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Hybrid beamforming (BF), which divides beamforming operation into radio 
frequency (RF) and baseband (BB) domains, plays a critical role in MIMO 
communication at millimeter-wave(mmWave) frequencies. This paper also 
introduces offline training and prediction schemes for channel estimation 
and hybrid beamforming. The aim of this paper is that to increase spectral 
efficiency over more data streams by leveraging the deep learning based 
LSTM network. The LSTM network is used to train the numeric values from 
sequence data and predict on new sequence data. The performance is 
evaluated under different parameters including number of data streams (1, 
2, 3 and 4) with different signal-to-noise ratio (SNR) for different carrier 
frequencies (28GHz, 38GHz, 60GHz and 73GHz) through computer 
simulation using MATLAB. The simulation results verified that the proposed 
method can achieve higher spectral efficiency when the number of data 
streams increases and the value of SNR-Test increases too.  
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A. Introduction 
MmWave communication and massive MIMO are the technologies that will 

enable 5G design objectives. There is a mutual integration between these two 
technologies. mmWave-massive MIMO communications, which offers notable gains 
in energy and spectrum efficiency. It also increases mobile network capacity and 
attains high multiplexing gains. Massive MIMO linear precoding techniques and the 
most common non-linear precoding schemes are presented in [1]. Using fewer RF 
chains, hybrid beamforming offers a cost-effective solution by drastically lowering 
hardware costs and power consumption. The authors of [2] offered a 
comprehensive analysis of hybrid beamforming for mmWave systems and beyond, 
based on a newly developed taxonomy for various hardware configurations. 

An summary of 5G research, standardization testing, and deployment 
problems was given by the authors in [3]. In 5G wireless networks, hybrid 
transceivers that integrate lower-dimensional digital signal processing units with 
high-dimensional analog phase shifters and power amplifiers enable mmWave 
large multiple-input multiple-output (MIMO) communications. In reference to 
system models of the hybrid transceiver's structures, digital and analog 
beamforming matrices with potential antenna configuration scenarios, and hybrid 
beamforming in heterogeneous wireless networks, the authors in [4] tracked the 
development of hybrid beamforming for massive MIMO communications. A 
thorough analysis of hybrid beamforming, a crucial component of huge MIMO 
mmWave systems, is given in [4].   

A deep learning (DL) framework to handle both hybrid beamforming and 
channel estimation was proposed in [5] with the goals of minimizing complexity 
and offering robustness. Future wireless communication networks will be able to 
support millimeter wave frequency band communications thanks to the 
development of highly directed beamforming technology. In [6], a signal subspace-
based high-precision multipath channel estimation technique was covered. 
Maximizing the total rate that can get close to the completely digital beamforming 
system performance is the goal of hybrid beamforming. For 5G wireless networks, 
a combination of mmWave, hybrid beamforming techniques, and massive MIMO 
systems yields better data speeds and more cell coverage. The performance of a 
multiuser-massive MIMO hybrid beamforming system at 28, 39 GHz of FR2 
frequency bands as well as at 66 GHz has been examined by the authors in [7] by 
examining the impact of varying variables such as the quantity of users, 
transmitting and receiving antennas, and the type of modulation. 

The advancement in wireless telecommunications from 1G to 6G was briefly 
discussed in [8], and then, the concept of beamforming was introduced. Instead 
than focusing on feedback accuracy, the primary goal of the CsiFBnet is to optimize 
beamforming performance gain [9]. The authors in [9] applied this idea to two 
representative scenarios: single-cell systems and multi-cell systems. An 
unsupervised learning strategy trained the entire neural networks in [9]. This 
paper [10] proposed a data-driven deep learning (DL)-based unified hybrid 
beamforming framework for both the time division duplex (TDD) and frequency 
division duplex (FDD) systems with implicit channel state information (CSI) by 
modeling the transmission modules such as an end-to-end (E2E) neural network. 
For multiuser large multiple-input multiple-output (MIMO)-orthogonal frequency 
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division multiplexing (OFDM) systems, hybrid beamforming designs were taken 
into consideration in [11]. One alternating maximization approach, where the 
analog precoding was optimized using Riemannian manifold optimization, was 
used to maximize the weighted spectral efficiency [11]. 

Using back propagation, a unique joint hybrid processing framework (JHPF) 
that enables end-to-end optimization was designed through the application of 
deep learning (DL) [12]. The three components of the [12] framework are the 
hybrid processing designer, signal flow simulator, and signal demodulator. These 
three parts, in turn, produce the hybrid processing matrices for the transceiver, 
simulate an airborne signal transmission, and use neural networks (NNs) to map 
detected symbols to their original bits. Through its singular value decomposition 
(SVD), the unconstrained (optimal) beamformers of a transceiver were developed 
that approach the highest attainable data rates [13]. The effectiveness of the 
designs was confirmed by simulation findings [14] [15], which also show that the 
hybrid transceivers' performance is comparable to that of their fully digital 
version. The performance of the suggested algorithm was assessed by the authors 
in [16] using both the Rayleigh and mmWave channels. 

In order to optimize the system's spectral efficiency, the authors suggested 
two approaches [17]. The system's performance can be enhanced with the use of 
these two techniques. The feasibility of combining low-resolution phase shifters 
with hybrid precoders and combiners in mmWave systems was examined in study 
[18]. A machine learning-based design process that works with a variety of 
beamforming/combining architectures was used by the authors in [19]. The 
performance evaluation of a deep learning approach when used in 5G mmWave 
multicellular networks is the goal of [20]. Massive MIMO channel estimation is still 
a challenging problem due to the hybrid structure of the precoding and the flaws in 
the RF chain, despite the fact that numerous solutions for hybrid beamforming 
have been studied in the last few years [21]–[24]. The authors in [25] created a 
codebook-based hybrid precoding for downlink multiuser mmWave large MIMO 
systems, building on earlier research. 

