
Indonesian Journal of Computer Science
ISSN 2549-7286 (online)

Jln. Khatib Sulaiman Dalam No. 1, Padang, Indonesia
Website: ijcs.stmikindonesia.ac.id | E-mail: ijcs@stmikindonesia.ac.id

Attribution-ShareAlike 4.0 International License Vol. 13, No. 2, Ed. 2024 | page 1542

Distributed Graph Processing in Cloud Computing: A Review of Large-Scale Graph
Analytics

Diler Atrushi1,3, Subhi R. M. Zeebaree2
diler.ahmed@auas.edu.krd, subhi.rafeeq@dpu.edu.krd
1 Information Technology Department, Technical College of Informatics-Akre, Akre

University for Applied Sciences, Duhok, Iraq.

2 Energy Eng. Department, Technical College of Engineering, Duhok Polytechnic University,

Duhok, Iraq.
3 Department of Computer Science, University of Duhok, Duhok, Kurdistan Region, Iraq.

Article Information Abstract

Submitted : 7 Mar 2024
Reviewed : 20 Mar 2024
Accepted : 1 Apr 2024

The rapid growth of graph data in various domains has propelled the need for
efficient distributed graph processing techniques in cloud computing
environments. This paper presents a comprehensive review of distributed
graph processing for graph analytics of massive size in the context of cloud
computing. The paper begins by highlighting the challenges associated with
distributed graph processing, including load balancing, communication
overhead, scalability, and partitioning strategies. It provides an overview of
existing frameworks and tools specifically designed for distributed graph
processing in cloud environments. Furthermore, the review encompasses
various techniques and algorithms employed in distributed graph processing.
The paper also reviews recent research advancements in optimizing
distributed graph processing in cloud computing. To provide practical
insights, the paper presents a comparative analysis of representative large-
scale graph analytics applications implemented on different cloud computing
platforms. Performance, scalability, and efficiency metrics are evaluated
under varying workload sizes and graph characteristics. Overall, this
comprehensive review paper serves as a highly prized asset for researchers
and large-scale graph analytics professionals who are practitioners in the
field. It provides a holistic understanding of the state-of-the-art distributed
graph processing techniques in cloud computing and guides future research
efforts towards more efficient and scalable graph processing in cloud
environments.

Keywords

Distributed Graph, Graph
Processing, Cloud
Computing, Distributed
Systems, Large-Scale
Graph.

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
mailto:diler.ahmed@auas.edu.krd

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1543

A. Introduction

Cloud computing is a web-based platform that allows for the utilization of
software, data, and resources from any location on the Internet. The recent
evolution from cloud computing to hosting and delivering internet applications is a
modern example[1], [2], [3]. Big data analytics and visualization have become
integral in response to the exponential growth of data from computers, social media,
and mobile devices. This transformation is acknowledged in the literature on big
data challenges and applications[4]. Visualization, the graphical representation of
facts, is crucial for interpreting and gaining deeper insights from large datasets.
Scholars emphasize the formal interpretation of data visualization as a necessity in
assessing and extracting meaningful insights from complex data. The role of data
visualization extends to facilitating the consolidation of diverse data points,
enhancing comprehension of data relationships, enabling real-time problem
discussion, and identifying key analysis focal points[5]. Distributed Graph
Processing in Cloud Computing is a pivotal paradigm for analyzing complex
relationships and patterns within massive datasets. In the era of big data, the large
size of graphs, such as billions of edges, and the complexity of graph computing
provide substantial obstacles to computer systems and architecture. graph analytics
has become a significant method for comprehending the connections between
diverse forms of data. This enables data analysts to extract key insights from the
patterns, benefiting various real-world applications including fraud detection[6],
Tasks related to the field of machine learning[7], signal processing[8], social media
content processing [9] Natural Language Processing (NLP) [10], [11], large-scale
graph visualizations[12] and many other increasing fields.
Processing large graphs in a distributed manner is generally difficult because of
their size and the inherent irregular structure of graph computations[13].
Enormous graphs may exceed the memory limit of a solo system; and even if they
can be accommodated, the performance will be limited by the quantity of processor
cores. Furthermore, real-world graphs often exhibit sparsity and are stored in
compressed formats, which presents difficulties for traditional memory hierarchies.
Graph algorithms sometimes suffer from poor locality as a result of random accesses
when updating neighboring nodes, and they often require high memory bandwidth
due to the little amount of computation performed between these random
accesses[14]. The fundamental elements of a distributed system are illustrated in
Figure 1.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1544

Figure 1. Distributed system components[15]

B. Background Theory

Distributed graph processing in cloud computing refers to the study and
manipulation of extensive graphs by distributing computational activities among
numerous machines inside a cloud environment. This section presents a theoretical
foundation on the fundamental principles and methodologies employed in
distributed graph processing.

Graph processing involves performing computations on graphs in order to
uncover significant insights and patterns. Graphs are composed of vertices, also
known as nodes, and edges, which reflect the links or connections between the
vertices. Graph processing is able to be classified into two primary types: graph
traversal and graph analytics. Graph traversal entails traveling the structure of a
graph to uncover interactions and investigate associated components, whereas
graph analytics concentrates on obtaining more advanced information from the
graph, such as community detection, centrality analysis, and graph clustering[16].

Various methodologies have been devised to tackle the difficulties associated
with distributed graph processing. The Bulk Synchronous Parallel (BSP) paradigm
offers a conceptual foundation for creating algorithms that process graphs in a
distributed manner. The computation is partitioned into supersteps, wherein each
superstep comprises a calculation phase followed by a synchronization phase. The
BSP approach facilitates fault tolerance, load balancing, and scalability in distributed
graph processing by guaranteeing that all machines achieve synchronization points
before advancing to the next superstep[17].

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1545

Graph processing frameworks offer conceptual models and programming
interfaces that streamline the creation of scalable graph algorithms. These
frameworks manage the fundamental aspects of distributed computation, fault
tolerance, and data partitioning. Notable graph processing frameworks include
Apache Giraph, Apache Flink, and GraphX. These frameworks offer advanced
programming interfaces for defining graph algorithms and automatically manage
the distribution of computations across the cluster[18], [19].

Cloud computing technologies, such as Amazon Web Services (AWS), Google
Cloud Platform (GCP), and Microsoft Azure, play a crucial role in enabling
distributed graph processing. They offer the essential framework, flexible
scalability, and resilient resources needed for handling extensive graphs. Cloud
platforms provide cost-effective and scalable services such as virtual computers,
storage systems, and data processing frameworks that enable distributed graph
processing[20], [21].

