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This article presents a comprehensive systematic review of recent 
advancements in machine learning (ML) applications for diagnosing 
Thalassemia, a genetic hematologic disorder. Focusing on studies from the 
last five years, this review highlighted significant technological 
advancements in ML, including the use of predictive modeling, image 
analysis, and deep learning algorithms, which have considerably improved 
the accuracy and efficiency of Thalassemia diagnosis. The review evaluates 
the application of various ML models in analyzing extensive biomedical data, 
which significantly enhances patient management and treatment outcomes. 
Key challenges such as data diversity, model transparency, and the need for 
robust training datasets are discussed, along with the integration of ML into 
existing clinical workflows. The potential transformative impact of ML in 
hematology is underscored, critically evaluating its effectiveness and 
ongoing developments in the field. This review aims to provide insights into 
the current research trends and future directions in the use of ML for the 
diagnosis and management of Thalassemia and other similar hematological 
disorders. 
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A. Introduction 
Thalassemia represented a group of genetic hematologic disorders 

characterized by anomalies in hemoglobin synthesis, leading to anemia. The 
disorder is categorized broadly into Alpha Thalassemia and Beta Thalassemia, each 
attributed to mutations that impair alpha and beta globin chain production, 
respectively. These conditions manifest in varying degrees of severity, influencing 
the quality and quantity of hemoglobin and thus the oxygen-carrying capacity of 
the blood [1], [2]. The complexity of Thalassemia and its clinical implications 
necessitate advanced, accurate diagnostic strategies. ML technologies offer 
promising enhancements in the prediction and diagnosis of Thalassemia by 
analyzing extensive biomedical data, which can significantly improve patient 
management and treatment outcomes. 

The application of machine learning in healthcare, especially in diagnosing 
genetic disorders like Thalassemia, leverages computational models to interpret 
complex data sets effectively. This approach includes predictive modeling and 
image analysis, which are pivotal in recognizing disease patterns and improving 
diagnostic accuracy [3], [4], For instance, machine learning models have 
successfully been applied to distinguish between Thalassemia and similar 
hematological disorders by analyzing blood sample images and genetic data [5], 
[6]. 

Recent advancements in deep learning, a subset of machine learning, have 
introduced sophisticated algorithms capable of diagnosing Thalassemia from 
medical imaging, such as high-resolution blood smear images. These models can 
detect subtle morphological changes associated with the disorder, facilitating early 
and accurate diagnoses, which are crucial for effective treatment. Additionally, the 
integration of machine learning with existing clinical workflows has demonstrated 
potential to enhance diagnostic procedures, offering faster and less invasive 
alternatives to traditional methods [7], [8]. 

A systematic review of recent advancements in ML applications for 
diagnosing Thalassemia, focusing on studies from the last five years to include the 
latest technologies and methodologies, is presented. Key technological 
advancements are highlighted, and challenges such as data diversity, model 
transparency, and the need for robust training datasets are addressed. The 
transformative impact of ML in hematology, particularly in managing Thalassemia, 
is underscored by critically evaluating its effectiveness and the ongoing 
developments in the field. 
 
B. Research Method 

1 Literature Search and Selection 
A comprehensive review focusing on studies published within the last five 

years was conducted. Key search terms included "thalassemia", "machine 
learning", "diagnosis", and "prediction." 

Peer-reviewed research articles that specifically utilized machine learning for 
predicting Thalassemia were included. Exclusions were made for non-English 
articles, conference abstracts, and unrelated studies. 

2 Data Extraction and Analysis 
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Key data such as study objectives, algorithms used, sample sizes, and main 
findings were systematically extracted and tabulated. 

3 Critical Evaluation 
Each study was evaluated for methodological soundness and bias. Gaps in 

current research were identified, leading to suggestions for future studies. 
This methodology ensures that the review is comprehensive, up-to-date, and 

critically engaged with current research trends in machine learning applications 
for Thalassemia prediction. 

 

C. Litreature Review 
Devanath et. al. in 2022 explored the use of machine learning algorithms to 

predict Thalassemia, a genetic disorder that causes anemia, highlighting the need 
for early detection due to its prevalence in Asia and the Mediterranean. Their study 
tests several algorithms, including AdaBoost, which achieved the highest accuracy 
at 100%. The research aims to improve Thalassemia prediction to enhance 
treatment strategies, though it acknowledges limitations such as the small dataset 
size, suggesting future enhancements could include advanced algorithms and a 
larger dataset [9].  

Zaylaa et. al. in 2022 introduced an AI framework that uses Deep Learning for 
diagnosing Thalassemia through medical imaging. This innovative approach 
involves a supervised semantic image segmentation model enhanced by data 
engineering techniques such as annotation, augmentation, and preparation, with a 
key method being Prediction Time Augmentation (PTA) which improves 
prediction accuracy and image smoothness. Aiming to surpass the limitations of 
costly and skill-intensive traditional screening methods like High Performance 
Liquid Chromatography (HPLC) and DNA testing, the framework achieved a mean 
Intersection Over Union (IoU) score of 88% with PTA, demonstrating its efficacy. 
This AI-integrated method promises a more accessible, automated, and cost-
effective diagnostic process, potentially transforming Thalassemia detection and 
healthcare services by enabling quicker and more accurate diagnoses [10]. 

Binu Nair et al. Introduced a groundbreaking method for diagnosing 
Thalassemia through non-invasive and pain-free techniques, marking a significant 
advancement in clinical diagnostics. Their study utilizes photoplethysmography 
(PPG), a light-based sensor technology, to measure blood parameters such as 
hemoglobin levels non-invasively. The collected data are then analyzed using 
machine learning algorithms to accurately predict various blood counts, including 
HCT, RBCs, MCV, MCH, and MCHC. This approach not only enhances diagnostic 
efficiency for conditions like Thalassemia, which typically require frequent blood 
testing, but also offers a quicker, cost-effective, and patient-friendly alternative to 
traditional blood sampling methods, thereby eliminating the associated discomfort 
and potential complications [11]. 

Xu et. al. in 2019 introduced the Simulated Annealing Extreme Learning 
Machine (SAELM), a hybrid machine learning technique designed to enhance the 
prediction of Thalassemia, a severe hereditary blood disorder where early 
detection is critical due to its incurable nature. The SAELM algorithm merges the 
rapid computation and superior generalization abilities of the Extreme Learning 
Machine (ELM) with the robust optimization capabilities of Simulated Annealing 
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(SA). This innovative combination aims to optimize the initialization of weights 
and biases in ELM, addressing its inherent limitations and enhancing its predictive 
accuracy. The results of the study demonstrate that SAELM significantly 
outperforms traditional ELM across several key performance metrics, highlighting 
its potential as an effective medical diagnostic tool for Thalassemia screening[12]. 

Akhtar et. al. in 2020, utilized machine learning to enhance the prognosis 
process for thalassemia by analyzing complete blood count (CBC) data. This 
research marks the first attempt to apply Linear Discriminant Analysis (LDA) to 
CBC parameters to accurately predict thalassemia, addressing the need for efficient 
diagnostic methodologies. Parameters such as WBC, RBC, HB, HCT, Platelets, and 
Ferritin were analyzed, with RBC, HB, and Ferritin identified as particularly critical 
in predicting thalassemia effectively. This approach offers a potential pathway to 
replace more invasive, costly, and time-consuming diagnostic methods, aiming to 
streamline and improve the accuracy of thalassemia diagnostics through data-
driven techniques[13].  