In order to provide hybrid beamforming and channel estimation for 5G 
mmWave massive MIMO communication systems, this study suggests a deep 
learning-based beamforming strategy using LSTM networks that have been 
specially constructed. In a huge MIMO system with many data streams, a single 
transmitter and receiver communication at mmWave frequencies are examined. 
Channel state information (CSI) feedback refers to the information about the 
wireless channel conditions provided by the users (or mobile station) back to the 
base station. This information helps the base station adapt its transmission 
parameters to optimize the communication link, including beamforming and 
power control. The high spectral efficiency can be obtained without CSI feedback 
by leveraging deep learning based LSTM network, instead it only knows the spatial 
statistics of the channel. Five LSTM networks are used for training, testing and 
prediction in this system. Thousands of instances of the channel matrix H are 
generated to provide simulation data for testing and training. The channel 
covariance matrix (CCM) , R, is generated from the channel matrix H.  Then, 
corresponding to each instance of the channel covariance matrix R, the fully digital 
optimal beamforming matrix 

opt opt
,F W was calculated from the orthogonal matching 
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pursuit (OMP) algorithm. After the LSTM network has been trained and evaluated, 
it can be deployed to make predictions on new, unseen sequences of data such as 
the value of 

RF BB RF BB
, , ,F F W W . Depending on the value of 

RF BB RF BB
, , ,F F W W , the spectral 

efficiency can be calculated.  
The LSTM-1 and LSTM-2 deep networks are employed at the BS. They take in 

a channel covariance matrix (CCM) as input and provide hybrid precoders as an 
output. The LSTM-1 network trains the real and imaginary part of dataset R and 
predict the F

RF
value on the testing  data. The LSTM-2 is used to train the angular 

part of the dataset R and predict F
RF

value on testing data. At the mobile station 

(MS), there are three deep networks. The received signal R is trained by using 
LSTM-3 to estimate the channel and predict the channel matrix H1 on the testing 
data. The estimated channel matrix H1 is then fed to LSTM-4 and LSTM-5 to design 
the hybrid combiner weights at the output. The real and imaginary part of the 
channel matrix H1 is trained and predict to get the W

BB
on the testing data. The 

angular part of the channel matrix H1 is trained and predict to get the W
RF

on the 

testing data.  
The rest of the paper is organized as follows. The wideband mmWave 

channel system model and problem formulation are explained in Section B of the 
ensuing section.  Channel estimation are described in Section C. Section D presents 
overview of LSTM network. Section E introduces learning-based hybrid 
beamformer design. Section F gives the numerical simulation results and 
discussion, and Section G concludes the paper. 

Notation: Throughout the paper, boldface lower case and upper case symbols 
represent vector and matrix quantities, respectively. In the case of a vector a, [a]i 
represents its i-th element. For a matrix A, [A]:,i and [A]i,j denote the i-th column 
and the (i, j)-th entry, respectively. A*, AT and AH represent the conjugate, transpose 
and Hermitian of A. The Kronecker product is denoted by Ä while the Hadamard 
product is given by e . || . ||F is the Frobenious norm, IN is the identity matrix of 

size N×N. {}.E denotes the statistical expectation. 

  
B. System Model and Problem Formulation 

 
Figure 1. System architecture of a hybrid beamforming transceiver based on 

mmWave massive MIMO 
 
 
In this work, a single user is considered in mmWave MIMO communication 

system with multiple antennas. Let
s

N be the number of data streams to be 
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transmitted from the base station with 
T

N transmit antennas to the user with 

R
N antennas. The BS is equipped with 

tRF
N analog phase shifters with analog 

beamformer Î £F
N ×NT tRF

RF
and baseband beamformer Î £F

N ×NtRF s

BB
. Then the 

transmitted signal becomes 
RF BB

x = sF F  where Î £
Nss  is the symbol vector desired 

to be transmitted. 
RF

F consists of analog phase shifters, each of which has unit-

modulus elements, i.e., [ ]
2

RF i,j
= 1F . Also, the power constraint 

2

RF BB s
= NF F that is 

enforced by the normalization of the baseband precoder 
BB

F .  

Assuming a block-fading channel model, the received signal at the MS is given 
by  

%
RF BB

y = ρ s+nHF F                                                                                                                         (1)                                                                                                                                   

where  represents the average received power, Î £H
N ×NR T is the mmWave channel 

matrix and :
2

NR
n CN(0,σ )I denotes the additive white Gaussian noise (AWGN) 

vector. At the receiver, the received signal is first processed by analog combiners 

RF
W , then the receiver employs low-dimensional 

RF s
N ×N digital combiners 

BB
W to 

process the RF signal to obtain the received symbol vector as % H H

BB RF
y = yW W , i.e., 

% H H H H

BB RF RF BB BB RF
y = ρ s+ nW W HF F W W                                                                                              (2)                                                                                    

where the analog combiners Î £W
N ×NR rRF

RF
have element-wise constraint 

[ ] [ ]é ù
ê úë û

H

RF RF:,i :,i i,i
= 1W W similar to the RF precoders. 

The presence of substantial route loss resulting in limited spatial selectivity 
scattering is one of the primary characteristics of mmWave channels. High antenna 
correlation may also arise from the usage of large densely packed antenna arrays 
in mmWave transceivers. Beam-space or virtual channel representation can be 
used to simulate the extremely directed character of propagation at mmWave 
frequencies and the high dimensionality of MIMO channels with massive antenna 
arrays. Hence, the channel matrix H include the contributions of L clusters, each of 
which has scN scattering path/rays within the cluster. Thus, we can represent the 

downlink channel matrix as 

å å
NscL

HT R

l,r R l,r l,r T l,r l,r
l=1 r=1sc

N N
= α a (Φ ,θ )a (Φ ,θ )

N L
H                                                                               (3)                                                                                                                       

where Î £
l,r

α denotes the complex gain corresponding to the r-th path in the l-th 

cluster, which are assumed to be independent zero-mean Gaussian random 
variables. 

