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Nowadays, lithium-ion batteries have been garnered significant attention as 
the primary energy source for energy storage devices within the renewable 
energy sector. Key concerns surrounding the utilization of lithium-ion 
batteries include ensuring satisfactory design lifespan and safe operation. 
Consequently, there's been a practical need for battery management. 
Responding to this demand, various battery state indicators have seen 
widespread implementation. Among the battery state indicators, accurate 
state-of-charge (SOC) estimation is an essential requirement for many 
situations where Li-Ion batteries (LiBs) are used. The effectiveness of a 
Battery Management System (BMS) safeguards the battery against deep 
discharging and over-charging to maximize its lifespan. This paper conducts 
state of charge (SOC) evaluation of a Li-ion battery module (12V, 13 Ah 
lithium titanate oxide (LTO) battery) for battery management systems (BMS) 
in energy storage systems (ESSs). 
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A. Introduction 
 Environmental concerns and the depletion of fossil fuel resources are driving 

the transition from traditional fossil fuels to renewable energy sources [1,2]. With 
their decreasing costs, extended lifespan, and high power and energy densities, 
lithium-ion batteries (LIBs) have emerged as the primary power source for most 
electric vehicles (EVs) [3–5]. The global adoption of EVs is projected to surpass 
300 million by 2030, necessitating a corresponding increase in the installed 
capacity of LIBs to approximately 3000 GWh [3]. Given the voltage and capacity 
constraints of individual cells, the construction of battery packs comprising 
numerous cells in parallel or series configurations is commonly used to meet the 
demands of high-power and high-energy applications [8,9]. Effective management 
of these large-scale battery packs, necessitates the implementation of advanced 
Battery Management Systems (BMS) to ensure their safe and efficient operation 
through control, monitoring, and optimization processes [10]. 

  As a crucial function within Battery Management Systems (BMS), state 
estimation serves as a vital monitoring tool for power systems. This process 
involves estimating various key parameters of the battery, including the state-of-
charge (SOC) [11]. Given the inherent limitations in directly measuring internal 
battery states, such as voltage, current, and temperature, estimation techniques 
rely on indirect signals. However, the complex nature of electrochemical reactions 
within batteries results in nonlinear relationships between internal states and 
external signals, particularly evident under challenging operational conditions [9]. 
Furthermore, battery degradation over time poses a significant challenge to the 
reliability of state estimation, complicating the task further. Hence, achieving 
accurate state estimation remains a considerable technical hurdle, especially 
considering the evolving performance characteristics of batteries with aging. 
Ensuring stable and precise estimation throughout the battery's lifecycle 
necessitates innovative approaches and rigorous methodologies [12]. 

  The state estimation technology applied to lithium-ion batteries constitutes a 
fundamental aspect of Battery Management Systems (BMS), particularly in the 
context of ensuring the functionality and safety of batteries for energy storage 
systems (ESSs). This paper offers a comprehensive review of the current state, 
technical hurdles, and lithium-ion battery state of charge (SOC) estimation.  The 
findings of this research serve as a valuable resource for battery state of charge 
(SOC) estimation in battery management systems. 

 The evaluation of State of Charge (SOC) plays a pivotal role in the real-time 
monitoring and evaluation of lithium-ion battery performance. SOC serves as a key 
indicator of the remaining energy stored within the battery, providing critical 
insights into its current operational status. Real-time monitoring systems 
continuously track SOC levels, allowing for precise management of energy usage 
and enabling timely interventions to optimize battery performance. By integrating 
SOC evaluation into monitoring frameworks, operators can effectively monitor 
battery health, anticipate potential issues such as overcharging or deep 
discharging, and ensure optimal utilization of battery capacity. This close 
relationship between SOC evaluation and real-time monitoring enables proactive 
maintenance strategies, enhances battery reliability, and prolongs overall battery 



  ISSN 2549-7286 (online) 

Indonesian Journal of Computer Science   Vol. 13, No. 2, Ed. 2024 | page 1950   

lifespan in various applications, ranging from portable electronics to electric 
vehicles and renewable energy storage systems. 
 