C. Distributed Systems
Nowadays, the amount of data to process is beyond of the capability to be processed

on a multicore single system[22]. The internet and distributed systems are experiencing

a growing redundancy. Typically, the combined servers contain approximately 4

petabytes of data. The technologies intricately handle this vast amount of data in an

effective manner. The data is stored in multiple distributed devices and can be accessed

using parallel processing[23], [24], [25]. Distributed systems enable multiple clients to

access a shared computing resource, facilitating resource sharing. Examples of distributed

computing include air traffic control, online railway reservation systems, and internet

banking[26]. Distributed systems are crucial in the current technological environment,

enabling smooth communication and collaboration across interconnected devices and

services[27]. Distributed systems are extensively employed in modern applications for

many objectives. According to Van Steen [28], they play a crucial role in cloud computing

by facilitating the efficient and scalable distribution of resources among several

computers. Online education has been improved by the use of distributed computing,

which has enhanced eLearning experiences and made better use of resources[29]. The

essential components of a distributed system are shown in Figure 1.

D. Graph Processing

Graph processing has become essential in the current technological
environment, with applications spanning various disciplines. The authors in [30]
emphasizes that social networks utilize graph processing for the purpose of
modeling and analysis. Extracting information from graphs, such as those found in
social networks or other contexts, typically requires global processing, which can be
accomplished using several techniques [31]. Graphs are widely used in computer
science as models for many structures found in nature and created by humans,
highlighting the extensive range of applications for graph theory[32]. Sakr
highlights the importance of massive graph processing in data centers, which is in
line with the widely accepted reference architecture, as addressed by the
community. Future systems are expected to offer highly scalable solutions for graph
processing, recognizing graphs as a fundamental abstraction in contemporary data
pipelines[33].

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1546

E. Cloud Computing
The theoretical implementation of cloud computing involves the integration of

virtualization, service models, and deployment methods[34]. Cloud computing has
become a fundamental aspect of contemporary technology, providing unparalleled
adaptability and expandability[35], [36]. The discipline is characterized by its
dynamic nature, as evidenced by recent advances. The projected significant changes
in 2024, as described by in[37], highlight the way cloud computing is reforming
company operations and IT strategy, emphasizing its crucial position in the digital
future. The authors in[38], [39] examine pioneering themes, including the
democratization of innovation through AI-as-a-service, environmentally friendly
efforts, and the use of edge computing. These patterns highlight the continuous
development of cloud computing, placing it at the forefront of technological
progress. Cloud architecture refers to the integration of diverse technological
elements that constitute a cloud system. Typically, this entails utilizing
virtualization technology to consolidate several resources and distribute them
across a network. The services provided by the cloud are controlled by the cloud
operating system[40]. Figure 2 demonstrate the architecture of cloud computing.

Figure 2. Cloud computing architecture[41]

F. Large-Scale Graph

The rapid growth of the Internet has led to a substantial increase in the quantity
of electronic data. The act of categorizing these materials into coherent groups has
become imperative. The vast amount of web pages across several domains poses a

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1547

challenge for consumers to efficiently navigate and locate pertinent
information[42]. From that view point, Large-scale graph analysis has proven
crucial in extracting relevant insights across several areas. Coimbra et al.[43]
examine the prospects and difficulties linked to large-scale data-intensive
computing for social network analysis, genomics, and security[44], [45], [46]
applications. This highlights the adaptability of extensive graphs in tackling intricate
problems and extracting significant patterns. The importance of large-scale graphs
is apparent in the domain of big data. Sakr in[33] underscores the prevalent
framework of data centers, emphasizing the alignment of numerous graph
processing ecosystems with this configuration. This insight is essential for the
ability of massive graph processing to handle large amounts of data and be used in
different scenarios that require a lot of data. Majeed's[30] review of graph theory
highlights its potential applicability in computer science, providing distinct
solutions throughout the subject. The study[47] offers a crucial analysis of graph
data science, specifically highlighting the significance of graph visualization and its
contribution to the examination of various graph categories. The ongoing
significance of large-scale graphs in data-processing pipelines, offering extremely
scalable solutions for modern applications[33].

G. Challenges

The task of processing graphs in a distributed environment inside a cloud
computing has certain difficulties, as indicated by research investigations. The
challenges include
• Scalability: As graph sizes continue to grow, ensuring scalability in distributed

graph processing becomes crucial. Algorithms and techniques should be

designed to handle graphs with billions or even trillions of vertices and edges,

while efficiently utilizing the available computing resources [14], [48].

• Load balancing: Balancing the computational workload across distributed

nodes in a cloud environment is a challenge in distributed graph processing.

Unequal distribution of graph data and computations can lead to performance

bottlenecks and inefficient resource utilization[49].

• Partitioning strategies: Effectively partitioning a graph across distributed

nodes is essential for load balancing and minimizing communication overhead.

Choosing appropriate partitioning strategies based on graph properties, such

as vertex connectivity and data locality, is a challenge in distributed graph

processing[50].

• Fault tolerance: Distributed graph processing systems should be resilient to

node failures or network disruptions. Ensuring fault tolerance and fault

recovery mechanisms to handle failures and maintain the consistency of graph

computations is a challenge in cloud-based graph processing[51].

• Irregular Memory Access Patterns[52].

• Network Overheads and Bottlenecks[53].

• Performance Optimization Issues [54].

• Efficiency and Programming Flexibility [55].

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1548

• The Complexity in Distributed Visualization Algorithms [56].

H. Related works

In their study, [57] the author presents a distributed and parallel technique

utilizing the MapReduce architecture to identify 2-Edge Connected Components (2-

ECCs) in extensive graphs. The paper emphasizes the constraints of current single-

node algorithms for graph analysis, which are inadequate for handling enormous

graphs including billions of edges and vertices. The BiECCA algorithm tackles this

difficulty by using the parallel and distributed capabilities of MapReduce, facilitating

accelerated processing of large-scale graphs and facilitating the handling of stream

data. The paper's contributions encompass the design and architecture of the

proposed algorithm, the implementation of five distinct MapReduce tasks in a

cascaded manner, and a comprehensive analysis of the algorithm's temporal

complexity. The findings and assessments are offered in relation to the quantity of

vertices and edges in comparison to the duration required for locating 2-ECCs.

Furthermore, the study proposes innovative concepts for expanding upon the

research.

The paper titled "Outsourced Analysis of Encrypted Graphs in the Cloud with

Privacy Protection" addresses the challenge of securely analyzing large graphs in the

cloud while maintaining privacy [58]. The authors propose cryptographic

techniques for protecting the privacy of outsourced graph data and present two

encryption algorithms: additional substance homomorphic encryption (ASHE) and

some degree homomorphic encryption (SDHE). The primary aim of the study is to

develop security-preserving methods for essential graph analysis tasks, specifically

extraterrestrial examination of graphs outsourced to the cloud server. The authors

focus on addressing the accountability and protection concerns associated with

cloud-based graph storage and analysis. The paper highlights the importance of

cloud computing in handling extensive graph data due to its processing capacity and

cost-saving benefits. The results suggest that SDHE-based strategies perform well in

reducing computing time, while ASHE-based methods are more efficient in reducing

storage costs.

