., -10). 

2. Go State: 
• If the vehicle accelerates, it remains in the go state with a high 

probability (e.g., 0.8) and may transition back to the stop state with a 
lower probability (e.g., 0.2). 

• Accelerating in the go state incurs a positive reward as it progresses 
towards the destination (e.g., +5). 
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Two frequently employed methods for resolving RL problems are Dynamic 
Programming and Q-Learning. In Dynamic Programming, algorithms like policy 
iteration and value iteration compute optimal policies by frequently revising value 
functions. In contrast, Q-Learning is an RL algorithm that is free of any underlying 
model and learns the value of state-action pairs from practice. It uses the Bellman 
equation to modify Q-values. 

Having an understanding of these elementary concepts is crucial in 
comprehending the fundamental principles related to the implementation of RL 
techniques in self-driving systems. 

 
C. Deep Reinforcement Learning Algorithms 

DRL methods [17] are essential for autonomous vehicles as they allow them to 
learn complicated driving behaviors by actively engaging with their surroundings. 
This portion of the paper presents a summary of the primary DRL algorithms 
implemented in autonomous driving R&D, complete with mathematical 
illustrations to explain their principles. 
1. Deep Q-Networks (DQN) 

DQN is a method introduced in 2015 by Mnih et. al. [18][19] that utilizes 
deep neural networks to approximate the Q-function. The Q-function determines 
DQN is a method introduced in 2015 by Mnih et. al. [18][19] that utilizes the 
expected cumulative reward for a given action in a particular state and is 
represented mathematically, the Q-function is represented as: 

 
Q(s, a) = E[r + γ maxa′  Q(s′ , a′)]         (3) 
where s is the state, a is the action, r is the immediate reward, s′ is the next state, 
and γ is the discount factor. 
 
The DQN algorithm aims to minimize the temporal difference error between the 
predicted and observed rewards: 
L(θ) = E[(r + γ maxa′  Q(s′, a′ ; θ-) − Q (s ,a; θ))2]      (4) 
where θ represents the parameters of the neural network, and θ-denotes the 
target network parameters. 
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Figure3. Evolution of the average of DQN cumulative reward with different 

learning rates [20] 
 

2. Deep Deterministic Policy Gradients (DDPG) 
DDPG is a technique created by Lillicrap et al. in 2016 for continuous action 

spaces [21]. DDPG makes use of an actor-critic design where the actor network is 
trained to learn a policy that maps states to specific actions, and the critic network 
evaluates these actions' quality according to approximated value functions. 

Mathematically, the actor network is trained to maximize the expected 
cumulative reward: 
∇θμ  J ≈ E[∇θμ     μ( s∣θμ  ) ∇a Q(s, a∣θQ)∣s=st , a=μ(st)]     (5) 
where μ(s∣θμ  )represents the policy function, Q(s, a∣θQ) is the action-value 
function, and J denotes the expected return [22]. 

For DDPGG, the architecture of the actor and critic neural networks are the 
same for the visual features extraction,  
which uses three blocks each of which contain a convolutional layer, a batch 
normalization layer, and a Relu activation layer [20], see the Figure4 below. 
 

 
Figure 4. The DDPG Network architecture 

 
3. Actor-Critic Methods 

Actor-Critic methods merge features from value-based and policy-based 
techniques by using different networks for the actor (policy) and critic (value 
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function). These algorithms are aimed at maximizing expected cumulative rewards 
while also estimating the value function to steer policy improvement. 
Mathematically, the policy gradient for actor-critic methods can be expressed as: 
∇θμ  J ≈ E[∇θμ logμ(a∣s;θμ)Q(s,a;θQ)]       (6) 
where μ(a∣s;θμ) represents the policy function, Q(s,a;θQ) is the action-value 
function, and J  denotes the expected return [23]. 
4. Other DRL Algorithms 

In addition to DQN, DDPG, and Actor-Critic methods, various other DRL 
algorithms have been proposed and applied to autonomous driving tasks. These 
include Deep Q-Learning from Demonstrations (DQfD) [24], Twin Delayed Deep 
Deterministic Policy Gradients (TD3) [25], and Soft Actor-Critic (SAC) [26], among 
others. 