R l,r l,r
a (Φ ,θ )and 

T l,r l,r
a (Φ ,θ )  represent the array response vectors of the 

receive and transmit antenna arrays respectively. In the millimeter wave 
frequency band, signal scattering is very significant, thus multiple path effects have 
to be included. Here, both the transmitter and receiver sides, due to the use of 
array antennas, both the direction angle 

l,r
Φ and the elevation angle 

l,r
θ need to be 

considered. In particular, the array response vectors of receive and transmit arrays 
for a uniform rectangle array (URA) is defined as 
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é ù
ê ú
ë û

T2π 2π 2π 2π 2π 2πj dp j d2p j AMp j dq j d(p+q) j d(Mp+Nq)
λ λ λ λ λ λ

T
a (Φ,θ)= 1,e ,e ..e ,e e ...e and 

R

é ù
ê ú
ë û

T2π 2π 2π 2π 2π 2πj dp j d2p j AMp j dq j d(p+q) j d(Mp+Nq)
λ λ λ λ λ λa (Φ,θ)= 1,e ,e ..e ,e e ...e respectively. Where 

l,r l,r l,r l,r
p = cos(Φ )cos(θ ),q= sin(Φ )cos(θ ); M and N denote the number of horizontal 

and vertical antennas of the array antenna and meet 
T

MN = N , respectively; d is the 

uniform distance between the antennas and 0

c

c
λ =

f
is the wavelength for the carrier 

frequency 
c

f with the speed of light 
0

c . 

Statistical beamforming techniques reduce feedback overhead by providing 
an intermittent update of the channel information based on the channel statistics 
rather than instantaneous feedback. Various algorithms can be used to estimate 
the channel covariance matrix (CCM) in practice. These include compressed 
covariance sensing approaches, power angular spectrum estimates, and temporal 
averaging techniques that gather a single snapshot of incoming signals. The CCM is 
accessible at the BS in this work because it is a specific field study. The covariance 
channel matrix at the transmitter can be written as (4).  

{ }H

T

1= Ε
N

R H H                                                                                                                              (4)                                                                                                             

In real-world applications, estimating the channel matrix can be a difficult 
undertaking, particularly when numerous antennas are used for massive MIMO 
communications. Literature indicates several mmWave channel estimation 
techniques [22], [23], [24]. Within the DL framework, a deep network estimates 
the channel by taking in the received signals as input and producing the channel 
matrix estimate at the output layer. 

Specifically, designing of hybrid precoders F F W W
RF BB RF BB

, , , by maximizing the 

overall spectral efficiency of the system. Given that the Gaussian symbols are 
conveyed via the millimeter-wave (mmWave) channel, the problem of designing a 
hybrid beamformer can be expressed as follows. 

Ù
sRF BB RF BB

-1 H H H H H

2 N n BB RF RF BB BB RF RF BB, , ,
s

ρ
max log +

NF F W W
I W W HF F F F H W W ,                                                                             

Subject to: Î Î
RF RF RFRF

F , WF W , 

F

2

RF BB s
= NF F ,                                                                                                                 (5)                                                                                                                                                     

where Ù Î £ S S
N ×N2 H H

n n BB RF RF BB
=σ W W W W corresponds to the combiner-processed noise 

term in the received signal (2). 
RF

F and 
RF

W  are the feasible sets for the RF precoder 

and combiners which obey the unit-modulus constraint. The aim of this paper is to 
recover F F W W

RF BB RF BB
, , , for the given received pilot signal. In fact, the hybrid 

beamformers are designed via orthogonal matching pursuit (OMP) algorithm 
which does not require a predefined codebook.  

 
C. Channel Estimation 
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In real-world applications, estimating the channel matrix can be a difficult 
undertaking, particularly when massive MIMO systems are involved and there are 
many antennas. Within the DL framework, a deep network uses the pilot signals it 
received during the preamble step to estimate the channel. In this case, the 

downlink scenario where the BS activates RF chains Î £ T
N

u
f to transmit pilot 

signals 
u

s  on the beams for 
T

u = 1,...,M . Then, the receiver activates 
R

M RF chains to 

apply 
v

w  for 
R

v = 1,...,M to process the received pilots. Since the number of RF 

chains in the receiver is limited by 
RF R

N (< M ) , only 
RF

N combining vectors can be 

used at a single channel use. Hence, the total channel use in the channel acquisition 

process is 
é ù
ê ú
ê úë û

R

RF

M

N
. Then, the transmit and receive beamforming matrices become 

é ùÎê úë û
£F T T

T

N ×M

1 2 M
= f , f , ..., f and R R

R

wé ùÎê úë û
£W

N ×M

1 2 M
= , w , ..., w respectively. Specifically, 

F and W can be constructed as the first 
T

M (or 
R

M ) column vectors of an 
T T

N ×N or 

R R
N ×N Discrete Fourier Transform (DFT) matrix.  