The study [59] introduces the concept of Graph Processing-as-a-Service

(GPaaS) for large-scale graph processing in cloud computing environments. The aim

of the paper is to develop a graph processing framework that takes into account

quality of service (QoS) requirements and efficiently provisions resources to

minimize monetary costs and execution time. The GPaaS framework considers

service level agreements (SLAs) and QoS requirements to provision the appropriate

combination of resources. The authors emphasize the importance of considering

monetary costs and the heterogeneity of cloud resources in graph processing. They

also address challenges specific to cloud environments, such as limited resources,

time limitations, and dynamic network metrics.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1549

In a study conducted by [60] This tackles the problem of communication

bottleneck in distributed graph processing systems, which occurs when a significant

amount of messages are exchanged between servers during calculations. The

objective is to present a coded computing framework that utilizes computation

redundancy to decrease the amount of communication required in the processing of

large-scale graphs. The authors propose a new coding method that adds structured

redundancy during the calculation phase. This allows for coded multicasting

possibilities during message exchange and leads to a significant improvement in

performance. The proposed framework expands on the graph-based MapReduce

technique and presents a mathematical model for decomposing graph computation

jobs in MapReduce. The calculation is partitioned into distinct Map and Reduce

steps. During the Map phase, every server calculates intermediary values for the

vertices within its assigned subgraph. During the Shuffle phase, servers share the

intermediate values that are needed to execute the Reduce jobs. During the Reduce

phase, each server performs the designated computations utilizing local and

received intermediate data. The authors conduct actual experiments where they

apply the PageRank algorithm on simulated and real-world datasets using Amazon

EC2. The results exhibit substantial advancements, showcasing an improvement of
up to 50.8% when compared to the usual application of PageRank.

The authors in [61] introduces the concept of edge computing, an extension

of cloud computing, which aims to provide low-latency computing capabilities to

users by deploying edge servers at base stations. The paper presents two

approaches to tackle the CEDC problem. First, an optimal approach Constrained

Edge Data Caching (CEDC) called CEDC-IP is introduced, which utilizes Integer

Programming techniques to solve the problem exactly. Second, an approximation

algorithm named CEDC-A is proposed to efficiently find approximate solutions for

large-scale CEDC problems. The approximation ratio of CEDC-A is also proven. The

results indicate that both CEDC-IP and CEDC-A beat the other approaches in terms

of benefit per cache cost and serviced request ratio per cache cost.

As processing large graphs in the cloud environment is a challenging process.

In a study [62] that proposed framework incorporates a network performance-

aware partitioning the graph method. To capture the roughness of the network

bandwidth, the machines selected for graph processing are modeled as a complete

undirected graph. The framework recursively partitions both the data graph and the

machine graph, ensuring that the number of cross-partition edges aligns with the

aggregated bandwidth among machine graph partitions. Hierarchical combination

techniques are employed to exploit data locality and improve network performance.

The authors developed a system prototype called Surfer based on the Pregel graph

processing engine. Experimental evaluations were conducted using a real-world

social network and synthetic graphs exceeding 100GB each. The results on a local

cluster demonstrated that the proposed partitioning scheme improved partitioning

performance by 39-55% and graph processing by 6-71% under different network

topologies. The optimizations reduced network traffic by 30-95% and total

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1550

execution time by 30-85%. Furthermore, experiments on Amazon EC2 showed an
average reduction of 49% in total execution time.

The paper [63] addresses the challenges of scaling Graph Neural Networks

(GNNs) for large real-world graphs in a distributed setting. the scale of real-world

graphs, often consisting of billions of nodes and edges, poses challenges for model

training. The aim of the paper is to address the scalability challenges in training

GNNs on large graphs in a distributed fashion. Existing frameworks for GNN training

are limited to single machine multi-GPU setups and smaller graph sizes. The paper

proposes P3 as a solution to enable efficient distributed training of GNNs on large

input graphs. P3 aims to reduce network communication inefficiencies, utilize GPUs

effectively, and outperform existing state-of-the-art distributed GNN frameworks.

Trinity, is a distributed graph engine that is introduced by [64]designed to

address the challenges of large graph computation. Graph algorithms require

random data access, which is not efficiently provided by disk technology. Memory-

based methods are constrained by their lack of scalability. Trinity's objective is to

enhance memory management and network connection in order to facilitate rapid

graph exploration and effective graph parallel computing. Additionally, it offers a

specialized specification language called TSL, which simplifies the maintenance and

computation of graphs. Trinity's objective is to offer a versatile graph engine that

facilitates both real-time query processing and offline graph analytics. It specifically

targets the challenges of graph computation, such as the high ratio of data access to

computation and the need for random data access. Trinity employs a distributed

memory storage technology that enables globally accessible distributed memory for

performing large-scale graph computations. It utilizes enhanced memory

management and network connection to optimize performance. The system

employs a graph parallel computing methodology and enhances access patterns for

both online and offline computation. Experiments carried out on Trinity showcase

its ability to perform well in both quick graph searches and efficient graph analysis

on large-scale graphs with billions of nodes. Trinity has effectively been

implemented in practical scenarios, including knowledge bases, knowledge graphs,

and social networks. The report conducts a comparative analysis of Trinity in

relation to other prominent graph systems, emphasizing its superior qualities and

benefits. Current systems often prioritize either online transaction processing

(OLTP) or offline analytics with high latency and high throughput. However, Trinity

is designed to effectively handle both scenarios by utilizing scalable memory-based
computation.

ShenTu is a graph processing framework that is designed general-purpose

that is introduced by [65] and can effectively handle the challenges posed by large-

scale graphs, such as the imbalanced load, lack of locality, and irregularity in access.

ShenTu incorporates four key innovations to achieve its extraordinary performance

and the ability to scale. First, it utilizes hardware specialization to select the best

computational element and memory for individually task. Furthermore, super node

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1551

routing adjusts global communication to the specific structure of the machine's

topology. Third, on-chip sorting maps local message to manycore processors. Finally,

degree-aware messaging selects the most suitable communication scheme based on

vertex properties, such as degree. ShenTu is capable of efficiently dealing with a

graph with 70 trillion edges and analyzing a 12 trillion-edge Internet graph for spam
detection in a matter of seconds.

There are many challenges faced in graph processing, which involves

understanding relationships in large datasets. Conventional architectures suffer

from poor locality, high memory bandwidth requirements, and energy consumption.