 
D. Applications of Reinforcement Learning in Autonomous Driving 

RL techniques have diverse applications in self-driving systems, including lane 
keeping [27], traffic light [28] and intersection management [29], collision 
avoidance [30], and path planning [31]. RL algorithms help vehicles navigate 
through complex environment s, predict potential hazards, ensure safe passage, 
and optimize trajectories to minimize congestion. This versatility of RL algorithms 
makes them a crucial tool for enhancing the autonomy and safety of driving 
systems. 

 
E. Recent Advancements in DRL 

Benchmark datasets [16] and standardized evaluation metrics [17] are 
essential for enhancing research and development in DRL for self-driving vehicles. 
Benchmark datasets, like Waymo Open Dataset, Udacity Self-Driving Car, and 
CARLA, provide standard test and training environments and scenarios for 
benchmarking RL algorithms. Furthermore, established evaluation metrics, 
including safety measures, success rates, and computational efficiency, ensure that 
comparisons between different techniques and approaches are justifiable. 
In summary, the recent developments in DRL techniques for self-driving cars have 
resulted in significant advancements, such as enhancing the capabilities of 
autonomous driving systems and addressing critical challenges. Researchers have 
leveraged various techniques, including imitation learning, domain adaptation, 
multi-agent learning, meta-learning, and benchmark datasets, to unlock new 
opportunities and overcome remaining hurdles towards mass deployment of safe 
and efficient autonomous vehicles. 
 
F. Related Works 

Sallab et. al. (2017) [32], presented a framework for autonomous driving 
utilizing deep reinforcement learning. They address the challenges inherent in 
developing such agents and delineate three primary task categories: recognition, 
prediction, and decision-making. Their framework integrates Recurrent Neural 
Networks and attention models to address partially observable scenarios and 
emphasize pertinent information. 

Liang et. al. (2018) [33], addressed the challenge of devising optimal driving 
policies for autonomous urban driving. They propose a CIRL approach that 
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leverages encoded experiences mimicking human demonstrations to enhance 
exploration efficiency and tailor adaptive policies and steering-angle reward 
designs. The method has shown significant performance improvements compared 
to previous approaches on the CARLA driving benchmark. 

Wang et. al. (2018) [34], explored the application of deep reinforcement 
learning in developing real-world autonomous driving systems using the deep 
deterministic policy gradient algorithm. They employed TORCS as the 
environment, incorporating a range of sensors and reward mechanisms, and 
devised a network architecture for both the actor and critic components. The 
model underwent evaluation across various modes in TORCS, demonstrating 
positive results both quantitatively and qualitatively. 

Nageshrao et. al. (2019) [35], proposed a method for autonomous highway 
driving employing deep reinforcement learning and a modified version of the 
DDQN algorithm to train the decision-making neural network. The approach aims 
to mitigate unforeseen behaviors and adapt to diverse driving scenarios. 

Pusse et. al. (2019) [36], introduced HyLEAP, a hybrid approach that combines 
deep reinforcement learning and approximate POMDP planning to address 
pedestrian collision-free navigation in self-driving cars. The performance 
evaluation is based on GIDAS, and the paper discusses the pros and cons of each 
method. 

Folkers et. al. (2019) [37], presented a control approach based on deep 
reinforcement learning for autonomous vehicles. They discuss the training of a 
neural network agent with proximal policy optimization in a simulated 
environment and its application to a full-sized research vehicle for autonomous 
exploration of a parking lot, turning maneuvers, and obstacle avoidance. The paper 
also compares various model-based control approaches and references previous 
research that utilized deep learning methods for steering a vehicle solely based on 
camera images. 

Moghadam et. al. (2019) [38], proposed an approach to autonomous driving 
that utilizes a hierarchical architecture with deep reinforcement learning. Their 
method aims to generate high-level sequential commands for lower-level 
controllers, ensuring consistent performance in uncertain environments. 

Spielberg et. al. (2019) [39], introduced a novel adaptive, model-free controller 
for general discrete-time processes, utilizing deep reinforcement learning. Their 
proposed controller learns the control policy in real time through interactions with 
the process. The effectiveness and advantages of the controller are demonstrated 
through simulations across various scenarios. 

You et. al. (2019) [40], discussed the planning problem of autonomous vehicles 
in traffic. The authors propose a stochastic Markov decision process model that 
incorporates road geometry to accommodate diverse driving styles. They also 
design the reward function. 