After processing through combiners, the received pilot signal becomes  
%H

= S +NY W HF                                                                                                                             (6)                                                                                                                                       

where { }
T

1 M
S = diag s , ..., s denotes the pilot signals and % HN = NW is the effective 

noise matrix where N denotes the AWGN matrix which corrupts the pilot training 

data by 
N

SNR . Without loss of generality, I
T

M
S = , then the received signal becomes 

%H= +NY W HF                                                                                                                                (7)                                                                                                                           

By processing Y , the initial channel estimate (ICE) as 

T R
= T TY Y                                                                                                                                         (8)                                                                                                                                                                                        

where 
( ) ³

R R
-1H

T

R R

                ,M < N
T = {

,M N

W

WW W
and 

( ) ³

H

T T
-1H HR

T T

{
              ,M < N

T =
,M N

F

F FF
. Because Y will be 

employed in the proposed DL framework in the future to acquire better channel 
estimates, it is the initial channel estimate (ICE). Similarly, the pretrained network 
LSTM receives Y after it is received at the receiver, which enhances the channel 
estimation performance. To create the hybrid combiners, the enhanced channel 
estimate is then inserted into the LSTM.   
 
D. Overview of LSTM Network 
 This work implements DNN-based hybrid beamforming and channel 
estimation using LSTM model. A Recurrent Neural Network (RNN) architecture called 
LSTM successfully resolves the vanishing gradient problem that arises with a poorly 
constructed RNN. Recursive neural networks (RNNs) use the outputs of individual 
nodes to influence the input of that same node in a recursive manner. RNN can 
maintain memory since its current output is predicated on earlier calculations. 
Nevertheless, it is well known that RNNs have a "vanishing gradient" issue, in which 
the loss function's derivative with regard to the weight parameter gets extremely tiny. 
In order to alleviate this problem, LSTMs have been modified to incorporate new gates 
that enhance gradient control and safeguard long-range dependencies. 
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Figure 2. The LSTM network architecture for regression 

 
 Figure 2 shows the construction of a basic LSTM network for regression 
output. A sequence input layer, an LSTM layer, a fully connected layer, and a 
regression output layer make up the network's final layers. Figure 3 illustrates the 
fundamental composition of the current LSTM model as well as the cell algorithms. 
Each time step in an LSTM comprises a unique status known as the cell state that 
houses the long-term memory's worth of data. In Figure 3, the time series input is 
shown at the bottom and the result is shown at the top.   

 
Figure 3. Basic LSTM layer structure for the time step 0 to t+1, with a detailed 

calculation illustration shown in the LSTM cell at time step t [26] 
 
 Every time step, each LSTM cell modifies six parameters. Equations (9) 
through (14) display the comprehensive algorithms. The forget gate parameter 

t
f , 

which decides how much of the previous cell state needs to be forgetten by a sigmoid 
function with a linear calculation on the current input xt and the previous result 

t-1
h . 

The linear equations in different steps have different input weights (W), recurrent 
weight (R) and biases (b) in each LSTM cell. The closer 

t
f is to 0, the more the sigmoid 

function forgets the previous cell stae 
t-1

h .  The input gate i
t
, which decides what new 

information is going to be remembered by adding it to the cell state. The input gate 
parameter i

t
is calculated by the sigmoid function with a linear relation on 

t
x and 

t-1
h   

as well. %
t

c is the candidate of new cell state values, and it was calculated by a tanh 

function with a linear relation on 
t

x and 
t-1

h . Then, the cell state 
t

c is updated. In the 

end, the output parameter 
t

o is calculated by the sigmoid function with a linear 

relation on 
t

x and 
t-1

h . The current step of the final output result, 
t

h , is the production 

of 
t

o and the tanh function value of cell state 
t

c .  

%t c f t f t-1 ff = σ (Wx +R h +b )                                                                                                                         (9)                                                                                                                       

i i ii %t c t t-1= σ (Wx +R h +b )                                                                                                                       (10)                                                                                                                           

c cc c
c %% %
%

t t t-1=σ (W x +R h +b )                                                                                                               (11)                                                                                                            

o o oo %t c t t-1= σ (W x +R h +b )                                                                                                                    (12)                                                                                                                   

e et t t-1 t tc = f c + i g                                                                                                                               (13)                                                                                                                           

et t c th = o σ (c )                                                                                                                                        (14)   
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Figure 4. One-layer LSTM based sequence-to-sequence model structure with m 
time step input and n time step output [26] 

 
 Long-term dependency issues can be resolved using LSTM, however as Figure 
3 illustrates, one drawback is that it requires the same time steps for input and output.  
Figure 4 displays the sequence-to-sequence regression model based on LSTM. An 
input sequence for the LSTM with n time steps can be created by storing the final 
output (input sequence) from the LSTM with m time steps in a cell called state vector. 
The time step problem has been resolved by this sequence-to-sequence structure as 
the steps of the input and output can differ. The input data, the coded vector 
containing all the required information from, and the predicted data are all 
represented in Figure 4. 
 
E. Learning-Based Channel Estimation and Hybrid Beamformer Design 
 

 
Figure 5. System architecture of mmWave MIMO based transceiver with channel 

estimation and hybrid beamforming 
 
Five LSTM deep network architectures which are shown in Figure 5. LSTM-1 and 

LSTM-2 are used at the BS only and it learns the channel statistics from R and obtain 
the hybrid precoders 

RF
F and 

BB
F . LSTM-3, LSTM-4 and LSTM-5 are placed at the MS 

only, to estimate the channel H1 and construct the hybrid combiners RFW  and BBW  

respectively. In the following, the details of each deep network architecture was 
discussed. 