To overcome these challenges, the study [66]proposes a novel approach that

leverages ReRAM (Resistive Random Access Memory) as a hardware building block

for graph processing acceleration. The goal of the paper is to introduce GRAPHR, as

the primary accelerator of graph processing that is ReRAM-based. The system

adheres to the concept of near-data processing and aims to perform highly efficient

parallel analog operations with minimal hardware and energy requirements.

GRAPHR consists of two main components: memory ReRAM and a graph engine

(GE). The core graph computations are performed using ReRAM crossbars, which

enable efficient sparse matrix-vector multiplication (SpMV). This approach allows

for a higher computation-to-data movement ratio, increased parallelism, and

reduced energy waste due to sparsity. The authors demonstrate that ReRAM-based

computation can be utilized in a broad variety of contexts of graph algorithms. The

experimental results show that GRAPHR outperforms CPU and GPU baselines in

terms of speedup and energy efficiency. GRAPHR outperforms a CPU baseline system

by achieving a speedup of increase to 132.67 times and an energy saving of 33.82

times on the geometric mean. GRAPHR outperforms GPUs with a speedup ranging

from 1.69 to 2.19 times and consumes significantly less energy, ranging from 4.77 to

8.91 times less. In addition, GRAPHR exhibits a performance improvement ranging

from 1.16 to 4.12 times and is significantly more energy-efficient, with a range of

3.67 to 10.96 times, compared to a PIM-based design.

The authors in [67] addresses the need for performing real-time analytics on

evolving graphs to extract value from big data. The purpose of the study is to design

a unified graph data store that supports both batch and stream analytics on evolving

graphs. The key objectives include efficient data access, concurrent execution of

diverse real-time analytics, high ingestion rate, and data consistency. GraphOne

combines edge list and adjacency list storage formats to leverage their respective

advantages. It introduces a new data abstraction called GraphView, enabling data

access at different granularities of data ingestion. The system employs dual

versioning to decouple graph computations from updates, ensuring data consistency

during concurrent processing. Experimental evaluations compare GraphOne with

state-of-the-art graph systems, demonstrating its superior performance in ingestion

rate, batch analytics (e.g., BFS and PageRank), and stream analytics (e.g., streaming

BFS). The experimental results show that GraphOne outperforms existing dynamic

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1552

graph systems in terms of ingestion rate, achieving an average speed up of 11.40×
against LLAMA and 5.36× against Stinger.

The paper [68]addresses the challenge of graph partitioning in distributed

graph processing applications. Graph partitioning involves dividing a large graph

into subgraphs to be processed by distributed systems. The paper introduces

CUTTANA, a streaming graph partitioner for the purpose of partition massive graphs

with high quality compared to existing streaming solutions. It aims to reduce

workload execution time, worker imbalance, and network overhead. The paper also

focuses on evaluating the performance of CUTTANA in distributed graph analytics

and databases, comparing it with other partitioning methods. It uses a scalable

coarsening and refinement technique to improve the intermediate assignment made

by a streaming partitioner. The buffering approach avoids storing the entire graph

in memory while ensuring sufficient data for accurate partitioning decisions. The

coarsening and refinement strategy efficiently identifies and implements the best

moves to enhance partitioning quality. Additionally, a parallel implementation of

CUTTANA is provided to achieve rapid partitioning speed. Experimental analysis

demonstrates that CUTTANA consistently outperforms existing streaming vertex

partitioners in terms of both edge-cut and communication volume metrics. It

exhibits better partitioning quality, resulting in improved runtime performance in

graph analytics applications (up to 59% compared to various streaming

partitioners) and higher query throughput in graph databases (up to 23%

improvement over the best existing partitioner). CUTTANA also addresses the

worker imbalance issue observed in edge-cut partitioners.

The large-scale graphs are computationally expensive. K-Path centrality

quantifies the transmission of information within a graph along direct channels

having a maximum length of K. the researchers of[69] Presenting a novel technique,

known as the random neighbor traversal graph (RaNT-Graph), for enhancing the

calculation of K-Path centrality. The RaNT-Graph is a decentralized data structure for

graphs that integrates vertex delegation splitting and rejection sampling algorithms.

The objective is to facilitate the selection of a vast number of random walks and

paths in extensive scale-free graphs. The RaNT-Graph technique employs vertex

delegation partitioning to evenly distribute compute, communication, and storage

across processors. Vertices with a high degree or hubs are divided, and their lists of

adjacent vertices are disseminated to all processors. This aids in mitigating the

disparity in computational capacity. In addition, rejection sampling is used to

effectively sample random pathways. Rejection sampling is a method that chooses

vertices that have not been visited yet, hence decreasing computing time by

excluding vertices that have already been visited. The weak scaling trials showcase

the effectiveness of RaNT-Graph on R-MAT graphs, but the strong scaling studies

exhibit a substantial improvement in speed compared to the baseline 1D partitioned

version. RaNT-Graph demonstrated a significant acceleration of 56,544 times when

predicting K-Path centrality in an experiment conducted on a graph containing 89

million vertices and 1.9 billion edges.Efficient graph processing in various domains

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1553

such as bioinformatics, social networking, and web analysis is very important. A

study [70] that discuss the existing frameworks, including vertex programming and

sparse linear algebra approaches, and identify the key building block operations,

SpMSpV and SpGEMM, for expressing graph computations. The authors proposed

the development of GraphPad, a high-performance framework for generalized

SpMSpV and SpGEMM primitives, and evaluate its scalability and performance

compared to existing frameworks. It also investigates partitioning strategies and

communication optimizations that are crucial for efficient graph processing. The

authors implement four graph applications using GraphPad, which offers flexibility

in accommodating different data layouts, partitioning strategies, and

communication optimizations. They study real-world graphs with over a billion

edges and synthetic graphs with up to 8 billion edges. The paper explores load

balancing, communication optimizations, and different partitioning schemes to

optimize performance. In result, the study demonstrate that GraphPad outperforms

CombBLAS, a high-performing graph analytics framework, by up to 40 times in

terms of performance. The scalability of GraphPad is shown on a scale of up to 64

nodes, and its performance is within 2 times of GraphMat, a high-performance graph

framework, for four out of five benchmarks on a single node.

I. Discussion and Comparison

The papers analyze diverse obstacles and suggest creative strategies for
handling extensive graph processing in various computational settings. The
examined research employs several methodology and strategies, which are
categorized into Aims, Techniques, and Results as in Table 1.

Table 1. A summary of the reviewed articles.

References Aims Model Results
[57]
2023

Enables efficient
processing of large graphs
and facilitates real-time
applications

proposed an algorithm,
called BiECCA that is
builds upon existing
“Star Algorithm”

Time of finding 2-ECCs
increases with an
increase in the graph
size.