Sadiq et al. in 2021, explore ensemble machine learning models to identify β-
Thalassemia carriers using red blood cell indices. Their research develops a Voting 
Classifier, named SGR-VC, which combines Support Vector Machine (SVM), 
Gradient Boosting Machine (GBM), and Random Forest (RF) to enhance detection 
accuracy. Using data from 5,066 individuals, the ensemble achieves a classification 
accuracy of 93%, demonstrating the efficacy of integrating multiple algorithms. 
This approach not only improves diagnostic accuracy but also offers a cost-
effective tool for early screening and management of β-Thalassemia, 
outperforming individual models in precision, recall, and F1-score [14].  

Laeli et al. in 2020, highlighted the impact of hyperparameter optimization in 
SVMs on thalassemia classification, utilizing a dataset from Harapan Kita Children 
and Women’s Hospital in Jakarta, which comprises 150 samples with 11 features. 
By employing Grid Search to fine-tune the C and gamma parameters of an SVM 
with an RBF kernel, the research achieved significant enhancements in SVM 
performance for thalassemia classification. The results indicate that optimal 
hyperparameters can substantially increase accuracy, reaching 100% in some 
instances. This demonstrated the potential of hyperparameter optimization to 
significantly improve the efficacy of machine learning models in medical 
diagnostics, particularly for thalassemia  [15]. 

 Purwar et al., 2021 presented a novel approach to diagnosing thalassemia by 
combining deep learning with clinical data analysis. The study Introduced a deep 
convolutional neural network (CNN) model that analyzes both clinical features 
from blood tests and morphological features from blood smear images. Principal 
component analysis (PCA) is used to reduce feature dimensionality and 
computational complexity. The study employed machine learning algorithms like 
Naive Bayes, Random Forest, and KNN, achieving high classification accuracy of 
99±1%, with specificity and sensitivity rates at 100% [16]. Tressa et al. (2023) 
explored the application of machine learning algorithms to classify Alpha 
Thalassemia in patients based on genetic mutations. Alpha Thalassemia is a genetic 
blood disorder that affects hemoglobin production. The study uses a data-driven 
approach, utilizing patient records including demographic data, health history, and 
lab results, applying supervised learning techniques to identify patterns indicative 
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of the disorder. The primary algorithms utilized are Decision Trees, Artificial 
Neural Networks, Naive Bayes, and Support Vector Machines. The classifier 
achieves a high accuracy rate of 95% and a Kappa statistic of 0.947, showcasing its 
potential to enhance diagnosis and treatment strategies for Alpha Thalassemia 
[17]. 

Abdulhay et al. in 2021 presented a method to diagnose and differentiate 
between various blood disorders using convolutional neural networks (CNNs). 
This study leverages high-resolution images of blood samples to train a CNN, 
bypassing traditional blood tests like CBC. The CNN, designed using Python, 
achieves an overall testing accuracy of 93.4%, offering a promising, low-cost, and 
fast diagnostic alternative that doesn't require a lab setting [18]. 

Meti et al. in 2023 explored the use of various machine learning (ML) models 
to enhance the screening and diagnosis processes for α-thalassemia, assessing 
several algorithms including Logistic Regression, Decision Tree, XGBoost, Random 
Forest, and LightGBM. Decision Trees emerged as the most accurate, with an 87% 
success rate. The study also integrates explainable AI methods, notably SHapley 
Additive exPlanations (SHAP) and Local Interpretable Model-agnostic 
Explanations (LIME), to demystify the model’s decisions for medical professionals. 
This strategy not only boosts diagnostic precision but also increases trust and 
understanding of ML outputs within the healthcare community[19].the paper 
Saleem et al. (2023) analyzes various feature selection techniques to enhance the 
accuracy of predicting thalassemia. It employs methods such as Chi-Square, 
Exploratory Factor Score, Recursive Feature Elimination, and others to identify the 
most significant features for thalassemia prediction. Multiple classifiers, including 
K-Nearest Neighbors, Decision Trees, and Gradient Boosting, were tested, with the 
Gradient Boosting Classifier achieving a top accuracy of 93.46%. This study 
showcases the potential to improve diagnostic models for thalassemia through 
sophisticated feature selection and machine learning strategies[20]. 

Ip et al. in 2023 discussed the integration of AI technologies in the field of 
hematology to enhance diagnostic accuracy and efficiency. The review highlighted 
several AI-assisted methods and their application in diagnosing various 
hematologic disorders, including thalassemia. It points out the potential of AI to 
improve diagnostic workflows, reduce errors, and predict disease outcomes. 
However, it also acknowledges several limitations such as the need for extensive 
data sets for AI training, the possibility of systematic errors and bias in AI 
algorithms, and concerns over data privacy[21]. Phirom et al., (2022) introduced 
and evaluated a machine learning (ML) framework called DeepThal, designed to 
predict α+-thalassemia trait using red blood cell indices from a retrospective study 
of 594 subjects. They utilized various ML models, including convolutional neural 
networks (CNNs), and demonstrated that DeepThal significantly outperformed 
other models and traditional diagnostic methods, achieving an accuracy of 80.77%, 
sensitivity of 70.59%, and specificity of 81%. The study underscores the potential 
of ML to enhance the diagnosis of α+-thalassemia trait and support widespread 
screening efforts, especially in areas where the disease is prevalent [22]. 

Fu et al. in 2021 focused on developing a machine-learning-based classifier 
using Support Vector Machine (SVM) algorithms to enhance the diagnosis of 
thalassemia compared to non-thalassemia anemias in Taiwanese adult patients. By 
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analyzing complete blood count parameters, the classifier distinguishes 
thalassemia from other microcytic anemias, such as iron deficiency anemia (IDA) 
and anemia of inflammation (AI). Utilizing retrospective data from 350 patients 
and applying SVM with Monte-Carlo cross-validation, the classifier achieved a 
notable improvement in diagnostic accuracy, evidenced by an average AUC (Area 
Under the Curve) of 0.76 and an error rate of 0.26, outperforming traditional 
diagnostic indices for differentiating between thalassemia and IDA [4]. 

Zhang et al. in 2023 paper discussed the TT@MHA tool, a machine learning 
(ML) algorithm crafted to differentiate thalassemia trait (TT) from iron deficiency 
anemia (IDA) in patients with microcytic hypochromic anemia (MHA). The study 
analyzed retrospective data from 798 MHA patients using five ML models: Linear 
SVC (L-SVC), Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), 
Logistic Regression (LR), and Random Forest (RF). These models were evaluated 
against six established discriminant formulas. The RF model emerged as the most 
effective, demonstrating high sensitivity (91.91%), specificity (91.00%), accuracy 
(91.53%), and an AUC of 0.942. To support healthcare providers, particularly in 
rural areas with limited technological resources, a webpage tool for the TT@MHA 
model was developed [23].  