 
Input Data  

The input data is partitioned into three components to enrich the input features. 
In particular, the real, imaginary parts and the absolute value of each entry is used for 
the DL networks depending on the application. This approach provides good features 

Input Sequence 

State Vector 

Output Sequence 
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for fitting the data in the training state as well as extracting new features inherit in the 

input. In particular, the input for LSTM-1 is denoted as Î ¡
N ×N ×1T T

R
X whose (i, j)-th entry 

is given by [ ] [ ]{ }é ù Ðê úë ûR i,j:,:,1 i,j
X = R , and  LSTM-2 as Î ¡

N ×N ×2T T

R
X whose (i, j)-th entry is given 

by [ ] [ ]{ }é ù
ê úë ûR i,j:,:,1 i,j

X = Re R  , [ ] [ ]{ }é ù
ê úë ûR i,j:,:,2 i,j

X = Im R , respectively. For LSTM-3, the input is 

denoted as Î ¡
N ×N ×2R T

Y
X and, similarly [ ] [ ]{ }é ù

ë ûY :,:,1 i,ji, j
X = Re Y ,  [ ] [ ]{ }é ù

ë ûY :,:,2 i,ji,j
X = Im Y . 

Finally, the input for LSTM-4 is given by Î ¡ R TN ×N ×1
H1X where [ ] [ ]{ }é ù Ð

ë ûH1 :,:,1 i,ji, j
X = H1 , and 

LSTM-5 is given by Î ¡ R TN ×N ×2
H1X where [ ] [ ]{ }é ù

ë ûH1 :,:,1 i,ji, j
X = Re H1  , [ ] [ ]{ }é ù

ë ûH1 :,:,2 i,ji,j
X = Im H1  

respectively. 
 

Labeling the deep network 
The labels of LSTM-1 and LSTM-2 which are the hybrid precoders 

RF
F and 

BB
F . 

Therefore, the output label of LSTM-1 is represented by R1z as 

{ }é ùÐê úë û

TT

RF= vecR1z F                                                                                                                               (15)                                     

which is an RF TN N ×1 real-valued vector. For LSTM-2, the labels by R2z as 

{ }{ } { }{ }é ù
ê úë û

TT T

BB BB= vec Re , vec ImR2z F F                                                                                        (16)                                   

which is an s RF2N N ×1 real-valued vector. For LSTM-3, the labels by Yz as 

{ }{ } { }{ }é ù
ê úë û

TT T

= vec Re , vec ImYz H1 H1                                                                                        (17)                               

which is an R T2N N ×1real-valued vector. Finally, the output label of LSTM-4 by H1z   as 

{ }{ }é ùÐê úë û

TT

RF= vecH1z W                                                                                                                        (18)                         

which is an R RFN N ×1 real-valued vector. And then, the output label of LSTM-5 by H2z  

as 

{ }{ } { }{ }é ù
ê úë û

TT T

BB BB= vec Re , vec ImH2z W W                                                                                   (19)                                                             

which is an RF s2N N ×1 real-valued vector. 

 
Network Architectures and Training 

The deep networks in Figure 5,  LSTM-1, LSTM-2, LSTM-3, LSTM-4 and LSTM-5 
have the input-output pairs as  { }RX , R1z  , { }RX , R2z , { }YX , Yz , { }H1X , H1z and { }H1X , H2z  

respectively. Regression layers with the appropriate size based on the application are 
the output layer of all networks. The network parameters that have been described 
are one way to get good performance for the problem under consideration, even if 
other network topologies with other values are equally feasible.   The network 
parameters come from a process of hyperparameter tuning that yields the optimum 
results for the scenario under consideration.   

Using MATLAB on a PC, the suggested deep networks are implemented and 
trained. Table 1 outlines the phases of the algorithm for generating training data. 
Every one of the five LSTM networks uses the same hyperparameter. An LSTM layer 
with 200 hidden units, a fully connected layer the size of the number of responses, and 
a dropout layer with a dropout probability of 0.5 make up each LSTM network. 
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Utilizing the solver "adam," the network parameters were updated at a learning rate 
of 0.001 and a mini-batch size of 128 samples. Ten epochs are used to train the data. 
Set the gradient threshold to 1 to stop the gradients from blowing up. Keep the 
sequences arranged according to length by setting "Shuffle" to "never." Similar to 
Algorithm 1, N = 100 distinct scenarios are realized in order to train the suggested 
LSTM structures. Synthetic additive noise is added to the training data on the CCM, 
channel matrix, and received pilot signal, which are defined by and SNR, respectively. 
For each scenario, a channel matrix (along with the related covariance matrix) is 
constructed. SNR value is utilized during training to strengthen the networks' 
resistance to distorted input characteristics. Hence,  SNR = 20 dB and SNR = 0dB are 

considered. Hence, 
[ ]

2

i,j
R 10 2

R

SNR = 20log ( )
σ

R
,  

[ ]
2

i,j
H 10 2

H

SNR = 20log ( )
σ

H
and 

[ ]
2

i,j
Y 10 2

Y

SNR = 20log ( )
σ

Y
 where 

2
Rσ , 

2
Hσ , 

2

Ys are the variance of AWGN corresponding to 

the input data. For the prediction process, a test data which is separately generated by 
adding noise on received pilot signal with SNR-Test.  

 
Table 1. Algorithm for Training data generation for DL network 

Algorithm 1 Training data generation for LSTM-1, LSTM-2, LSTM-3, LSTM-4 and LSTM-5 

 Input: N, SNR. 

 Output: Training datasets for the networks in Figure 2: LSTM-1D , LSTM-2D , LSTM-3D , LSTM-4D , LSTM-5D . 

1:   Generate channel realizations { }
Nn

n=1
H . 

2: Generate channel covariance matrix realizations { }
Nn

n=1
R . 

3: Initialize with t = 1 while the dataset length is T = N. 