[58]
2023

The primary aim of the
study is to develop security
methods for essential
graph analysis tasks,
specifically graphs
outsourced to the cloud
server

Two algorithms:
Additional Substance
Homomorphic
Encryption (ASHE) and
Some Degree
Homomorphic
Encryption (SDHE)

SDHE-based strategies
perform well in reducing
computing time, while
ASHE-based methods are
more efficient in
reducing storage costs

[59]
2019

To develop a graph
processing framework that
takes into account quality
of service (QoS)
requirements and
efficiently provisions
resources to minimize

Used optimization
techniques called
dynamic auto-scaling
algorithm. In addition
to dynamic
repartitioning
approach and mapping
strategy

GPaaS reduces the
execution time by 10-
15% compared to Giraph
and significantly reduces
monetary costs by more
than 40% compared to
both Giraph and
PowerGraph

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1554

monetary costs and
execution time

[60]
2020

leverages computation
redundancy to reduce the
communication load in
large-scale graph
processing

Proposed framework
that is built upon the
graph-based
MapReduce approach
and introduces a
mathematical model for
MapReduce
decomposition of graph
computation tasks

up to 50.8%
improvement

[61]
2022

Provide low-latency
computing capabilities to
users by deploying edge
servers at base stations

Proposed CEDC-IP and
approximation
algorithm named CEDC-
A

The average advantage of
CEDC-IP compared to
other methods is 3.44%
to 39.29%

[62]
2012

Develop a novel graph
partitioning framework
that enhances the network
performance of graph
partitioning

use two models namely
partition sketch (used a
multi-level graph
partitioning algorithm)
and machine graph
(developed a network
bandwidth aware)

performance
improvement of 30–85%
and reducing network
traffic by 30–95%

[63]
2021

To address the scalability
challenges in training
GNNs on large graphs in a
distributed fashion

Proposes P3
optimization method
that will reduce
network
communication
inefficiencies, utilize
GPUs effectively

P3 outperforms state-of-
the-art frameworks by
up to 7 times

[64]
2013

provide a general-purpose
graph engine that supports
both online query
processing and offline
graph analytics

Introduced a
distributed graph
engine called Trinity

Optimizing memory,
communication and
improved performance

[65]
2018

Process massive graphs on
supercomputers, allowing
for timely and efficient
analysis of complex
systems

Combine four
techniques (Hardware
specialization,
Super node routing, on
chip sorting, and degree
aware messaging)

Using a super computer
it could process 12
trillion edges in 8.5
seconds

[66]
2017

Overcome poor locality,
high memory bandwidth
requirements, and energy
consumption

Introduce GRAPHR, the
primary accelerator of
graph processing
that depends on
ReRAM.

Compared to CPU, GPUs
and in memory
processing, GRAPHR is
faster and more energy
saving

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1555

[67]
2020

Graph with efficient data
access, concurrent
execution of diverse real-
time analytics, high
ingestion rate, and data
consistency.

Propose a graph data
store called GraphOne

GraphOne achieves high
performance, concurrent
execution of diverse
analytics, and efficient
data access.

[68]
2023

Dividing a large graph into
subgraphs to be processed
by distributed systems

Introduces CUTTANA, a
streaming graph
partitioner

improved runtime
performance by 59% and
23% higher query
throughput

[71]
2023

To optimize the estimating
K-Path centrality in large-
scale graphs

A new approach called
the random neighbor
traversal graph (RaNT-
Graph)

RaNT-Graph achieved a
56,544x speedup when
guessing K-Path
significance on a graph
with 89 million vertices
and 1.9 billion edges

[69]
2016

Optimize the
implementations of graph
analytics

Developing GraphPad, a
set of optimized graph
primitives

GraphPad outperforms
CombBLAS by 40x
performance, and
GraphMat by 2x and
Scalability up to 64 nodes

J. Extracted Statistics
The article reviewed are tackling variety of graph areas, the table below list the
theme and the research that investigating it.

Table 2. Viewed themes references
Graph Processing Area References

Graph Processing Frameworks [59], [60],
[62], [64]

Graph Optimization [63], [69],
[71]

Real-time Graph applications [57], [67]

Partitioning of Large Graphs [61]

Hardware-Based Approaches in Graph
Processing

[65]

Graph Security [58]

Furthermore, the pie chart illustrates the number of and percentage of the viewed articles.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1556

Figure 3: Viewed articles themes, number of and percentage

K. Recommendations

Based on a comprehensive review of the research studies cited in this article, the
authors propose the following recommendations.

1. Development of Efficient Partitioning Strategies: Given the challenges

associated with distributed graph processing, it is recommended to focus on

the development of efficient partitioning strategies. These strategies should

aim to balance the workload and minimize communication overhead,

ensuring optimal performance in cloud computing environments.

2. Further Research on Load Balancing Techniques: Load balancing plays a

crucial role in distributed graph processing. Future research efforts should

focus on exploring and developing advanced load balancing techniques that

can effectively distribute the computational workload across multiple

machines, maximizing resource utilization and minimizing processing time.

3. Exploration of Optimization Techniques: To enhance the efficiency and

scalability of distributed graph processing, it is recommended to explore

and develop optimization techniques specifically tailored for cloud

computing environments. These techniques may include algorithmic

improvements, data compression methods, and memory management

strategies to address the challenges posed by large-scale graphs.

4. Comparative Analysis of Graph Processing Frameworks: Conducting a

comparative analysis of existing graph processing frameworks, such as

Apache Giraph, Apache Flink, and GraphX, would provide valuable insights

into their performance, scalability, and ease of use. This analysis can help

researchers and practitioners in selecting the most suitable framework for

their specific graph analytics applications.

5. Evaluation of Graph Processing on Different Cloud Computing Platforms: It

is advisable to evaluate the performance, scalability, and efficiency metrics

of representative large-scale graph analytics applications on different cloud

computing platforms, such as Amazon Web Services (AWS), Google Cloud

Platform (GCP), and Microsoft Azure. This evaluation can provide practical

Graph Optimization; 3;
22%

Graph Processing
Frameworks; 4; 29%

Graph Security; 1; 7%

Hardware-Based
Approaches in Graph

Processing; 2; 14%

Partitioning of Large
Graphs; 2; 14%

Real-time Graph
applications; 2; 14%

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1557

insights into the strengths and weaknesses of each platform, enabling

informed decision-making in terms of platform selection for distributed

graph processing tasks.

6. Collaboration between Researchers and Practitioners: Given the complexity

and evolving nature of distributed graph processing in cloud computing,

collaboration between researchers and practitioners is essential. Close

collaboration can facilitate the exchange of knowledge, ideas, and practical

experiences, leading to the development of more efficient and scalable

graph processing techniques.