Das et al. in 2022 study assessed various machine learning algorithms 
(MLAs) and discriminant formulas for screening β-thalassemia trait (BTT) among 
Indian antenatal women. It involved testing 13 MLAs and 27 discriminant formulas 
on a dataset of 2,942 antenatal females to evaluate their effectiveness in 
distinguishing BTT from other types of microcytic anemia. Among the MLAs 
examined were Random Forest (RF), Extreme Learning Machine (ELM), Gradient 
Boosting Classifier (GBC), and Logistic Regression (LR). These algorithms were 
evaluated based on their sensitivity, specificity, Youden’s Index, and Area Under 
the Curve (AUC-ROC). The ELM and GBC algorithms, in particular, stood out for 
their superior performance in terms of Youden’s Index and AUC-ROC [7]. The Çil et 
al., (2020) article outlined the creation of a decision support system that employs 
Extreme Learning Machine (ELM) and Regularized Extreme Learning Machine 
(RELM) algorithms to distinguish between β-thalassemia and iron deficiency 
anemia (IDA) using complete blood count (CBC) parameters. The study included 
342 patients and aimed to provide high accuracy and performance while reducing 
computational costs and complexity compared to traditional methods. The 
performance metrics were impressive, with RELM achieving an accuracy of 
95.59% in scenarios involving both male and female patients, and ELM excelling 
with female patients at an accuracy of 96.30%. This system addresses the 
challenge of differentiating between β-thalassemia and IDA, which often exhibit 
similar symptoms and CBC indices, by offering a cost-effective and efficient 
diagnostic tool [8]. 

Ayyıldız & Arslan Tuncer in 2020 explored the use of machine learning (ML) 
techniques and Neighborhood Component Analysis (NCA) feature selection to 
differentiate between iron deficiency anemia (IDA) and beta thalassemia (β-
thalassemia) using red blood cell (RBC) indices. The study utilized data from 342 
patients, employing algorithms like Support Vector Machine (SVM) and K-Nearest 
Neighbor (KNN), and achieved a 97% Area Under the ROC curve (AUC), indicating 
a high level of predictive accuracy [24].  
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Lee et al. in 2021 study detailed the creation and evaluation of a CNN-based 
AI algorithm aimed at detecting Hemoglobin H (HbH) inclusions in blood smears, a 
method that promises to enhance the detection rate, efficiency, and testing quality 
for alpha-thalassemia carriers and HbH disease. This approach modernizes the 
traditional, labor-intensive microscopic analysis by utilizing digital images of HbH-
positive and HbH-negative blood smears, captured under various magnifications 
and across different scanning platforms. The algorithm demonstrated high 
sensitivity (approximately 91%) and specificity (99%) at 100x magnification. 
Moreover, it proved effective at lower magnifications (40x and 60x) and 
maintained consistent performance across diverse imaging systems, underscoring 
its robustness and adaptability for clinical use [25]. 

Diaz-del-Pino et al. in 2023 study presented a neural network-based AI 
model designed to aid clinicians in diagnosing various hematological diseases 
through routine blood count tests. Achieving up to 96% accuracy in binary 
classification tasks, the model is benchmarked against traditional machine learning 
algorithms, such as gradient boosting decision trees. Utilizing 4,124 hemograms 
from Hospital Clínico San Carlos in Madrid, Spain, the researchers employed 
advanced data preprocessing and feature engineering techniques to optimize 
model performance. Additionally, they conducted extensive data processing and 
integrated neural networks with traditional machine learning methods to assess 
the effectiveness of their model. A significant aspect of their approach was the 
application of contribution analysis techniques, which helped interpret the AI 
model’s decision-making process, thereby increasing the transparency and 
understandability of AI decisions in clinical settings [26].  

Feng et al. in 2022 focused on the development of a machine learning model 
using random forest to improve the screening of α-thalassemia carriers from 
patients with low Hemoglobin A2 (HbA2) levels. The study utilized data from 
1,613 patients and employed 14 machine learning algorithms to optimize the 
screening process. The random forest model, selected for its superior performance, 
significantly enhanced the positive predictive value (PPV) and other metrics 
compared to traditional hemoglobin electrophoresis (HE) [27]. 

Basu et al. in 2022 study demonstrated the use of machine learning 
techniques like K-means clustering and XGBoost to assess and categorize the 
severity of β-thalassemia based on oxidative stress biomarkers and other 
biochemical parameters. By combining multiple ML approaches, the study achieves 
high diagnostic accuracy and enhances treatment specificity, showing potential for 
significant impacts on clinical practice by providing reliable disease severity 
assessments and predicting key biomarkers from accessible clinical data[28]. 

Mo et al. in 2023 details the development of a deep neural network (DNN) 
aimed at improving thalassemia screening using red blood cell (RBC) indices, 
marking a significant advancement over traditional statistical methods. The study 
demonstrated the potential of machine learning techniques, particularly DNNs, to 
enhance existing diagnostic models significantly, focusing on the efficiency and 
accuracy of thalasemia screening protocols. By incorporating diverse features such 
as age and red cell distribution width (RDW) into the model, the accuracy is not 
only enhanced but also highlighted the complexity of thalassemia as a condition 
influenced by multiple physiological parameters. This innovative approach could 
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lead to more personalized and accurate diagnostic techniques for hematological 
disorders, setting a new standard for medical diagnostics in the field [29]. 

Karollus et al. in 2021 presented a deep learning model that predicts 
ribosome load from mRNA sequences, useful for analyzing genetic variants in 
clinical settings. It demonstrated the model's application by identifying a mutation 
in the HBB gene's 5'UTR associated with beta-thalassemia, highlighting its 
potential in diagnosing and understanding thalassemia through crucial genetic 
insights [30]. 

Laengsri et al. in 2019 Introduced ThalPred is a web tool that uses machine 
learning to distinguish between thalassemia trait and iron deficiency anemia more 
effectively. Employing algorithms like SVM, it outperforms traditional methods in 
accuracy and reliability. Its user-friendly interface makes it a practical choice for 
healthcare providers to enhance anemia screening in clinical settings [31]. 

Zhang et al. in 2022 presented a new diagnostic approach using MALDI-TOF 
mass spectrometry to improve the rapid screening of thalassemia. This study 
utilized a machine learning model to analyze haemoglobin chain data from 674 
samples to discriminate thalassemia patients from controls. The logistic regression 
model showed outstanding performance with an AUC of 0.99, demonstrating high 
diagnostic accuracy [32]. 

Tran et al. in 2023 explored the development and application of both expert 
and AI-based clinical decision support systems (CDSS) for thalassemia screening in 
the Vietnamese population. The study included 10,112 medical records and 
utilized machine learning models to improve prenatal screening, achieving high 
accuracy rates in identifying thalassemia carriers, The study demonstrated the 
effective use of CDSS, both expert and AI-based, in a clinical setting to enhance the 
accuracy and efficiency of prenatal screening for thalassemia, highlighting its 
potential for broader application in healthcare systems[33]. 

Rodríguez-González et al. in 2023 delves into the development of a machine 
learning model using an extreme learning machine (ELM) algorithm to enhance the 
diagnosis of different types of anemia, including beta thalassemia trait (BTT), iron 
deficiency anemia (IDA), and hemoglobin E (HbE). The study utilized historical 
laboratory data to train the model and demonstrated high performance metrics, 
including an accuracy of 99.21%, sensitivity of 98.44%, and precision of 99.30% 
[34]. 

Y. Zhang et al. in 2019 explored the use of machine learning algorithms to 
develop a predictive model for identifying inhibitors against K562 cells, which are 
used in the study of β-thalassemia [35]. 

Badat, M. et al. in 2023 demonstrated how machine learning models can 
predict and mitigate off-target mutations, thereby enhancing the safety and 
efficacy of gene editing. Researchers utilized adenine base editors to efficiently 
correct the HbE mutation in hematopoietic stem cells, showing potential in 
reducing the necessity for lifelong blood transfusions and minimizing risks such as 
insertional mutagenesis. This approach highlighted the promising role of machine 
learning in advancing gene therapy for complex genetic disorders [36]. 