4: for £ £1 n N  do 

5:        °é ù é ù
ê ú ë ûë û

:
n n 2

Hi,ji,j

CN( ,σ )H H  

6:        °é ù é ù
ê ú ë ûë û

:
n n 2

Ri,ji,j

CN( ,σ )R R  

7:         Generate received pilot signal from (6) as °(n) H (n)(n)= +NY W H F  

 8:         Construct 
(n)Y  from (7) by using 

(n)

Y  

9: 
        Using 

(n)H , find the hybrid precoders 
(n)

RF
F  and  

(n)

BB
F  from orthogonal matching pursuit algorithm 

(OMP) 

10:          Find the hybrid combiners 
(n)

RF
W  and 

(n)

BB
W  from OMP 

11:          Input for LSTM-1, [ ] [ ]{ }é ù Ðê úë ûR :,:,1 i,ji,j
X = R  

12:          Input for LSTM-2, [ ] [ ]{ }é ù
ê úë ûR :,:,1 i,ji,j
X = Re R , [ ] [ ]{ }é ù

ê úë ûR :,:,2 i,ji,j
X = Im R  

13:          Output for LSTM-1, R1z . 

14:          Output for LSTM-2, 
(1) (1) (T) (T)

LSTM-1 R R1 R R1
D = ((X , ), ...,(X , ))z z . 

15:          Input for LSTM-3, [ ] [ ]{ }é ù
ê úë ûY :,:,1 i,ji,j
X = Re Y , [ ] [ ]{ }é ù

ê úë ûY :,:,2 i,ji,j
X = Im Y  
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16:            Output for LSTM-3, 
(1) (1) (T) (T)

LSTM-5 H H2 H H2
D = ((X , ), ...,(X , ))z z . 

17:             Input for LSTM-4, [ ] [ ]{ }é ù Ðê úë ûH :,:,1 i,ji,j
X = H  

18:            Input for LSTM-5, [ ] [ ]{ }é ù
ê úë ûH :,:,1 i,ji,j
X = Re H , [ ] [ ]{ }é ù

ê úë ûH :,:,2 i,ji,j
X = Im H  

19:            Output for LSTM-4, H1z . 

20:            Output for LSTM-5, H2z . 

21:             t = t + 1. 

22:   end for n, 

23:        
(1) (1) (T) (T)

LSTM-1 R R1 R R1
D = ((X , ), ...,(X , ))z z . 

24:        
(1) (1) (T) (T)

LSTM-2 R R2 R R2
D = ((X , ), ...,(X , ))z z . 

25:        
(1) (1) (T) (T)

LSTM-3 Y Y Y Y
D = ((X , ), ...,(X , ))z z . 

26:           
(1) (1) (T) (T)

LSTM-4 H H1 H H1
D = ((X , ), ...,(X , ))z z . 

27:           
(1) (1) (T) (T)

LSTM-5 H H2 H H2
D = ((X , ), ...,(X , ))z z . 

 
F. Numerical Simulations 

This section provides a numerical evaluation of the DL framework's 
performance. The different numbers of data streams per user is compared using 
the proposed DL approach. Throughout the simulations, massive MIMO system 
with tRF rRFN = N = 4 RF chains for TN = 64 and RN = 16 antennas are considered. The 

antennas are deployed with half wavelength spacing at carrier frequencies 

cf = 28GHz, cf = 38 GHz, cf = 60GHz and cf = 73 GHz. The examination of these 

carrier frequencies aids in exposing the key characteristics of the new frequency 
bands, as well as their maximum coverage distance, usage visibility, and mmWave 
system-wide behavior. Unless stated otherwise, there are L = 5 clusters of all 
transmit and receive paths which are uniform randomly selected from the interval 
{ } [ ], ,F q Î - p p with angular spread of 5 ̊. In preamble stage, the transmitter emits 

beams by using RF chains while, at the receiver, all of the RF chains are active. The 

transmit and received beams are formed by selecting F  and W as T TN ×N and 

R RN ×N DFT matrices respectively. The preamble data are distinct from the training 

stage in the prediction step. 
In this section, the simulations will be presented to show the effects of the 

data streams (1, 2, 3 and 4). Figure 6 to 9 show the spectral efficiency of various 
data streams for varying SNR-Test, given SNR = 20dB and 0dB. The OMP technique 
serves as an upper bound on the performances of the deep learning approaches 
since it is utilized to acquire the labels of the deep networks for hybrid 
beamforming. But even the benchmark OMP algorithm requires flawless channel 
information. The corruptions in the DL input, which lead to variations from the 
label data (obtained by OMP) at the output regression layer, account for the 
discrepancy between the OMP algorithm and the DL frameworks. 
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(a) SNR = 20dB    (b) SNR = 0dB 

Figure 6. Spectral efficiency of different number of data streams for varying SNR-
Test with TN = 64 , RN = 16 , tRFN = 4  at cf = 28 GHz 

 

 
(a) SNR = 20dB    (b) SNR = 0dB 

Figure 7. Spectral efficiency of different number of data streams for varying SNR-
Test with TN = 64 , RN = 16 , tRFN = 4  at cf = 38 GHz 

  
Figure 6 shows the spectral efficiency versus SNR-Test when SNR = 20dB 

and SNR = 0dB at the carrier frequency 28GHz. Figure 7 shows the spectral 
efficiency versus SNR-Test when SNR = 20dB and SNR = 0dB at the carrier 
frequency 38GHz. Figure 8 and 9 show the simulation results at the carrier 
frequency 60GHz and 73GHz respectively. The number of data stream 

sN = 4 achieve higher spectral efficiency than the number of data stream sN = 1  at 

all carrier frequency. The signal to noise ratio SNR = 20 dB at all carrier frequency 
achieve higher spectral efficiency than SNR = 0dB.  These Figures 6 to 9 show that 
the spectral efficiency improves significantly when the number of data streams 
increase as the SNR-Test values increases too. The spectral efficiency of 
approximately 38 bit/s/Hz at carrier frequency cf = 28 GHz for the number of data 

stream sN = 4  is the highest achievable value among other carrier frequency. In 

addition, the hybrid beamforming can perform close to what optimal weights can 
offer using less hardware. 
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(a) SNR = 20dB   (b) SNR = 0dB 