L. Conclusion

This study has presented a comprehensive review of the challenges, techniques,
frameworks, and advancements in distributed graph processing. The rapid growth
of graph data in various domains has created a need for efficient graph processing
techniques in cloud computing environments. The article highlights the challenges
associated with distributed graph processing, including load balancing,
communication overhead, scalability, and partitioning strategies. It provides an
overview of existing frameworks and tools specifically designed for distributed
graph processing in cloud environments. Various techniques and algorithms
employed in distributed graph processing are discussed, and recent research
advancements in optimizing distributed graph processing in cloud computing are
reviewed. To provide practical insights, the article presents a comparative analysis
of representative large-scale graph analytics applications implemented on different
cloud computing platforms. Performance, scalability, and efficiency metrics are
evaluated under varying workload sizes and graph characteristics. Overall, this
comprehensive review serves as a valuable resource for researchers and
practitioners in the field of large-scale graph analytics. It provides a holistic
understanding of the state-of-the-art distributed graph processing techniques in
cloud computing and guides future research efforts towards more efficient and
scalable graph processing in cloud environments. The article emphasizes the
importance of distributed graph processing in analyzing complex relationships and
patterns within massive datasets. It highlights the significance of graph analytics in
various real-world applications such as fraud detection, machine learning, signal
processing, social media content processing, natural language processing, and large-
scale graph visualizations. Furthermore, the article discusses the theoretical
foundations and methodologies employed in distributed graph processing,
including the Bulk Synchronous Parallel (BSP) paradigm and graph processing
frameworks such as Apache Giraph, Apache Flink, and GraphX. It also emphasizes
the role of cloud computing technologies in facilitating distributed graph processing
by providing essential frameworks, scalability, and resilient resources. In summary,
the article recognizes the challenges and opportunities in distributed graph
processing for large-scale graph analytics in cloud computing. It provides a
comprehensive overview of the current state-of-the-art, explores optimization
techniques, and presents practical insights through comparative analysis. This
review serves as a valuable guide for researchers and practitioners seeking to
enhance the efficiency and scalability of graph processing in cloud environments.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1558

M. References
[1] C. Mustafa Mohammed and S. R. M Zeebaree, “Sufficient Comparison Among Cloud

Computing Services: IaaS, PaaS, and SaaS: A Review,” International Journal of Science
and Business, vol. 5, no. 2, pp. 17–30, 2021, doi: 10.5281/zenodo.4450129.

[2] S. R. M. Zeebaree, A. B. Sallow, B. K. Hussan, and S. M. Ali, “Design and Simulation of
High-Speed Parallel/Sequential Simplified DES Code Breaking Based on FPGA,” in
2019 International Conference on Advanced Science and Engineering (ICOASE), 2019,
pp. 76–81. doi: 10.1109/ICOASE.2019.8723792.

[3] S. R. M. Zeebaree, “DES encryption and decryption algorithm implementation based
on FPGA,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18,
no. 2, pp. 774–781, 2020, doi: 10.11591/ijeecs.v18.i2.pp774-781.

[4] G. Andrienko et al., “Big Data Visualization and Analytics: Future Research
Challenges and Emerging Applications,” 2020. [Online]. Available:
http://graphics.stanford.edu/projects/dataExtract

[5] A. and B. A. J. and M. A. and B.-M. A. Curry Edward and Metzger, “A Reference Model
for Big Data Technologies,” in The Elements of Big Data Value: Foundations of the
Research and Innovation Ecosystem, A. and Z. S. and P. J.-C. and G. R. A. Curry Edward
and Metzger, Ed., Cham: Springer International Publishing, 2021, pp. 127–151. doi:
10.1007/978-3-030-68176-0_6.

[6] S. Srivastava and A. K. Singh, “Fraud detection in the distributed graph database,”
Cluster Comput, vol. 26, no. 1, pp. 515–537, 2023, doi: 10.1007/s10586-022-03540-
3.

[7] W. Xiao et al., “Tux: Distributed Graph Computation for Machine Learning,” in 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17),
Boston, MA: USENIX Association, Mar. 2017, pp. 669–682. [Online]. Available:
https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/xiao

[8] E. Isufi, F. Gama, D. I. Shuman, and S. Segarra, “Graph Filters for Signal Processing
and Machine Learning on Graphs,” Nov. 2022, [Online]. Available:
http://arxiv.org/abs/2211.08854

[9] M. Ali, M. Hassan, K. Kifayat, J. Y. Kim, S. Hakak, and M. K. Khan, “Social media content
classification and community detection using deep learning and graph analytics,”
Technol Forecast Soc Change, vol. 188, p. 122252, 2023, doi:
https://doi.org/10.1016/j.techfore.2022.122252.

[10] A. Goyal, H. D. Iii, and R. Guerra, “Fast Large-Scale Approximate Graph Construction
for NLP,” Association for Computational Linguistics, 2012.

[11] A. Alexandrescu and K. Kirchhoff, “Data-Driven Graph Construction for Semi-
Supervised Graph-Based Learning in NLP,” 2007.

[12] A. Arleo, W. Didimo, G. Liotta, and F. Montecchiani, “Large graph visualizations using
a distributed computing platform,” Inf Sci (N Y), vol. 381, pp. 124–141, 2017, doi:
https://doi.org/10.1016/j.ins.2016.11.012.

[13] R. Elshawi, O. Batarfi, A. Fayoumi, A. Barnawi, and S. Sakr, “Big Graph Processing
Systems: State-of-the-art and Open Challenges.” [Online]. Available:
http://hama.apache.org/

[14] Y. Zhuo et al., “Trinity: A Distributed Graph Engine on a Memory Cloud,” ACM
Transactions on Computer Systems, vol. 37, no. 1–4, Jun. 2021, doi:
10.1145/3453681.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1559

[15] Z. S. Ageed and S. R. M. Zeebaree, “Distributed Systems Meet Cloud Computing: A
Review of Convergence and Integration,” Original Research Paper International
Journal of Intelligent Systems and Applications in Engineering IJISAE, vol. 2024, no.
11s, 2024, [Online]. Available: www.ijisae.org

[16] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge University
Press, 2011.

[17] L. G. Valiant, “A bridging model for parallel computation,” Commun ACM, vol. 33, no.
8, pp. 103–111, 1990.

[18] Apache Software Foundation, “Apache Giraph”, Accessed: Jan. 24, 2024. [Online].
Available: https://giraph.apache.org/intro.html

[19] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica, “{GraphX}:
Graph processing in a distributed dataflow framework,” in 11th USENIX symposium
on operating systems design and implementation (OSDI 14), 2014, pp. 599–613.

[20] Google, “Google Cloud Platform.” Accessed: Jan. 24, 2024. [Online]. Available:
https://cloud.google.com/

[21] Amazon, “Amazon Web Services.” Accessed: Jan. 24, 2024. [Online]. Available:
https://aws.amazon.com/

[22] S. R. M. Zeebaree et al., “Multicomputer Multicore System Influence on Maximum
Multi-Processes Execution Time,” TEST Engineering & Management, vol. 53, no. 03,
pp. 14921–14931, 2020.