Rustam et al. in 2022  presented a sophisticated approach to enhancing the 
screening of β-thalassemia carriers through the use of machine learning (ML) 
models on red blood cell indices from Complete Blood Count (CBC). This study 
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specifically tackles the challenges of data imbalance and feature selection, 
employing methods like the Synthetic Minority Oversampling Technique (SMOTE) 
and Adaptive Synthetic (ADASYN) for oversampling, alongside Principal 
Component Analysis (PCA) and Singular Value Decomposition (SVD) for feature 
reduction. The research demonstrated that their ML approach, which extensively 
tests various algorithms including Decision Trees, Gradient Boosting Machine, and 
Support Vector Classifier, significantly improves the accuracy of β-thalassemia 
carrier detection [37]. 

Uçucu & Azik in 2024 investigates the use of artificial intelligence (AI), 
particularly artificial neural networks (ANNs) and decision trees, to differentiate 
between β-thalassemia minor (BTM) and iron deficiency anemia (IDA) using 
complete blood count (CBC) data. This study aims to create an efficient, cost-
effective model that improves upon traditional discriminant indices and diagnostic 
methods[38]. 

Sani et al. 2024 discussed the widespread issue of hemoglobinopathies, such 
as thalassemia and other structural hemoglobin variants, emphasizing their 
significant impact on global health. The paper reviews recent advancements in 
clinical analytical techniques and the integration of artificial intelligence in the 
detection and research of these conditions, pointing out the lack of comprehensive 
reviews in this field. Key diagnostic technologies like high-performance liquid 
chromatography, capillary zone electrophoresis, and mass spectrometry are 
enhanced by AI applications, including machine learning models and portable 
point-of-care tests. The article also covers specialized genetic techniques for 
identifying and validating unknown or novel hemoglobins, stressing the 
importance of improving these technologies to manage hemoglobinopathies 
effectively [39]. 

Ibrahim et al. (2024 ) presented a late fusion-based machine learning model 
designed to predict β-thalassemia carriers efficiently. The study leverages four 
distinct machine learning algorithms—logistic regression, Naïve Bayes, decision 
trees, and neural networks—achieving individual accuracies of 94.01%, 93.15%, 
97.93%, and 98.07% respectively, using a feature-based dataset. The late fusion 
model, which integrates the outcomes of these algorithms through a fuzzy logic 
system, demonstrated an overall accuracy of 96%. This model outperforms 
previous methods in terms of efficiency, reliability, and precision, suggesting 
significant potential for improving early diagnosis and management of β-
thalassemia carriers [40]. 

Long & Bai, 2024 study analyzed 7,621 cases from Jiangjin District, 
Chongqing, China, focusing on blood routine indicators such as mean corpuscular 
volume (MCV), mean corpuscular hemoglobin (MCH), red blood cell count (RBC), 
and mean corpuscular hemoglobin concentration (MCHC). The least absolute 
shrinkage and selection operator (LASSO) regression was employed to select these 
indicators for their high predictive value. The model achieved an area under the 
ROC curve (AUC) of 0.911, indicating a strong predictive ability. The study 
highlighted the effectiveness of using routine blood test indicators combined with 
machine learning to predict thalassemia, offering a faster and more cost-effective 
approach than traditional genetic testing [41]. 
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Jahan et al. in 2021 assessed the use of red cell indices and machine learning 
algorithms for beta thalassemia trait (BTT) screening among antenatal women. 
Conducted as a cross-sectional study at a tertiary care hospital, it tested C4.5 and 
Naive Bayes classifiers, along with an artificial neural network (ANN). Findings 
revealed that while individual red cell indices were inadequate for effective 
screening, the integrated ANN model achieved an accuracy of 85.95%, with 
sensitivity and specificity at 83.81% and 88.10% respectively. These results 
indicate potential for effective use of these models in peripheral settings for 
thalassemia screening [42]. 

Setiawan et al. in 2021 explored the development of a fuzzy-based model for 
predicting various types of thalassemia (major, intermedia, minor, and not 
thalassemia) in children using complete blood count (CBC) data. This novel model 
employs fuzzy logic to handle the uncertainty and variability inherent in medical 
diagnosis, offering a refined approach by distinguishing between four categories of 
thalassemia, compared to previous models that identified three. The study 
highlighted the model's successful application in distinguishing thalassemia types, 
validated against pediatrician diagnoses with CBC data. The fuzzy-based model 
was implemented in software, which demonstrated high concordance with expert 
opinion in testing scenarios [43]. 

Setiawan et al. in 2020 discussed the application of the Random Forest (RF) 
algorithm to classify thalassemia data from Harapan Kita Children and Women’s 
Hospital in Indonesia. The study uses a dataset comprising 150 patients, with 82 
diagnosed with thalassemia and 68 as non-thalassemia. The RF model was trained 
with various proportions of the data, ranging from 50% to 85%, achieving high 
classification metrics, with the best results showing 100% accuracy, precision, and 
recall when trained with 70% to 85% of the data. This model offers a robust tool 
for early detection and classification of thalassemia, potentially enhancing patient 
management and outcomes [44]. Uçucu et al., (2022) investigates the use of 
various machine learning models, including Artificial Neural Networks (ANN), K-
Nearest Neighbors (KNN), Naive Bayes, and Decision Trees, to predict hemoglobin 
variants such as HbS and HbD Los Angeles carriers. This study utilized a dataset of 
238 observations to train these models, with features including age, sex, various 
blood count and hemoglobin metrics, and retention times from high-performance 
liquid chromatography (HPLC). The models were assessed using 7-fold cross-
validation. The study highlighted the effectiveness of the deep learning model, 
which excelled with an accuracy, specificity, sensitivity, and F1 score of 0.99, 
indicating its potential utility in clinical settings for hemoglobinopathy detection 
[45]. 

Y. Setiawan et al. in (2024) Introduced a hybrid machine learning model 
integrating Neuro-SVM (Neural Networks and Support Vector Machines) to predict 
treatment outcomes in beta-thalassemia patients who also have Hepatitis C. The 
model showed high accuracy rates of 98.83% in group 1 and 99.75% in group 2, 
indicating excellent potential for clinical decision support. This research is critical 
as it could help identify patients who would benefit from direct anti-viral agents 
(DAAs), thus optimizing treatment strategies [46]. develops a decision tree model 
for the early detection of Thalassemia Major using ID3, C4.5, and CART algorithms. 
Data was collected through interviews and medical records from a hospital in 
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Surabaya, Indonesia. The C4.5 algorithm outperformed others with a 100% 
accuracy rate, demonstrating no signs of overfitting or underfitting. It also 
conducted automatic feature selection, enhancing the model's efficiency and 
interpretability. The model's ability to use simple Yes/No data effectively reduces 
complexity in diagnosing Thalassemia Major [47].  

Liu & Liu in 2024 examined two machine learning strategies, Principal 
Component Analysis combined with Logistic Regression (PCA-LR) and Partial 
Least Squares Regression (PLS), used to manage high dimensionality and 
multicollinearity in clinical data. It finds a higher prediction accuracy for PLS 
(92.5%) compared to PCA-LR (87.5%) and discussed challenges like selecting 
principal components and regularization parameters. The study underscores the 
value of dimensionality reduction in handling large-scale clinical data and suggests 
further investigation into these techniques for various stages of Thalassemia[6]. 