Figure 8. Spectral efficiency of different number of data streams for varying SNR-
Test with TN = 64 , RN = 16 , tRFN = 4at cf = 60 GHz 

 

 
(a) SNR = 20dB   (b) SNR = 0dB 

Figure 9. Spectral efficiency of different number of data streams for varying SNR-
Test with  TN = 64 , RN = 16 , tRFN = 4at cf = 73 GHz 

 
The robustness of the approach is examined in relation to the estimated 

channel data based on all of the simulation results. Therefore, when the received 
pilot data is tainted by noise identified by SNR-Test, the channel matrix predicted 
by LSTM is used in the beamforming method. Since SNR-Test only uses estimated 
channel data during the combiner design stage, its noise only impacts the 
performance of the deep learning approach's combiner design (and not the 
precoder design). From Figures 6 to 9 that all of the number of data streams reach 
their maximum performance after SNR-Test ≥ 20dB. In particular, the number of 
data streams sN = 4 has more robust performance than the other number of data 

stream in all figures from Figures 6 to 9. This observation states that the algorithm 
requires at least approximately SNR-Test = 20dB noise level for sufficient channel 
estimate in setting. 

 
G. Conclusion 

For massive MIMO systems, hybrid beamforming is a crucial technique that 
enables fewer RF chains and, consequently, higher system spectral efficiency. 
However, the estimation of the channel imposes significant signaling overhead, 
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particularly in communications, and the design of digital and analog precoders is 
difficult. By leveraging the proposed deep learning based LSTM networks can 
improve the spectral efficiency of the communication system. When the system can 
be trained using simply spatial statistical channels and not have to pay for the 
expensive process of obtaining optimal solutions, this deep learning approach 
reduces both training time and cost. In wireless communications, especially in 
massive MIMO systems where transmission occurs over time-varying channels, 
LSTM networks can effectively model the temporal dynamics of the spatial 
statistical channel. LSTM networks are well-suited for processing such sequenced 
data, as they can maintain and update a memory state over time, allowing them to 
learn pattern and correlations in the sequential data. Furthermore, it was shown 
that the sequence to sequence method is a useful technique for time series 
prediction. The results show that the BS can be trained to achieve the near-optimal 
hybrid precoder and robustly construct the hybrid beamforming, even without 
access to the complete CSI. Several numerical simulations showed that deep 
learning algorithms perform better and offer improved spectral efficiency. 
Training the deep networks for multiple distinct channel conditions, each of which 
is tainted by artificial noise, yields a strong performance. Furthermore, the 
suggested approach is applicable to real-time systems. It is anticipated that the 
first 5G network rollout will make use of the frequencies under investigation. 
 
H. Acknowledgment 

The authors would like to acknowledge Department of Electronic 
Engineering at Mandalay Technological University (MTU) for providing essential 
resources.  
 
I. References 

 
[1] T. Kebede, Y. Wondie, J. Steinbrunn, H. B. Kassa, and K. T. Kornegay, “Precoding 

and Beamforming Techniques in mmWave-Massive MIMO: Performance 
Assessment,” IEEE Access, vol. 10, pp. 16365–16387, 2022, doi: 
10.1109/ACCESS.2022.3149301. 

[2] J. Zhang, X. Yu, and K. B. Letaief, “Hybrid beamforming for 5G and beyond 
millimeter-wave systems: A holistic view,” IEEE Open Journal of the 
Communications Society, vol. 1, pp. 77–91, 2020, doi: 
10.1109/OJCOMS.2019.2959595. 

[3]  M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges, 
deployment, and practice,” IEEE Journal on Selected Areas in Communications, 
vol. 35, no. 6, pp. 1201–1221, Jun. 2017, doi: 10.1109/JSAC.2017.2692307. 

[4] I. Ahmed et al., “A survey on hybrid beamforming techniques in 5G: 
Architecture and system model perspectives,” IEEE Communications Surveys 
and Tutorials, vol. 20, no. 4, pp. 3060–3097, Oct. 2018, doi: 
10.1109/COMST.2018.2843719. 

[5] A. M. Elbir, “A Deep Learning Framework for Hybrid Beamforming Without 
Instantaneous CSI Feedback,” Jun. 2020, [Online]. Available: 
http://arxiv.org/abs/2006.10971 



  ISSN 2549-7286 (online) 

Indonesian Journal of Computer Science   Vol. 13, No. 3, Ed. 2024 | page 3602   

[6] R. Hu, L. Jiang, and P. Li, “Hybrid Beamforming with Deep Learning for Large-
Scale Antenna Arrays,” IEEE Access, vol. 9, pp. 54690–54699, 2021, doi: 
10.1109/ACCESS.2021.3069037. 

[7] R. Dilli, “Hybrid Beamforming in 5G NR Networks Using Multi User Massive 
MIMO at FR2 Frequency Bands,” Wireless Personal Communications, vol. 127, 
no. 4, pp. 3677–3709, Dec. 2022, doi: 10.1007/s11277-022-09952-z. 

[8] S. Hamid et al., “Hybrid Beamforming in Massive MIMO for Next-Generation 
Communication Technology,” Sensors, vol. 23, no. 16, Aug. 2023, doi: 
10.3390/s23167294. 