[23] S. R. M. Zeebaree, H. M. Shukur, L. M. Haji, R. R. Zebari, K. Jacksi, and S. M. Abas,
“Characteristics and Analysis of Hadoop Distributed Systems,” Technology Reports
of Kansai University, vol. 62, no. 04, 2019.

[24] Z. N. Rashid, H. Sharif, S. Rafeeq, and M. Z. Sulaimani, “Client/Servers Clustering
Effects on CPU Execution-Time, CPU Usage and CPU Idle Depending on Activities of
Parallel-Processing-Technique Operations ",” INTERNATIONAL JOURNAL OF
SCIENTIFIC & TECHNOLOGY RESEARCH, vol. 7, no. 8, 2018, [Online]. Available:
www.ijstr.org

[25] L. M. Haji, S. R. M. Zeebaree, Z. S. Ageed, O. M. Ahmed, M. A. M. Sadeeq, and H. M.
Shukur, “Performance Monitoring and Controlling of Multicore Shared-Memory
Parallel Processing Systems,” in 2022 3rd Information Technology To Enhance e-
learning and Other Application (IT-ELA), IEEE, 2022, pp. 44–48. doi: 10.1109/IT-
ELA57378.2022.10107953.

[26] H. Shukur, S. Zeebaree, R. Zebari, O. Ahmed, L. Haji, and D. Abdulqader, “Cache
Coherence Protocols in Distributed Systems,” Journal of Applied Science and
Technology Trends, vol. 1, no. 3, pp. 92–97, Jun. 2020, doi: 10.38094/jastt1329.

[27] Y. S. Jghef, S. R. M. Zeebaree, Z. S. Ageed, and H. M. Shukur, “Performance
Measurement of Distributed Systems via Single-Host Parallel Requesting using
(Single, Multi and Pool) Threads,” in 2022 3rd Information Technology To Enhance e-
learning and Other Application (IT-ELA), 2022, pp. 38–43. doi: 10.1109/IT-
ELA57378.2022.10107923.

[28] M. van Steen and A. S. Tanenbaum, “A brief introduction to distributed systems,”
Computing, vol. 98, no. 10, pp. 967–1009, 2016, doi: 10.1007/s00607-016-0508-7.

[29] S. Caballé, W. Li, R. Hoseiny, A. Zomaya, and F. Xhafa, “Applications of Distributed
and High Performance Computing to Enhance Online Education,” Jan. 2018, pp. 586–
600. doi: 10.1007/978-3-319-69835-9_55.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1560

[30] A. Majeed and I. Rauf, “Graph Theory: A Comprehensive Survey about Graph Theory
Applications in Computer Science and Social Networks,” Inventions, vol. 5, no. 1,
2020, doi: 10.3390/inventions5010010.

[31] M. E. Coimbra, A. P. Francisco, and L. Veiga, “An analysis of the graph processing
landscape,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00443-9.

[32] F. Riaz and K. Ali, “Applications of Graph Theory in Computer Science,” Jan. 2011, pp.
142–145. doi: 10.1109/CICSyN.2011.40.

[33] S. Sakr et al., “The future is big graphs: a community view on graph processing
systems,” Commun. ACM, vol. 64, no. 9, pp. 62–71, Aug. 2021, doi: 10.1145/3434642.

[34] H. M. Zangana and S. R. M. Zeebaree, “Distributed Systems for Artificial Intelligence
in Cloud Computing: A Review of AI-Powered Applications and Services,”
International Journal of Informatics, Information System and Computer Engineering
(INJIISCOM), vol. 5, no. 1, pp. 1–20, Jan. 2024, [Online]. Available:
https://ojs.unikom.ac.id/index.php/injiiscom/article/view/11883

[35] P. Y. Abdullah, S. R. M. Zeebaree, H. M. Shukur, and K. Jacksi, “HRM System using
Cloud Computing for Small and Medium Enterprises (SMEs),” Technology Reports of
Kansai University, vol. 62, no. 04, 2020.

[36] P. Y. Abdullah, S. R. M. Zeebaree, K. Jacksi, and R. R. Zeabri, “AN HRM SYSTEM FOR
SMALL AND MEDIUM ENTERPRISES (SME)S BASED ON CLOUD COMPUTING
TECHNOLOGY,” International Journal of Research -GRANTHAALAYAH, vol. 8, no. 8,
pp. 56–64, Aug. 2020, doi: 10.29121/granthaalayah.v8.i8.2020.926.

[37] Y. Liu, L. Wang, and X. Vincent Wang, “Cloud manufacturing: latest advancements
and future trends,” Procedia Manuf, vol. 25, pp. 62–73, 2018, doi:
https://doi.org/10.1016/j.promfg.2018.06.058.

[38] M. Alam and K. Shakil, “Recent Developments in Cloud Based Systems: State of Art,”
Jan. 2015.

[39] Z. N. Rashid, S. R. M. Zeebaree, and A. Sengur, “Novel Remote Parallel Processing
Code-Breaker System via Cloud Computing,” TRKU, vol. 62, no. 04, 2020.

[40] H. Malallah et al., “A Comprehensive Study of Kernel (Issues and Concepts) in
Different Operating Systems,” Asian Journal of Research in Computer Science, vol. 8,
no. 3, pp. 16–31, May 2021, doi: 10.9734/ajrcos/2021/v8i330201.

[41] A. Maier, “Understanding the fundamentals of a Cloud Computing Architecture,”
Code Coda. Accessed: Jan. 24, 2024. [Online]. Available:
https://codecoda.com/en/blog/entry/understanding-the-fundamentals-of-a-
cloud-computing-architecture#

[42] R. K. Ibrahim et al., “Clustering Document based on Semantic Similarity Using Graph
Base Spectral Algorithm,” in 2022 5th International Conference on Engineering
Technology and its Applications (IICETA), 2022, pp. 254–259. doi:
10.1109/IICETA54559.2022.9888613.

[43] D. Bader, H. Meyerhenke, and J. Riedy, “Applications and Challenges in Large-scale
Graph Analysis,” Jan. 2013.