B.  Approaches to State Estimation 

 Battery State of Charge (SOC) is typically characterized as the percentage of 
the battery's present remaining capacity in relation to its rated capacity, usually at 
a particular discharge rate [2]. This value is expressed as: 

SOC=  Q/C_N   ×100%                                                                                                      (1) 
 In the standard charging and discharging process, the state of charge (SOC) 

of a battery is determined by the ratio between the current remaining battery 
capacity (Q) and its rated capacity (CN). At the point of complete discharge, when 
the battery is entirely depleted, the SOC is recorded as 0. Conversely, when the 
battery reaches full charge, the SOC is indicated as 100%. 

 The state of charge (SOC) of a battery serves as a foundational element for 
various other state estimations, and it is subject to the influence of multiple factors. 
These factors include the rate of charging and discharging, the number of charge-
discharge cycles, ambient temperature conditions, and the aging process of the 
battery [7]. 

 The State of Health (SOH) estimation performed by the Battery Management 
System (BMS) is crucial for the efficient operation of batteries in electrode 
production and manufacturing processes. Currently, SOH of batteries is 
determined by factors such as battery capacity, charge status, and internal 
resistance. Various definitions of SOH have been proposed, considering these 
aspects [5–7]. In this study, SOH is defined based on the proportionality between 
the current maximum capacity that can be stored and the rated capacity of the 
battery [2], expressed by the following equation: 
           SOH =  C_aged/C_rated   ×100%                                                                                  (2)                                     
where Caged is the maximum battery capacity that the battery can currently store 
and Crated is the battery’s rated capacity. 

 State-of-power (SOP) is typically defined by its peak power capacity. This 
refers to the maximum power that a battery can either absorb or discharge within 
a given time frame, constrained by factors such as voltage, current, and state of 
charge (SOC). In the context of electric vehicle (EV) operation, the Battery 
Management System (BMS) continuously updates the SOP in real-time. This 
enables assessment of whether the battery can effectively fulfill power 
requirements during instances such as vehicle acceleration or uphill driving [3]. 
SOP serves as a crucial indicator of the battery's ability to accept or deliver energy 
swiftly without breaching predetermined design constraints. 

 State of Energy (SOE) denotes the remaining energy stored within the 
battery [10], correlating with both the battery's discharge capacity and its voltage 
during discharge. In contrast to State of Charge (SOC), SOE is particularly relevant 
for estimating the driving range of electric vehicles (EVs) [6]. SOE is categorized 
into two distinct types. The first type defines SOE as the Theoretical Residual 
Energy (TRE) of the battery, while the second type defines SOE as the Residual 
Discharge Energy (RDE) of the battery [9]. TRE signifies the energy that can be 
released when the battery is discharged to SOC = 0 with minimal discharge 
current. On the other hand, RDE represents the energy that the battery can deliver 
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when discharged to the cutoff voltage under specific load conditions and ambient 
temperatures. 

 The task of battery state estimation holds significant importance within its 
management system. The state of charge serves as a crucial indicator of the 
battery's energy level following periods of use or extended periods of inactivity, 
providing insights into battery life expectancy or remaining usage time. 
Additionally, the state parameters reflect the operational conditions of the battery 
during its use [12]. Various estimation methods are employed to assess the battery 
state under different operating conditions. Prior to state estimation, the state 
parameters are defined, encompassing state of charge, state of energy, state of 
power, state of health, and remaining useful life. Subsequently, the primary factors 
influencing the state are analyzed, along with algorithm fusion and comparison. 
Parameter measurement technology is then integrated into the analysis of 
balancing control theory and temperature regulation. In terms of estimation 
method analysis, foundational techniques such as open-circuit voltage and ampere 
hour integral are examined. Various methods for state estimation of a rechargeable 
battery are described in Table 1. 
 

Table 1. Methods for State Estimation of a Rechargeable Battery 

No. State Estimation Methods 

1 SOC Estimation 

1. Impedance method 
2. Discharge test method 
3. Ampere-hour (AH) method 
4. Open circuit voltage (OCV) method 
5. SOC estimation method based on equivalent circuit 
model (ECM) 
6. SOC estimation based on an electro-chemical model 
7. SOC estimation based on the black box model 

2 SOH Estimation 
1. Model driven 
method 

i. Empirical Model  
ii. Semi-Empirical Model 

iii. Mechanism Model 

2. Data driven method 

3 SOP Estimation 
1. Characteristic mapping method 
2. Experimental method 
3. Limiting conditions method. 

4 SOE Estimation 

1. Direct calculation method 
2. Power integration method 
3. Model-based filtering method 
4. OCV method 
5. Machine learning method 
6. Joint estimation method 
7. Prediction-based method 