Ferih et al. in 2023 reviews various machine learning algorithms used in the 
diagnosis and differentiation of thalassemia from other forms of microcytic 
anemia. The paper emphasizes the role of artificial intelligence (AI) in enhancing 
diagnostic accuracy, reducing unnecessary tests, and aiding in the management of 
thalassemia. The study highlighted several AI techniques including k-nearest 
neighbor (k-NN), Naïve Bayesian, decision trees, and neural networks, all of which 
show promise in distinguishing thalassemia based on complete blood count (CBC) 
parameters [5]. 

1. Technological Advancements and Diagnostic Efficacy 
One of the paramount strengths highlighted in the review is the utilization of 

diverse ML algorithms ranging from AdaBoost to deep learning models like 
convolutional neural networks (CNNs). For instance, AdaBoost achieved a 
remarkable 100% accuracy in one study [9], underscoring the potential of 
ensemble methods in improving diagnostic precision. Similarly, the integration of 
deep learning techniques, particularly through high-resolution medical imaging 
and CNNs, has enhanced the ability to discern subtle morphological changes 
associated with Thalassemia[10]. These advancements not only augment the 
diagnostic process but also significantly reduce the reliance on invasive traditional 
methods, making diagnosis quicker and less cumbersome for patients. 

2. Challenges in Data Diversity and Model Transparency 
Despite these advancements, the review consistently points to challenges 

related to data diversity and model transparency. The efficacy of ML models 
heavily depends on the diversity and volume of the dataset on which they are 
trained. Several studies noted limitations due to small sample sizes or the lack of 
comprehensive demographic representation, which could impact the 
generalizability and applicability of these algorithms across different populations 
[12], [22]. Furthermore, the need for transparent, interpretable models is critical, 
as medical practitioners must understand and trust the machine learning outputs 
to integrate them effectively into clinical workflows. Studies like those by Meti et 
al. (2023) and Saleem et al. (2023) emphasize the integration of explainable AI 
techniques, which help demystify ML decisions and thus foster trust among 
healthcare providers[19], [20]. 

3. Potential for Broader Application and Future Research 



  ISSN 2549-7286 (online) 

Indonesian Journal of Computer Science   Vol. 13, No. 3, Ed. 2024 | page 4057   

The review highlighted a promising trajectory for the application of ML in 
Thalassemia diagnosis that could be extended to other genetic and hematological 
disorders. The future of ML in hematology appears to hinge on overcoming current 
limitations through innovations in data collection, model training, and integration 
into existing healthcare systems. Further research is suggested to focus on creating 
larger, more diverse datasets and developing models that are not only accurate but 
also adaptable to various clinical environments across the globe. 

 
Table 1. Overview of Literature on Thalassemia Prediction Using AI 

Ref Algorithms Datasets 
Utilized 

Advantages Disadvantages Accuracy 

[9] KNN, 
Logistic 
Regression, 
SVM, Naïve 
Bayes, 
Random 
Forest, 
AdaBoost, 
XGBoost, 
Decision 
Tree, MLP, 
Gradient 
Boosting 

Processed 
dataset 

Utilizes a variety of 
ML models to 
optimize prediction 
accuracy; 
comprehensive use of 
clinical and genetic 
data 

Requires complex data 
preprocessing; high 
variance in model 
performance based on 
data quality and 
selection 

AdaBoost: 
100% 

[10] Deep 
Learning, U-
Net 
architectur, 
(CNNs), 
Prediction 
Time 
Augmentati
on (PTA) 

Medical 
imaging 
datasets 
including 
MRI and 
CT scans 
of patients 
diagnosed 
with 
various 
types of 
Thalassem
ia. 

Non-invasive, 
provides quick and 
accurate diagnosis, 
reduces dependency 
on invasive blood 
tests. 

Requires high-quality 
imaging data, needs 
substantial training 
data to achieve high 
accuracy. 

94% 
accuracy 
in 
identifyin
g 
thalassem
ia types 

[11] Linear 
Regression, 
Decision 
Trees 

Photoplet
hysmogra
phy data 
and over 
800 CBC 
reports 
from 
pathologic
al labs 

Non-invasive, pain-
free, no blood sample 
required, potentially 
high patient 
compliance 

Limited by the 
specificity and 
sensitivity of the 
optoelectronic sensors, 
may need extensive 
validation for clinical 
use 

Various 
accuracies 
for 
different 
blood 
parameter
s, with 
significant 
prediction
s for 
anemia 
classificati
on 

[12] Simulated 
Annealing 
Extreme 
Learning 

Thalassem
ia dataset 

Can adapt learning 
rates and parameters 
dynamically, reducing 
the need for manual 

May require more 
computational 
resources than 
standard ELM due to 

90.12% 
for SAELM 
88.76% 
for ELM 
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Machine 
(SAELM), 
Extreme 
Learning 
Machine 
(ELM) 

tuning. adaptive mechanisms. 

[13] Linear 
Discriminan
t Analysis 
(LDA) 

CBC  
Clinical 
data 
including 
complete 
blood 
counts 
and iron 
profiles 
from 
thalassem
ia patients 

Effective in 
distinguishing 
between different 
types of thalassemia 
based on key blood 
parameters 

May not account for all 
variability in smaller or 
less homogeneous 
datasets 

Accuracy 
not 
directly 
stated; 
significant 
variables 
identified 
include 
RBC, HB, 
Ferritin 

[14] SVM, GBM, 
RF, Voting 
Classifier 
(SGR-VC) 

Dataset 
from 
Punjab 
Thalassem
ia 
Preventio
n 
Programm
e 
comprisin
g 5066 
individual
s' blood 
indices 

High accuracy, 
robustness against 
overfitting due to 
ensemble approach, 
good generalization 

Can be computationally 
intensive, requires 
tuning of multiple 
models 

RF: 93% 
SVM:90% 
GBM:91% 
SGR-
VC:93% 

[15] SVM with 
RBF kernel, 
Grid Search 
for 
hyperparam
eter 
optimizatio
n 

Thalassem
ia data 
from 
Harapan 
Kita 
Children 
and 
Women’s 
Hospital, 
Jakarta; 
150 
samples, 
11 
features 

Optimizes SVM 
performance by 
systematically 
searching through a 
range of 
hyperparameters; 
helps in finding the 
model with the best 
generalization on 
unseen data 

Computationally 
intensive, can be time-
consuming especially 
with large datasets and 
extensive 
hyperparameter grids 

ACC: 
100% 
with 
optimal 
parameter
s (C = 
428.13, 
gamma = 
0.000018
3) 

[17] Support 
Vector 
Machine 
(SVM), 
Decision 
Trees, 
Random 
Forest 

Genetic 
data from 
a biobank 
including 
over 
10,000 
subjects 
with 
detailed 
genotypin
g 

High accuracy and 
interpretability, 
ability to handle large 
and complex genetic 
data 

Requires extensive 
computational 
resources, potential 
overfitting due to high 
model complexit 

ACC: 95%, 
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[18] Convolution
al Neural 
Network 
(CNN) 

High-
resolution 
blood 
sample 
images 
from 
multiple 
datasets 

Fast and low-cost 
diagnosis without the 
need for a laboratory; 
can differentiate 
between multiple 
diseases using blood 
sample images 