Semnani et. al. (2020) [41],  proposed a hybrid algorithm combining deep 
reinforcement learning (RL) and force-based motion planning (FMP) for 
distributed motion planning in dense and dynamic environments, where each 
agent has a fixed final position that cannot be exchanged with another agent. The 
proposed algorithm outperforms both deep RL and FMP algorithms, resulting in up 
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to 50% more successful scenarios than deep RL and up to 75% less extra time to 
reach the goal than FMP. 

Liu et. al. (2020) [42], proposed a method for learning personalized 
discretionary lane-change initiation for fully autonomous driving based on 
reinforcement learning. The proposed offline algorithm employs a reinforcement 
learning technique to learn how to initiate lane changes from traffic context, the 
action of a self-driving vehicle, and in-vehicle user feedback. A multi-dimensional 
driving scenario is considered to represent a more realistic lane-change trade-off. 
The results show that the lane-change initiation model obtained by this method 
can reproduce the personal lane-change tactic, and the performance of the 
customized models is much better than that of the non-customized models. 

Muzahid et. al. (2020) [43], discussed a conceptual framework based on 
reinforcement learning for threat assessment of multiple vehicle collisions in 
autonomous driving. They emphasize the importance of real-time crash risk 
prediction in ensuring a secure and effective autonomous driving system. The 
paper advocates for cross-disciplinary efforts that integrate various technological 
fields, such as robotics, artificial intelligence, machine learning, IoT, and 
reinforcement learning. 

Rong et. al. (2020) [44], conducted a study on safe reinforcement learning with 
policy-guided planning for autonomous driving. The research addresses 
uncertainty and complexity within autonomous driving and demonstrates the 
effectiveness of this approach through numerical experiments. The authors 
introduce a hierarchical structure to work with formal specifications to ensure 
safety standards are met. The study concludes that the implemented approach is 
effective in achieving safe reinforcement learning. 

Liao et. al. (2020) [45], investigated decision-making strategies on highways 
for autonomous vehicles using deep reinforcement learning (DRL). The study 
explores the dueling deep Q-network (DDQN) method to derive the highway 
decision-making strategy and conducts a series of simulation experiments to 
evaluate its effectiveness. 

Kim et. al. (2020) [46], examined the application of deep reinforcement 
learning in developing intelligent self-driving policies aimed at minimizing injury 
and collision incidents in unexpected traffic scenarios. The study demonstrates 
that the trained agents surpassed human drivers and an autonomous emergency 
braking system in terms of collision avoidance and reducing injury severity. 

Hishmeh et. al. (2020) [47], analyzed the performance of various deep 
reinforcement learning algorithms in the context of autonomous driving within a 
simulated environment. Their objective is to develop a short-term planner to 
complement other components for long-term planning and ensuring safety. 

Lu et. al. (2020) [48], discussed a proposed approach to address the challenges 
of autonomous decision-making and motion planning for intelligent vehicles in 
complex traffic scenarios. The approach comprises two layers: a decision-making 
layer employing a kernel-based least-squares policy iteration algorithm with 
uneven sampling and pooling strategy, and a lower layer concentrating on lateral 
motion planning using a dual heuristic programming algorithm. The effectiveness 
and efficiency of this approach are demonstrated through extensive simulations. 
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Josef et. al. (2020) [49], introduced a deep reinforcement learning approach 
for local planning in unknown rough terrains for unmanned ground vehicles. The 
approach demonstrated superior performance compared to potential fields or 
local motion planning search space methods. 

Palanisamy et. al. (2020) [50], proposed the utilization of Partially Observable 
Markov Games (POSG) to devise learning-based solutions for connected 
autonomous driving under realistic assumptions. They present a taxonomy of 
multi-agent learning environments and offer an extensible set of CAD simulation 
environments to develop algorithms for CAD systems in multi-agent settings. 

Duan et. al. (2020) [51], explored the decomposition of driving tasks into three 
maneuvers and the learning of sub-policies for each maneuver. They design a 
master policy to select the maneuver to execute in the current state. All policies, 
including the master policy and maneuver policies, are represented by fully-
connected neural networks and trained using asynchronous parallel reinforcement 
learners. The paper concludes by demonstrating how this method can safely and 
smoothly drive a car on a highway. 

Emuna et. al. (2020) [52], examined a deep reinforcement learning approach 
aimed at simulating human driver behavior to develop "human-like driving 
policies." The study concentrates on mixed traffic scenarios, encompassing both 
autonomous vehicles and human-controlled vehicles. The authors advocate for 
autonomous vehicles to demonstrate human-like driving behavior to maintain 
efficient and safe traffic flow. 