 

 
C.  Research Method 

 The structure of the proposed simulation model is illustrated in Figure 1. 
There are six subsystems that represent the battery cells. As shown in figure 1, six 
battery cells (2V, 13Ah lithium titanate oxide (LTO) battery) are connected in 
series to form a battery module (12V, 13Ah lithium titanate oxide (LTO) battery). 
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In this model, the value of SOC is managed to stop when it falls to 5%. 2-D lookup 
tables are used to characterize the required parameters of the battery. 
 

 
Figure 1. The Proposed Simulation Model 

 
 The structure of a subsystem of the proposed simulation model is depicted in 

Figure 2. A subsystem represents only one battery cell. The OCV, R1, R2, C1, C2, and 
RS values are determined based on the results obtained from pulse discharge 
testing (PDT) conducted at a temperature of 30°C. Within this subsystem, 2-D 
lookup tables are employed to characterize the OCV, RS, and the parameters of RC 
parallel networks. The quantities of OCV, RS, and RC parallel networks (R1, C1, R2, 
and C2) are treated as variables dependent on both current and state of charge 
(SOC). The most appropriate values are determined through the utilization of the 
interpolation-extrapolation lookup method within the 2-D lookup table. 
 

 
Figure 2. A Subsystem of the Proposed Simulation Model 

 
 The structure of an expanded subsystem of the proposed simulation model is 

shown in Figure 3. An expanded subsystem is composed of five sections; 1. State of 
Charge (SOC) estimation, 2. Open Circuit Voltage (OCV) evaluation, 3. The 
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Parameters of RC Parallel Networks, 4. Voltages of RC Parallel Networks 
Calculation and 5. Voltage Drop from DC Internal Resistance (V0) Calculation.  
 
  

 
Figure 3. An Expanded Subsystem of the Proposed Simulation Model 

 
 The following equation (3) is utilized for the calculation of the State of 

Charge (SOC) of the battery. 
 SOCn  = SOC0-∫(I ×100)/(αU  ×3600) dt                                                                     (3)                                                              
 The inputs of the subsystem consist of the current (I) and the initial State of 

Charge (SOC0) [4]. The usable capacity (αU) is adjusted based on the current 
magnitude. A 2D lookup table is employed to ascertain the impact of capacity on 
the current of the battery cell. 

 For the dynamic behaviors of a battery, the proposed construction of a 
second-order Thevenin equivalent circuit model is depicted in Figure 4. 
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Figure 4. Second Order Thevenin Equivalent Circuit Model 

 
 Where, SOC0 represents the state of charge of a battery at the initial state, 

and SOCn denotes the state of charge of the battery in real-time. The current and 
initial state of charge (SOC) of the battery serve as inputs to the system, with a 
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resistive load connected to the system. Outputs of the system, such as OCV, V0, V1, 
V2, and Vbat, can be estimated using the Simulation Model. 

 In this paper, the current pulse method is employed to parameterize and 
develop a model of a 13 Ah lithium titanate oxide battery. The values of RS, R1, R2, 
C1, and C2 are variable and contingent upon the current and State of Charge (SOC) 
of the battery. The values of current and SOC of the battery fluctuate depending on 
the types and magnitude of loads [5]. 
 
D.  Result and Discussion 

 In this paper, a battery model is developed for a 12V, 13 Ah lithium titanate 
oxide (LTO) battery module. The structure of the proposed simulation model 
(initial SOC=95%, Load resistance = 1) is illustrated in Figure 5.  
 

 
Figure 5. The Proposed Simulation Model for a 12V, 13 Ah lithium titanate oxide 

(LTO) battery module 
 

By running the MATLAB/simulation shown in figure 5, the result figure 6 
can be obtained. For the research, the simulation model depicted in Figure 1 has to 
run many times by changing the values of SOC and/or load resistance.    

 
(a) 
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(b) 

                                 
(c) 

Figure 6. The result figure of (a) Time vs Voltage (b) Time vs Current (c) Time vs 
SOC 

 
 In this paper, the result values of voltage, current and SOC can be obtained by 

changing the values of SOC (95%, 50% and 25%) for the values of load resistance 
(1Ω, 0.75Ω, 0.5Ω and 0.25Ω). The result figures of Voltage vs Time in various 
resistive load for initial SOC (a)95% (b) 50% (c) 25% are shown in figure 7.  
 