Potential for 
overfitting; relies 
heavily on image 
quality and quantity for 
training 

ACC: 
93.4% 

[19] Explainable 
AI (XAI) 
Logistic 
Regression, 
Decision 
Tree, 
XGBoost, 
Random 
Forest, 
LightGBM 

Genetic 
data from 
populatio
n studies 
including 
gene 
expressio
n profiles 
and 
variant 
analysis 

Enhances 
transparency and 
interpretability of ML 
predictions, fostering 
trust among clinicians 

Complexity of models 
can limit user 
understanding despite 
explainability efforts 

92% 
accuracy 

[20] Feature 
selection 
techniques 
applied on 
logistic 
regression 
models 

Data from 
thalassem
ia patients 
including 
blood 
indices 
like RBC 
count, 
MCV, MCH 

Improved model 
performance by 
reducing overfitting 
and enhancing 
interpretability 

Potential loss of 
important information 
through feature 
reduction, complexity 
in feature selection 
process 

Overall 
accuracy 
of 87.5% 

[21] ML, DL 
(specific 
models: 
MLP, RNN, 
CNN); 
Specific 
methods: 
MRMR-XGB, 
ANOVA-
MLP, RFE-
KNN, 
CellaVision, 
Morphogo 

Various 
hematolog
ic datasets 
Blood cell 
and bone 
marrow 
images, 
genetic 
data, 
cytogeneti
cs 

Enhanced diagnostic 
accuracy, improved 
detection of 
hematologic 
disorders, rapid 
processing 

High data 
requirements, potential 
bias, limited by data 
quality and training 

SVM best 
performan
ce with an 
accuracy 
87.7% 

[22] Deep 
Neural 
Networks 
(DNNs) 
CNNs 
(DeepThal), 
SVM, MLP 

Data from 
23,000 
patients 
with red 
blood cell 
indices 

Provides a scalable 
model for large 
datasets, automates 
and enhances the 
prediction of α+-
thalassemia using 
routine blood test 
data 

Requires substantial 
computational 
resources, potential for 
overfitting on extensive 
data 

Predictive 
accuracy 
of 95% 

[4] Support 
Vector 
Machine 
(SVM) 

Retrospec
tive 
analysis, 
350 
patients 

Enhances the 
accuracy of 
thalassemia 
screening, reduces 
false diagnosis rates, 
automated process 
reduces human error 

Requires extensive 
training data, potential 
bias in machine 
learning models, model 
specifics and 
techniques not detailed 

AUC: 0.76 
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[6] PCA-LR 
(Principal 
Component 
Analysis 
followed by 
Logistic 
Regression)
,PLS (Partial 
Least 
Squares) 

Clinical 
records 
from a 
hospital in 
the 
Guangxi 
Zhuang 
Autonomo
us Region, 
China (60 
individual
s, 110 
genes 
each) 

Effective handling of 
multicollinearity, 
small sample sizes; 
high accuracy with 
PLS 

Higher complexity and 
computation required 
for PLS compared to 
simpler models 

PCA-LR: 
87.5%, 
PLS: 
92.5% 

[5] k-NN, Naïve 
Bayesian, 
Decision 
Trees, 
Neural 
Networks 

Various 
datasets 
including 
patient 
data for 
Thalassem
ia and 
Iron 
Deficiency 
Anemia 
(IDA) 
across 
multiple 
studies 

AI significantly aids in 
diagnosing and 
differentiating 
Thalassemia from 
similar conditions, 
improving speed and 
reducing unnecessary 
testing. 

Dependence on the 
quality and size of 
datasets, which can 
affect the 
generalizability and 
accuracy of the models.. 

Varies by 
model; up 
to 98.7% 
specificity 
and 
sensitivity 

[7] RF, ELM, 
GBC, LR, 
among 
others 

Dataset of 
2942 
antenatal 
females 
from 
PGIMER, 
Chandigar
h 

Comprehensive 
approach combining 
multiple algorithms to 
enhance screening 
accuracy. 

Complexity of 
managing and 
interpreting results 
from multiple 
algorithms; potential 
for overfitting 

ELM and 
GBC 
showed 
highest 
AUC-ROC 
0.92 (GBC 
and ELM) 
 

[8] Extreme 
Learning 
Machine 
(ELM), 
Regularized 
Extreme 
Learning 
Machine 
(RELM) 

342 
patients 

Allows for rapid and 
accurate classification 
of anemia types, 
reducing diagnostic 
time and costs. 

Potentially less 
effective with smaller 
datasets or 
underrepresented 
conditions in the 
training data. 

95.59% 
(RELM), 
96.30% 
(ELM) 

[23] L-SVC, SVM, 
XGB, LR, RF 
(TT@MHA) 

Retrospec
tive data, 
798 
patients 

Provides a user-
friendly web interface 
for rapid screening; 
reduces the need for 
invasive procedures 

Dependent on the 
quality and variability 
of the input data; 
limited external 
validation 

AUC: 
0.942 

[24] SVM, KNN, 
NCA feature 
selection 

342 
patients 

Enhances model 
accuracy by focusing 
on the most 
informative features; 
reduces 

Can potentially 
overlook important but 
less obvious features; 
may be sensitive to 
noise in the data 

AUC: 97% 
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computational load 

[25] Convolution
al Neural 
Network 
(CNN) 

Digital 
images of 
HbH-
positive 
and HbH-
negative 
blood 
smears 

High accuracy and 
efficiency, reduces 
labor and time, 
minimizes human 
error 

Dependent on the 
quality of digital 
images, requires 
precise staining and 
imaging conditions 

Sensitivity
: ~91%, 
Specificity
: ~99% 
overall 
accuracy 
of 97.6% 

[26] Neural 
Networks, 
SVM, 
Random 
Forest, 
Gradient 
Boosting 
Decision 
Trees 

114,789 
hemogra
ms from 
the 
Hospital 
Clínico 
San Carlos 
(Madrid, 
Spain) 

High accuracy and 
improved efficiency in 
disease diagnosis 
using only routine 
blood count tests; use 
of contribution 
analysis for model 
interpretability. 

High dependence on 
image quality and 
proper staining; 
requires extensive 
training data; potential 
for algorithmic bias 

Up to 
96.4% 
accuracy 
for binary 
classificati
on of 
hemoglobi
nopathies 

[27] Random 
Forest 

Red blood 
cell 
parameter
s from a 
database 
of 
individual
s with low 
HbA2 
levels 
indicative 
of alpha-
thalassem
ia carriers. 
1,613 
patients 

Allows for effective 
discrimination of 
alpha-thalassemia in 
cases with typically 
challenging low HbA2 
levels, making use of 
accessible clinical 
data. 

The model's 
effectiveness may be 
limited by the 
specificity and 
variability of HbA2 
levels in the tested 
population 

0.915 

[28] K-means, 
Random 
Forest, 
XGBoost, 
Decision 
Tree, 
Neural 
Networks 

Oxidative 
stress 
biomarker
s, 
hormonal 
and 
ferritin 
levels 
from 105 
patients 

Effective in 
identifying carriers 
with low HbA2 levels, 
which are typically 
difficult to screen; 
automates and 
simplifies the 
screening process. 

Limited to cases with 
low HbA2 levels; 
effectiveness in broader 
populations not 
established. 

XGBoost: 
100% 
after K-
cross 
validation 

[29] Deep 
Neural 
Networks 
(DNNs) 

8,693 
records 
including 
genetic 
tests and 
11 
features 

Uses comprehensive 
blood cell data to 
train the DNN, 
potentially increasing 
the predictive 
accuracy for 
thalassemia. 