Fernando et. al. (2021) [53], scrutinized the significance of precise behavior 
modeling in autonomous driving and scrutinizes the primary approaches and 
notable advancements made by researchers, with a focus on the potential of deep 
inverse reinforcement learning. The authors offer quantitative and qualitative 
assessments to substantiate their insights and explore promising avenues for 
future research breakthroughs. 

Orgovan et. al. (2021) [54], focused on developing an algorithm for 
autonomous drifting using Machine Learning, specifically Reinforcement Learning. 
The algorithm utilized a model-free learning method known as Twin Delayed Deep 
Deterministic Policy Gradients (TD3), which was trained on six different tracks 
within the CARLA simulator, specifically designed for autonomous driving 
applications. The study also highlighted the effectiveness of Deep Reinforcement 
Learning (DRL) in addressing motion planning challenges, with inputs to the 
network including factors like destination, vehicle parameters, and outputs 
controlling vehicle actions such as steering, torque, and braking. 

Chukamphaeng et. al. (2021) [16] ,discussed the utilization of end-to-end 
reinforcement learning for autonomous vehicles, which employs a single 
reinforcement learning model to develop the autonomous car. Additionally, it 
delineates the design of a novel efficient reward function aimed at accelerating the 
agent's learning process and constructing the car with only essential perceptions 
and sensors. The paper concludes that end-to-end reinforcement learning holds 
promise as an approach for autonomous driving vehicles. 

Zou et. al. (2021) [55], introduced a deep imitation reinforcement learning 
(DIRL) framework comprising two main components: the perception module and 
the control module. The framework employs a deep deterministic policy gradient 
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algorithm (DDPG) for controlling self-driving vehicles via vision-based policies. 
The authors validated the effectiveness of the DIRL framework using TORCS, an 
open racing car simulator. 

Cao et. al. (2022) [56], introduced a method that combines reinforcement 
learning (RL) with a baseline rule-based driving policy to develop more intelligent 
driving policies for autonomous vehicles. Termed "confidence-aware 
reinforcement learning" (CARL), the proposed method is assessed through a case 
study involving driving in a two-lane roundabout scenario. The study 
demonstrates that the proposed approach surpasses both the pure RL policy and 
the baseline rule-based policy in terms of performance. 

Chen et. al. (2022) [57], suggested an approach to address complex urban 
scenarios using an interpretable deep reinforcement learning method, aiming to 
reduce the sample complexity of reinforcement learning. Their method 
incorporates a latent environment model that generates a semantic bird's eye 
mask to connect with specific intermediate properties and elucidate the behaviors 
of the learned policy. Comparative tests conducted in a realistic driving simulator 
demonstrate that the method performs significantly better in urban scenarios with 
surrounding vehicles compared to numerous baseline approaches. 
 

Table 1. Summary of Related Work. 
Author& 

Year 
 Algorithm 

Pros. 
Cons. Results 

Sallab 
2017 [32] 

DRL Novel framework 
addresses DRL 

limitations with 
RNNs and attention. 

Challenges include 
observability, 

computational cost, 
and interpretability. 

Successful lane 

keeping in both action 

types. 

Liang 
2018 [33] 

CIRL CIRL outperforms, 
extensive reward 

discussion. 

Under-explored 
urban dynamics, 

rule reliance, 
exploration limits. 

Framework achieves 
temporal abstraction, 
fine-grained control. 

Wang 
2018 [34] 

DDPG Low-cost 
autonomous driving 
with vision and RL 

integration. 

Challenges in 
perception; limited 

to synthetic 
simulators. 

Successful DRL 
implementation in 
TORCS simulator. 

Nageshra
o 2019 

[35] 

DRL, DDQN  Autonomous 
highway system 

mitigates unforeseen 
behaviors. 

Relies on simulated 
traffic; limits real-

world applicability. 

Successful highway 
driving with improved 

DRL performance. 

Pusse 
2019 [36] 

HyLEAP: 
DRL and 

approximate 
POMDP 
hybrid. 

Good safety, 
smoothness; handles 

unseen situations. 

Needing training 
data, requiring 
neural network 

updates, and facing 
uncertainty in 

POMDP planning. 

Needs training data; 
NN updates; POMDP 

uncertainty. 

Folkers 
2019 [37] 

DRL with 
proximal 

policy 
optimization. 