 
(a) 

 
(b) 
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(c) 

Figure 7. The result figure of Voltage vs Time in various resistive load for initial 
SOC (a)95% (b) 50% (c) 25% 

 
 By comparing the result figures a, b and c of figure 7, changing the value of 

voltage can be seen with the values of SOC and load resistance. The result figures of 
Current vs Time in various resistive load for initial SOC (a)95% (b) 50% (c) 25% 
are shown in figure 8. 

 
(a) 

 
(b) 

 
(c) 

Figure 8. The result figure of Current vs Time in various resistive load for initial 
SOC (a)95% (b) 50% (c) 25% 
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 According to the results depicted in Figures a, b, and c in Figure 8, the current 
value is observed to vary alongside the State of Charge (SOC) and load resistance 
values. The result figures of SOC vs Time in various resistive load for initial SOC 
(a)95% (b) 50% (c) 25% are shown in figure 9.  
 

 
(a) 

 
(b) 

 
(c) 

Figure 9. The result figure of SOC vs Time in various resistive load for initial SOC 
(a)95% (b) 50% (c) 25% 

 
  According to the results depicted in Figures a, b, and c in Figure 9, the State 

of Charge (SOC) value is observed to vary with the load resistance values. As 
depicted in Figures 6, 7, 8, and 9, the test results demonstrate the battery output 
voltages, currents, and real-time State of Charge (SOC). In this paper, simulation 
tests were conducted for a model of a 12V, 13 Ah lithium titanate oxide (LTO) 
battery module.  According to the results, two distinct scenarios can be discerned 
in relation to a battery under varying loads: 

1. Large resistive load: In this scenario, when a large resistive load is applied 
to the battery, the State of Charge (SOC), open-circuit voltage (VOC), and 
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battery voltage (Vbat) will be high, while the current of the battery will be 
low. This is because the load draws less current from the battery, allowing 
the voltage to remain high. The SOC reflects the remaining capacity of the 
battery, which would be high because less current is being drawn. 

2. Low resistive load: Conversely, when a low resistive load is applied to the 
battery, the SOC, VOC, and Vbat will be low, while the current of the battery 
will be high. With a lower load, more current is drawn from the battery, 
which reduces the voltage. As a result, the SOC decreases because more of 
the battery's capacity is being utilized. 

 These behaviors are typical of battery systems and are governed by the 
principles of electrochemistry and Ohm's law. 

 The proposed simulation model demonstrates accuracy in real-time 
monitoring and evaluation of lithium-ion battery performance. While initially 
designed for a 12V, 13 Ah lithium titanate oxide (LTO) battery module, this model's 
versatility allows for scalability through series and/or parallel connection of 
battery cells to form larger battery modules or packs. Satisfactory simulation tests 
and results can be obtained by adjusting the values of SOC or the size, type, or 
connection configuration of loads for various purposes. 

 Furthermore, the applicability of this proposed battery model extends 
beyond lithium titanate oxide batteries to encompass other battery types, 
including various types of Li-ion batteries, Nickel-cadmium batteries, Nickel Metal 
Hydride batteries, Alkaline batteries, and lead–acid batteries. This adaptability 
underscores the model's potential utility across diverse battery technologies and 
applications, thereby contributing to advancements in battery research, 
development, and performance optimization. 
 
E.  Conclusion 

 In conclusion, the accurate evaluation of State-of-Charge (SOC) plays a 
critical role in real-time monitoring and evaluation of lithium-ion battery 
performance. Precise SOC estimation is essential for optimizing the utilization of 
battery capacity, ensuring efficient energy management, and prolonging battery 
life. By accurately monitoring SOC, potential risks such as overcharging or over-
discharging can be mitigated, enhancing both the safety and reliability of lithium-
ion battery systems. Furthermore, accurate SOC evaluation facilitates the 
development of advanced battery management systems (BMS) and enables 
informed decision-making for optimal battery operation. Continued research and 
development in SOC estimation techniques are essential to further improve the 
performance and reliability of lithium-ion batteries across various applications, 
including electric vehicles, renewable energy storage systems, and portable 
electronics. 
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