High computational 
costs; requires 
extensive data 
preprocessing and 
could be prone to 
overfitting if not 
properly regulated. 

0.897 
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[30] Deep 
Neural 
Networks 
with Frame 
Pooling 

Over 
200,000 
5’UTR 
sequences 
ranging 
25 to 100 
nucleotide
s 

Enables detailed and 
accurate prediction of 
ribosomal load across 
different 5'UTR 
lengths; useful for 
understanding gene 
expression. 

High computational 
demand; requires 
substantial training 
data to achieve high 
accuracy. 

Pearson 
correlatio
n up to 
0.964 on 
MPRA 
data 

[31] k-NN, DT, 
RF, ANN, 
SVM 

186 
patients 
(146 TT, 
40 IDA) 

Utilizes a variety of 
ML algorithms to 
increase the 
robustness and 
accuracy of 
predictions; 
accessible as a web-
based tool 

Limited to the 
specificity of the 
dataset which might 
not generalize to other 
populations or settings . 

External 
accuracy: 
95.59%, 
AUC: 0.98 

[32] MALDI-TOF 
Mass 
Spectromet
ry 

674 
samples 
including 
thalassem
ia and 
control 
groups 

Rapid screening 
capability, high-
throughput analysis, 
minimal sample 
preparation. 

Potential for 
interference in complex 
samples, high 
equipment cost, 
requires skilled 
operation 

AUC: 0.99 

[33] Expert 
System, AI-
based CDSS 
(MLP, SVM, 
RF, KNN)  

Data from 
10112 
medical 
records of 
first-time 
pregnant 
women 
and their 
husbands, 
including 
1992 
cases for 
training 

High accuracy in 
predicting 
thalassemia carriers, 
leveraging AI to assist 
in medical decision-
making. 

Lack of transparency in 
how AI models make 
predictions ("black 
box" issue), which can 
affect trust and 
reliability in clinical 
settings. 

Expert 
system: 
98.45%, 
MLP: 97% 
(general), 
97.81% 
(women 
only) 

[34] Extreme 
Learning 
Machine 
(ELM) 

190 data 
samples 
for BTT, 
IDA, HbE, 
and 
combinati
on 
anemias 

Utilizes rapid and 
efficient ELM 
algorithm, suitable for 
large-scale analysis, 
high accuracy and 
precision in 
diagnosing anemia 
types. 

Requires quality data 
for training, limited to 
conditions present in 
dataset, high 
dependency on dataset 
quality and 
preprocessing 

99.21% 
accuracy, 
98.44% 
sensitivity
, 99.30% 
precision, 
and 
98.84% 
F1 score. 

[35] Adaboost, 
Bayes Net, 
Random 
Forest, 
Random 
Tree, C4.5, 
SVM, KNN, 
Bagging 

Drug 
screening 
datasets, 
including 
compound 
activity 
data 
against 
K562 cells 
117 
inhibitors, 
190non-

High predictive 
accuracy for 
identifying potential 
inhibitors, useful for 
drug discovery and 
development. 

Requires large and 
diverse chemical 
datasets to train 
effectively; may not 
generalize to other cell 
lines without 
retraining. further 
validation needed 

85% 
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inhibitors  

[36] Machine 
Learning 
(DeepHaem 
model for 
predicting 
off-target 
effects) 
(ELM) 

Patient-
derived 
HSCs, 
xenograft 
assays in 
NSG mice 

ELM can handle large 
datasets efficiently 
and effectively with 
high speed in training 
and prediction. 

As with many AI 
models, there can be 
challenges in 
interpreting the 
model's decision-
making process, leading 
to potential issues with 
trust among clinicians. 

High 
editing 
efficiency 
(up to 
98.8%) 

[37] SMOTE, 
ADASYN, 
PCA, SVD, 
Decision 
Tree, 
Gradient 
Boosting 
Machine, 
AdaBoost, 
Support 
Vector 
Classifier, 
Random 
Forest 

Dataset 
from 
Punjab 
Thalassae
mia 
Preventio
n 
Programm
e, 
including 
CBC data 
of 5066 
individual
s 

 High 
accuracy, addresses 
data imbalance with 
SMOTE and ADASYN, 
employs PCA and SVD 
for feature reduction 

Complexity of models 
might increase 
computational cost, 
potential "black box" 
issue with deep 
learning models 
,Limited to the dataset 
from a specific 
geographic location, 
potential overfitting 
concerns 

Up to 0.96 

[38] Artificial 
Neural 
Networks, 
Decision 
Trees 

396 
individual
s (216 
IDA, 180 
BTM) 

High accuracy in 
differentiating IDA 
and BTM using CBC 
data alone. Fast and 
inexpensive.Can 
handle nonlinear 
relationships and 
model complexities. 

Limited by its 
retrospective data 
collection and lack of 
genotype reports, 
potentially affecting the 
precision and accuracy 
of its AI models. 

ANN: 
99.5% 

[39] Machine 
learning 
models 
integrated 
with 
smartphone
-based 
microscopic 
classificatio
n and 
complete 
blood 
counts 

Clinical 
screening 
and 
research 
data, 
gene-
based 
technologi
es, 
molecular 
diagnosis 
datasets 

Integratable into 
medical lab protocols, 
supports early 
disease detection and 
prognosis 

High complexity in 
integration and 
interpretation, requires 
substantial 
computational 
resources 

Reliable 
detection 
of 
malignant 
cell 
populatio
ns, 
support 
for 
chromoso
me 
banding 
analysis 

[40] Logistic 
Regression, 
Naïve 
Bayes, 
Decision 
Trees, 
Neural 
Networks, 
Fuzzy Logic 

Features-
based 
dataset 
from 
Internet of 
Medical 
Things 
(IoMT) 
enabled 
devices 

Higher efficiency, 
reliability, and 
precision compared 
to previous models.  
Uses a fusion of 
multiple machine 
learning algorithms. 

lacks detailed 
demographic 
information on the 
dataset. 

Overall 
model: 
96% 
Logistic 
Regressio
n: 94.01% 
Naïve 
Bayes: 
93.15% 
Decision 
Tree: 
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97.93%  
Neural 
Network: 
98.07% 

[41] Least 
Absolute 
Shrinkage 
and 
Selection 
Operator 
(LASSO) 
regression 

7,621 
cases (847 
thalassem
ia 
patients, 
6,774 
non-
thalassem
ia) from 
the 
Jiangjin 
area of 
Chongqing
, 2018-
2022 

The model effectively 
predicts thalassemia 
using routine blood 
tests, reducing the 
need for expensive 
genetic tests. Provides 
an economical and 
rapid screening 
method for early 
diagnosis of 
thalassemia in 
pregnancy. 

The model may not 
accurately predict all 
types of thalassemia, 
particularly b-
thalassemia outside 
Asia. It also doesn't 
distinguish between 
varying degrees of 
thalassemia severity or 
different genotypes like 
iron-deficiency anemia. 