Successful 
autonomous driving; 

NN training 
framework. 

Long training, 
simulation reliance; 

limits real-world 
adaptability. 

Successful driving 
with robust neural 

network framework. 

Moghada
m 2019 

[38] 

Hierarchical 
DRL for 

consistent 
high-level 

Consistent high-level 
decisions in 

uncertain 
environments. 

Complexity in 
uncertain 

environments; 
reliability 

Hierarchical DRL for 
decision-making in 

autonomous driving. 
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decisions. challenges. 

Spielberg 
2019 [39] 

Deep neural 
network for 

actor and 
critic 

representati
on. 

Good control sans 
detailed model; 
efficient neural 

networks. 

Data volume 
requirement; risk of 

overfitting. 

DRL control 
outperforms 

conventional methods 
in simulations. 

You 
2019[40] 

RL with 
tabular and 

function 
approximati
on methods. 

IRL for driving 
behavior; generates 
human-like policies. 

Limited scenarios; 
data representation 

challenges. 

Develops IRL 
algorithms for diverse 

driving behaviors. 

Semnani 
2020 [41] 

Hybrid DRL-
FMP for 
dynamic 
settings. 

DRL-FMP Hybrid 
improves success 

rate, time-efficiency. 

FMP lacks time 
optimization; GA3C-
CADRL-NSL falters 
in dense scenarios. 

Hybrid DRL-FMP 
excels in success rate, 

time, collision 
avoidance. 

Liu 
2020[42] 

Off-policy CB 
algorithm 

with neural 
network 

policy 
modeling. 

Custom CB algorithm 
outperforms non-

customized version. 

Limited real-world 
validation 

Custom CB algorithm 
enhances driving 

smoothness, safety. 

Muzahid 
2020[43] 

RL Improves AV safety 
via threat assessment 

framework. 

Limited to CARLA 
simulator, lacks 
generalization. 

Proposes safety 
enhancement via 
threat prediction. 

Rong 
2020[44] 

policy-
guided 

trajectory 
planner 

Combines RL with 
low-level planning 

for safe, optimal 
driving. 

Lacks formal rule 
translation, ignores 
learning conflicts, 

limited applicability. 

Effective handling of 
minimum-violation 

scenarios. 

Liao 
2020[45] 

 
DRL with 

DDQN 
algorithm 

Efficient DRL 
highway strategy 

with DDQN: Tested 
efficacy and safety. 

Limited exploration, 
adaptability 

analysis, and risk 
discussion. 

Successful highway 
overtaking with DDQN 

algorithm. 

Kim 
2020[46] 

DRL DRL-based agents 
excel in collision 

avoidance. 

Insufficient 
discussion on real-
world challenges 
and adaptability. 

Self-driving agents 
outperformed humans 

and AEB in safety. 

Hishmeh 
2020[47] 

CARLA 
simulation 
with Coach 

DRL 
Framework. 

Utilizing Dueling 
DQN for AV obstacle 

avoidance. 

Lack of specificity 
regarding addressed 

challenges or 
limitations in 

autonomous driving 
systems. 

Dueling DQN 
evaluated, achieving 

Atari benchmark 
results, using CARLA 

simulation. 

Lu 
2020[48] 

Hierarchical 
RL for 

decision-
making and 

planning. 

Hierarchical RL 
enhances efficiency 

and decision-making. 

Optimizing behavior 
decisions amid 

vehicle dynamics 
complexities. 

Comparative analysis 
of decision-making 

algorithms' simulation 
outcomes. 

Josef 
2020[49] 

DRL for 
close-range 

terrain 
navigation 

Novel DRL method 
enhances robot 

navigation in rough 
terrain. 

Reliance on heavy 
computation limits 

practicality. 

Novel DRL-based 
terrain navigation 

with improved 
performance. 

Palanisam
y 

2020[50] 

POSG  Realistic POSG for 
connected 

autonomous driving. 

Deep RL struggles in 
dynamic 

environments. 

Experiments validate 
proposed method. 

Duan Supervised High performance, Neglect of traffic Effective performance, 
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2020[51] imitation for 

driving 

decisions. 

flexibility, 
adaptability, and task 

integration. 

rules, safety, and 
environmental 

factors. 

minimal collisions in 
diverse scenarios. 

Emuna 
2020[52] 

DRL Algorithm promising 
for autonomous 

driving, validated in 
simulation and real-

world. 