[9] J. Guo, C.-K. Wen, and S. Jin, “Deep Learning-Based CSI Feedback for 
Beamforming in Single- and Multi-cell Massive MIMO Systems,” Nov. 2020, 
[Online]. Available: http://arxiv.org/abs/2011.06099 

[10] Z. Gao et al., “Data-Driven Deep Learning Based Hybrid Beamforming for 
Aerial Massive MIMO-OFDM Systems with Implicit CSI,” Jan. 2022, [Online]. 
Available: http://arxiv.org/abs/2201.06778 

[11] J. Du, W. Xu, C. Zhao, and L. Vandendorpe, “Weighted Spectral Efficiency 
Optimization for Hybrid Beamforming in Multiuser Massive MIMO-OFDM 
Systems,” Jul. 2019, [Online]. Available: http://arxiv.org/abs/1907.12255 

[12] P. Dong, H. Zhang, and G. Y. Li, “Framework on Deep Learning-Based Joint 
Hybrid Processing for mmWave Massive MIMO Systems,” IEEE Access, vol. 8, 
pp. 106023–106035, 2020, doi: 10.1109/ACCESS.2020.3000601.   

[13] T. Peken, S. Adiga, R. Tandon, and T. Bose, “Deep Learning for SVD and Hybrid 
Beamforming,” IEEE Transactions on Wireless Communications, vol. 19, no. 
10, pp. 6621–6642, Oct. 2020, doi: 10.1109/TWC.2020.3004386. 

[14] M. Majumder, H. Saxena, S. Srivastava, and A. K. Jagannatham, “Optimal Bit 
Allocation-Based Hybrid Precoder-Combiner Design Techniques for mmWave 
MIMO-OFDM Systems,” IEEE Access, vol. 9, pp. 54109–54125, 2021, doi: 
10.1109/ACCESS.2021.3070921. 

[15] B. Y. Chen, Y. F. Chen, and S. M. Tseng, “Hybrid Beamforming and Data Stream 
Allocation Algorithms for Power Minimization in Multi-User Massive MIMO-
OFDM Systems,” IEEE Access, vol. 10, pp. 101898–101912, 2022, doi: 
10.1109/ACCESS.2022.3208704. 

[16] Y. Liu, Q. Zhang, X. He, X. Lei, Y. Zhang, and T. Qiu, “Spectral-efficient hybrid 
precoding for multi-antenna multi-user mmWave massive MIMO systems with 
low complexity,” Eurasip Journal on Wireless Communications and 
Networking, vol. 2022, no. 1, Dec. 2022, doi: 10.1186/s13638-022-02150-2.   

[17] D. Zhang, Y. Wang, X. Li, and W. Xiang, “Hybrid beamforming for downlink 
multiuser millimetre wave MIMO-OFDM systems,” IET Communications, vol. 
13, no. 11, pp. 1557–1564, Jul. 2019, doi: 10.1049/iet-com.2018.6061.   

[18] Z. Wang, M. Li, Q. Liu, and A. L. Swindlehurst, “Hybrid Precoder and Combiner 
Design with Low-Resolution Phase Shifters in mmWave MIMO Systems,” IEEE 
Journal on Selected Topics in Signal Processing, vol. 12, no. 2, pp. 256–269, 
May 2018, doi: 10.1109/JSTSP.2018.2819129. 

[19] J. Chen et al., “Hybrid Beamforming/Combining for Millimeter Wave MIMO: A 
Machine Learning Approach,” IEEE Transactions on Vehicular Technology, vol. 
69, no. 10, pp. 11353–11368, Oct. 2020, doi: 10.1109/TVT.2020.3009746.   



  ISSN 2549-7286 (online) 

Indonesian Journal of Computer Science   Vol. 13, No. 3, Ed. 2024 | page 3603   

[20] S. Lavdas, P. K. Gkonis, E. Tsaknaki, L. Sarakis, P. Trakadas, and K. 
Papadopoulos, “A Deep Learning Framework for Adaptive Beamforming in 
Massive MIMO Millimeter Wave 5G Multicellular Networks,” Electronics 
(Switzerland), vol. 12, no. 17, Sep. 2023, doi: 10.3390/electronics12173555.   

[21] Q. Hu, F. Gao, H. Zhang, S. Jin, and G. Y. Li, “Deep Learning for Channel 
Estimation: Interpretation, Performance, and Comparison,” IEEE Transactions 
on Wireless Communications, vol. 20, no. 4, pp. 2398–2412, Apr. 2021, doi: 
10.1109/TWC.2020.3042074. 

[22] A. K. Gizzini and M. Chafii, “A Survey on Deep Learning based Channel 
Estimation in Doubly Dispersive Environments,” Jun. 2022, [Online]. Available: 
http://arxiv.org/abs/2206.02165 

[23] M. Wang, A. Wang, Z. Liu, and J. Chai, “Deep learning based channel estimation 
method for mine OFDM system,” Scientific Reports, vol. 13, no. 1, Dec. 2023, 
doi: 10.1038/s41598-023-43971-5. 

[24] H. Hirose, T. Ohtsuki, and G. Gui, “Deep Learning-Based Channel Estimation for 
Massive MIMO Systems with Pilot Contamination,” IEEE Open Journal of 
Vehicular Technology, vol. 2, pp. 67–77, 2021, doi: 
10.1109/OJVT.2020.3045470. 

[25] Y. Huang, C. Liu, Y. Song, and X. Yu, “DFT codebook-based hybrid precoding for 
multiuser mmWave massive MIMO systems,” Eurasip Journal on Advances in 
Signal Processing, vol. 2020, no. 1, Dec. 2020, doi: 10.1186/s13634-020-
00669-4.    

[26] Z. Xiang, J. Yan, and I. Demir, “A Rainfall-Runoff Model With LSTM-Based 
Sequence-to-Sequence Learning,” Water Resources Research, vol. 56, no. 1, 
Jan. 2020, doi: 10.1029/2019WR025326. 

 
 

 
 