Overall 
AUC: 
0.911; 
MCV: 
0.907, 
MCH: 
0.906, 
RBC: 
0.796, 
MCHC: 
0.795 

[42] C4.5 
Classifier, 
Naive Bayes 
Classifier, 
Artificial 
Neural 
Network 
(ANN) 

3947 
antenatal 
women 
undergoin
g 
thalassem
ia 
screening 
at a 
tertiary 
care 
hospital 

High accuracy in 
detection of BTT 
using combined red 
cell indices, good 
sensitivity (ANN: 
83.81%) and 
specificity (ANN: 
88.10%) 

Performance 
dependent on 
composition of non-
BTT group, lower 
accuracy compared to 
studies excluding other 
anemia types 

C4.5: 
88.56%, 
NB: 
82.49%, 
ANN: 
85.95% 

[43] Fuzzy Logic 
Model 

CBC data 
from 
pediatric 
patients at 
Abdoel 
Moeloek 
Hospital, 
Lampung 
Province 
Moeloek 
Hospital, 
Lampung 
Province 

Offers rapid and 
economical prediction 
of thalassemia types 
using readily 
available CBC data. 
Can differentiate 
between major, 
intermedia, minor, 
and non-thalassemia 
cases. 

Accuracy not 
quantitatively assessed. 
Implementation and 
validation in broader 
clinical settings not 
discussed. Limited to 
data from one hospital, 
which may not 
represent wider 
population diversity. 

Not 
specified 

[44] Random 
Forest 

150 
patient 
data from 
Harapan 
Kita 
Children 
and 
Women’s 
Hospital, 
Indonesia 
(82 
thalassem
ia, 68 non-

High accuracy, 
precision, and recall. 
Can handle missing 
data and provides 
estimates of variable 
importance. Suitable 
for large datasets 
with high 
dimensionality. 

Requires large amounts 
of data for training to 
achieve high accuracy. 
Can be computationally 
intensive due to 
multiple decision trees. 

100% 
(70-85% 
training 
data 
range) 
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thalassem
ia) 

[45] ANN, KNN, 
Naive 
Bayes, 
Decision 
Trees 

238 
observatio
ns from 
patients 
suspected 
of 
carrying 
HbD or 
HbS 
variants, 
including 
comprehe
nsive 
blood 
count and 
HPLC data 

High accuracy across 
models, especially 
with deep learning. 
Demonstrated 
effective use of 
machine learning for 
hemoglobin variant 
detection in medical 
diagnostics. 

Dependence on specific 
data features such as 
RT for optimal 
performance. Naive 
Bayes showed lower 
performance compared 
to other models. 

Up to 0.99 
(Deep 
Learning 
Model 
without 
RT) 

[46] Neuro-SVM 
(Neural 
Networks 
and Support 
Vector 
Machines) 
Hybrid 
Neuro-SVM, 
MLP, SVM, 
NB 

341 β-TM 
patients 
infected 
with HCV 
genotype 
4, from 
different 
centers in 
Cairo and 
Upper 
Egypt 

The hybrid model 
combines SVM and 
ANN, enhancing 
predictive accuracy. It 
offers a robust tool 
for clinicians to 
predict treatment 
response efficiently. 

Complex model 
requiring extensive 
computational 
resources. Model 
validation limited to 
specific patient 
demographics in Egypt. 

Hybrid 
Neuro-
SVM: 
98.8% in 
Group 1; 
99.87% in 
Group 2 

[47] ID3, C4.5, 
CART 

Data from 
30 
Thalassem
ia 
patients, 
including 
Interview 
and 
medical 
record 
data from 
a hospital 
in 
Surabaya, 
Indonesia 

Simplifies early 
detection of 
Thalassemia Major 
through easy 
interpretation and 
automatic feature 
selection; effective 
even with smaller 
datasets 

Relies on binary 
Yes/No symptom data, 
which may oversimplify 
complex medical 
conditions; potential 
risk of overfitting 
despite high accuracy 

C4.5 
showed 
the best 
performan
ce with 
100% 
accuracy  

 
D. Discussion 

Machine learning (ML) models have notably enhanced diagnostic accuracy 
and efficiency. Despite these advancements, there are inherent challenges and 
areas for future research that are crucial for the evolution and integration of these 
technologies into clinical practice. 

1. Integration of ML in Clinical Workflows 
A significant advancement is the integration of ML models into existing 

clinical workflows, which promises to streamline diagnostic processes and 
improve patient outcomes. For instance, the use of convolutional neural networks 
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(CNNs) for analyzing blood smear images has shown high diagnostic accuracy. 
However, the adoption of ML tools in clinical settings often encounters challenges, 
including skepticism from healthcare professionals regarding the reliability and 
transparency of these tools. To foster broader acceptance, future research should 
focus on enhancing the interpretability of ML models and developing user-friendly 
interfaces that facilitate their integration into routine clinical practice. 

2. Tackling Data Diversity and Model Generalization 
This review underscores the critical issue of data diversity in training ML 

models. Many studies utilize datasets that may not be representative of diverse 
populations, potentially leading to biased and inaccurate diagnostic outcomes 
when applied globally. Addressing this, future initiatives must prioritize the 
collection and analysis of varied datasets that encompass a wider demographic. 
This approach would help in building more robust models capable of delivering 
reliable diagnostics across different ethnicities and genetic backgrounds. 

3. Advancements in Deep Learning Technologies 
Deep learning, particularly through sophisticated image recognition and 

analysis, offers profound potential for diagnosing Thalassemia from medical 
imaging. However, these technologies demand substantial computational 
resources and extensive datasets for training, which can be a barrier in resource-
limited settings. Research should thus not only pursue the refinement of these 
algorithms to improve efficiency and reduce computational demands but also 
explore innovative training paradigms  

4. Ethical and Privacy Considerations 
As ML applications become more prevalent in healthcare, ethical and privacy 

concerns related to the use of sensitive genetic and health data come to the 
forefront. It is imperative that these technologies are developed and implemented 
with stringent adherence to ethical standards and privacy regulations to protect 
patient information. Future frameworks and policies should aim to balance 
innovation in ML applications with assurances of data security and patient 
confidentiality 
E. Conclusion 

This systematic review rigorously examines the intersection of machine 
learning (ML) technologies and Thalassemia diagnostics, emphasizing the 
substantial progress and notable achievements in the field. Key outcomes from the 
application of various ML algorithms indicate a transformative potential in the 
diagnosis and management of Thalassemia, enhancing both accuracy and 
efficiency. Algorithms such as AdaBoost and deep learning models have proven 
effective in detecting intricate disease patterns that traditional methods might 
miss, achieving high accuracy rates and reducing the invasiveness of diagnostic 
procedures. 

However, despite these technological advances, several challenges remain 
prevalent. These include the need for larger, more diverse datasets to train the 
models effectively and ensure their applicability across different demographics. 
Moreover, the transparency and interpretability of ML models remain critical 
concerns. The ability of practitioners to understand and trust these models is 
paramount for their integration into clinical workflows. 
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Furthermore, while the review covers a broad spectrum of ML applications, it 
also highlighted the necessity for ongoing research. There is a distinct need for 
studies that not only refine these technologies but also explore their integration 
into existing healthcare systems globally. Future research should aim to address 
the current limitations of dataset diversity, model transparency, and integration 
difficulties. 

In conclusion, the integration of ML in Thalassemia diagnostics holds a 
promising future. It has the potential to revolutionize the healthcare landscape by 
providing quicker, more accurate diagnoses and by facilitating a shift towards 
more personalized medicine. The ongoing advancements in ML are likely to 
expand its applicability not only in Thalassemia but also in other complex 
hematological disorders, thus broadening the scope of its benefits in medical 
science. 
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