Generalization in 
RL, state-space 

variations, moving 
obstacles. 

Algorithm achieves 
expert-like 

autonomous driving, 
validated in 

simulation and real 
vehicle, compared to 

others. 

Fernando
2021[53] 

Two-stage 
encoding 
with FCN, 
LSTM, and 

MaxEnt 
refinement. 

Enhanced accuracy 
with deep learning, 
novel encoding, and 
improved MaxEnt 

formulation. 

Limited 
applicability, 

uncertain 
effectiveness, 
require more 

research. 

Advanced behavior 
prediction techniques 

demonstrated, with 
room for 

improvement. 

Orgovan 
2021[54] 

RL Increase RL 
awareness, propose 

drifting solution, 
evaluate 

experimentally. 

Limited 
generalizability, 
results vary with 

parameters. 

RL agent handles 
drifting, needs 

practical validation. 

Chukamp
haeng202

1[16] 

TD3, SAC RL benchmark 
environment 
introduced. 

Complexity, sensor 
evaluation, reward 
design, end-to-end 

learning, and 
validation 

highlighted. 

Comparison of RL 
algorithms, optimal 
configurations with 
SAC and TD3, using 

direction-guided 
rewards 

Zou 
2021[55] 

Deterministi
c strategies, 
actor-critic 
framework, 

empirical 
reuse in 

DQN. 

Vision-based 
algorithm enhances 
efficiency, stability, 

safety, and 
generalizability in 

autonomous driving. 

Future work needed 
for algorithm 

transferability and 
scalability to diverse 
driving conditions. 

Algorithm surpasses 
traditional methods in 

stability, safety, 
efficiency, and 
adaptability. 

Cao 
2022[56] 

CARL CARL method 
improves safety, 

tackles RL 
uncertainty, utilizes 

self-learning, and 
enhances algorithm 
performance with 

more data. 

CARL requires 
baseline policy, high 

RL confidence, 
limited scenario 

evaluation. 

CARL outperformed 
RL and rule-based 

policy in roundabout 
simulation. 

Chen 
2022[57] 

DRL Generalization, 
efficiency, and 

exploration 
improved. 

Sensitivity to sensor 
data, expertise, and 
hyperparameters. 

Superior performance 
validated across two 

tasks with 
interpretability 

insights. 

G. Discussion 
Table 1 provides a comprehensive review of various algorithms, their 

associated advantages, disadvantages, and results in the realm of autonomous 
driving. It highlights the diverse array of techniques utilized, ranging from deep 
reinforcement learning (DRL) to imitation learning and hierarchical reinforcement 
learning (RL), each aimed at tackling specific challenges such as lane keeping, 
urban dynamics, and autonomous highway driving. 
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While each algorithm offers unique benefits like improved safety, efficiency, 
and adaptability, they also come with their own set of limitations, including 
computational costs, reliance on simulated environments, and challenges in real-
world applicability. Notably, the effectiveness of these approaches is assessed 
through simulations and real-world experiments, showcasing their potential for 
practical implementation in autonomous driving systems. 

However, the review reveals common gaps across these methodologies, 
including limited generalizability, uncertainty in effectiveness, and the need for 
further research to address scalability and transferability issues. These findings 
emphasize the ongoing challenges in autonomous driving research and underscore 
the importance of continued exploration and development in this rapidly evolving 
field. 
H. Conclusion 

This paper presents a comprehensive review on deep RL frameworks for 
autonomous driving, that have become a promising and thriving research field. 
Deep RL provides the necessary robustness to design adaptive and intelligent 
driving policies for the complex and unstructured dynamic environment. The 
results of the review indicate that RL algorithms are superior to traditional 
methods and can become a game-changer for autonomous driving. Study outcomes 
reveal that deep RL has not yet provided satisfactory solutions for dynamic and 
real-world environments. While deep RL incurs fewer assumptions about the 
behavior of physical and social phenomena, it is still subject to sample randomness 
and distributional shift. Also, these techniques are computationally expensive and 
require abundant data and computational resources. Further research is needed to 
address pressing practical issues to boost the autonomous driving industry's 
development and make the future of autonomous vehicles more promising. Future 
research can be extended by exploring potential techniques that can bridge the gap 
between simulation and the real world, handling non-stationary environments, 
requiring less computation, and improving the scalability of these systems. 
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