[44] S. R. M Zeebaree, R. R. Zebari, K. Jacksi, and D. Abas Hasan, “Security Approaches For
Integrated Enterprise Systems Performance: A Review,” INTERNATIONAL JOURNAL
OF SCIENTIFIC & TECHNOLOGY RESEARCH, vol. 8, 2019, [Online]. Available:
www.ijstr.org

[45] T. Mohammed, G. Sami, S. R. M. Zeebaree, and S. H. Ahmed, “Designing a New Hashing
Algorithm for Enhancing IoT Devices Security and Energy Management,”

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1561

International Journal of Intelligent Systems and Applications in Engineering, vol. 12,
no. 4s, pp. 202–215, 2024, [Online]. Available: www.ijisae.org

[46] T. Mohammed, G. Sami, S. R. M. Zeebaree, and S. H. Ahmed, “A Novel Multi-Level
Hashing Algorithm to Enhance Internet of Things Devices’ and Networks’ Security,”
Original Research Paper International Journal of Intelligent Systems and Applications
in Engineering IJISAE, vol. 2024, no. 1s, pp. 676–696, 2024, [Online]. Available:
www.ijisae.org

[47] R. Das and M. Soylu, “A key review on graph data science: The power of graphs in
scientific studies,” Chemometrics and Intelligent Laboratory Systems, vol. 240, p.
104896, 2023, doi: https://doi.org/10.1016/j.chemolab.2023.104896.

[48] M. Li et al., “Scaling Distributed Machine Learning with the Parameter Server,” in
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14),
Broomfield, CO: USENIX Association, Oct. 2014, pp. 583–598. [Online]. Available:
https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/li_mu

[49] A. C. Facebook, H. Lane, S. Edunov, M. Kabiljo, and S. Muthukrishnan, “One Trillion
Edges: Graph Processing at Facebook-Scale,” 2150.

[50] G. Malewicz et al., “Pregel: a system for large-scale graph processing,” in Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, in
SIGMOD ’10. New York, NY, USA: Association for Computing Machinery, 2010, pp.
135–146. doi: 10.1145/1807167.1807184.

[51] J. Ekanayake et al., “Twister: a runtime for iterative MapReduce,” in Proceedings of
the 19th ACM International Symposium on High Performance Distributed Computing,
in HPDC ’10. New York, NY, USA: Association for Computing Machinery, 2010, pp.
810–818. doi: 10.1145/1851476.1851593.

[52] A. Sahebi, M. Barbone, M. Procaccini, W. Luk, G. Gaydadjiev, and R. Giorgi,
“Distributed large-scale graph processing on FPGAs,” J Big Data, vol. 10, no. 1, p. 95,
2023, doi: 10.1186/s40537-023-00756-x.

[53] J. Malicevic, A. Roy, and W. Zwaenepoel, “Scale-up graph processing in the cloud:
Challenges and solutions,” Jan. 2014. doi: 10.1145/2592784.2592789.

[54] V. Kalavri, Performance Optimization Techniques and Tools for Distributed Graph
Processing. 2016.

[55] R. Chen, X. Weng, B. He, and M. Yang, “Large graph processing in the cloud,” in
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Jan. 2010, pp. 1123–1126. doi: 10.1145/1807167.1807297.

[56] A. Arleo, W. Didimo, G. Liotta, and F. Montecchiani, “Large graph visualizations using
a distributed computing platform,” Inf Sci (N Y), vol. 381, pp. 124–141, 2017, doi:
https://doi.org/10.1016/j.ins.2016.11.012.

[57] D. Dahiphale, “MapReduce for Graphs Processing: New Big Data Algorithm for 2-
Edge Connected Components and Future Ideas,” IEEE Access, vol. 11, pp. 54986–
55001, 2023, doi: 10.1109/ACCESS.2023.3281266.

[58] D. Selvaraj, S. M. U. Sankar, D. Dhinakaran, and T. P. Anish, “Outsourced Analysis of
Encrypted Graphs in the Cloud with Privacy Protection,” SSRG International Journal
of Electrical and Electronics Engineering, vol. 10, no. 1, pp. 53–62, Jan. 2023, doi:
10.14445/23488379/IJEEE-V10I1P105.

[59] S. Heidari and R. Buyya, “Quality of Service (QoS)-driven resource provisioning for
large-scale graph processing in cloud computing environments: Graph Processing-

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1562

as-a-Service (GPaaS),” Future Generation Computer Systems, vol. 96, pp. 490–501, Jul.
2019, doi: 10.1016/j.future.2019.02.048.

[60] S. Prakash, A. Reisizadeh, R. Pedarsani, and A. S. Avestimehr, “Coded Computing for
Distributed Graph Analytics,” IEEE Trans Inf Theory, vol. 66, no. 10, pp. 6534–6554,
Oct. 2020, doi: 10.1109/TIT.2020.2999675.

[61] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H. Jin, and Q. He, “Constrained App Data
Caching Over Edge Server Graphs in Edge Computing Environment,” IEEE Trans Serv
Comput, vol. 15, no. 5, pp. 2635–2647, 2022, doi: 10.1109/TSC.2021.3062017.

[62] R. Chen, X. Weng, B. He, M. Yang, B. Choi, and X. Li, Improving Large Graph Processing
on Partitioned Graphs in the Cloud. 2012.

[63] S. Gandhi, A. P. Iyer, and P. Iyer, P3: Distributed Deep Graph Learning at Scale. 2021.
[Online]. Available:
https://www.usenix.org/conference/osdi21/presentation/gandhi

[64] B. Shao, H. Wang, and Y. Li, Trinity: A Distributed Graph Engine on a Memory Cloud.
ACM, 2013.

[65] H. Lin et al., “Shentu: processing multi-trillion edge graphs on millions of cores in
seconds,” SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 706–716, 2018.

[66] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerating Graph Processing
Using ReRAM,” Aug. 2017, [Online]. Available: http://arxiv.org/abs/1708.06248

[67] P. Kumar and H. Howie Huang, “Graphone: A data store for real-time analytics on
evolving graphs,” ACM Transactions on Storage, vol. 15, no. 4, Jan. 2020, doi:
10.1145/3364180.

[68] M. R. Hajidehi, S. Sridhar, and M. Seltzer, “CUTTANA: Scalable Graph Partitioning for
Faster Distributed Graph Databases and Analytics,” Dec. 2023, [Online]. Available:
http://arxiv.org/abs/2312.08356

[69] L. Fletcher, T. Steil, and R. Pearce, “Optimizing a Distributed Graph Data Structure
for K-Path Centrality Estimation on HPC,” in 2023 IEEE High Performance Extreme
Computing Conference (HPEC), 2023, pp. 1–7.

[70] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L. Willke, and P. Dubey,
“GraphPad: Optimized Graph Primitives for Parallel and Distributed Platforms,” in
Proceedings - 2016 IEEE 30th International Parallel and Distributed Processing
Symposium, IPDPS 2016, Institute of Electrical and Electronics Engineers Inc., Jul.
2016, pp. 313–322. doi: 10.1109/IPDPS.2016.86.

[71] L. Fletcher, T. Steil, and R. Pearce, “Optimizing a Distributed Graph Data Structure
for K-Path Centrality Estimation on HPC,” 2023.

