
Indonesian Journal of Computer Science
ISSN 2549-7286 (online)

Jln. Khatib Sulaiman Dalam No. 1, Padang, Indonesia
Website: ijcs.stmikindonesia.ac.id | E-mail: ijcs@stmikindonesia.ac.id

Attribution-ShareAlike 4.0 International License Vol. 13, No. 2, Ed. 2024 | page 1833

Parallel Processing Impact on Random Forest Classifier Performance: A CIFAR-10
Dataset Study

Bareen Haval Sadiq1, Subhi R. M. Zeebaree2

bareen.haval@dpu.edu.krd, subhi.rafeeq@dpu.edu.krd
1IT department, Technical College of Duhok, Duhok Polytechnic University, Duhok, Iraq
2Energy Eng. Dept., Technical College of Engineering, Duhok Polytechnic University, Duhok, Iraq

Article Information Abstract

Submitted : 5 Mar 2024
Reviewed : 12 Mar 2024
Accepted : 1 Apr 2024

Using the CIFAR-10 dataset, this research investigates how parallel
processing affects the Random Forest method's machine learning
performance. Accuracy and training time are highlighted in the study as
critical performance indicators. Two cases were studied, one with and one
without parallel processing. The results show the strong prediction powers
of the Random Forest algorithm, which continues to analyze data in parallel
while retaining a high accuracy of 97.50%. In addition, training times are
notably shortened by parallelization, going from 0.6187 to 0.4753 seconds.
The noted increase in time efficiency highlights the importance of
parallelization in carrying out activities simultaneously, which enhances the
training process's computational efficiency. These results provide important
new information about how to optimize machine learning algorithms using
parallel processing approaches.

Keywords

Parallel Processing,
Distributed Systems,
Cloud Computing,
Machine Learning,
Random Forest

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1834

A. Introduction
Multiple processors are present in the behavior of complicated real-time

systems, which is a complicated design when handling multitasking processing [1].
When dealing with several processes, multiprocessor systems can generate
efficient process execution [2]. Additionally, time-sharing across these processes in
a real-time manner can enhance execution productivity [3]. Thus, the capacity to
control the process of newly entered processes with adequate memory space to be
accessible continually will be provided by employing multiprocessor systems [4].

Serial processing takes longer to complete than parallel processing, based on
the essential factors that convert user and programmer concerns into workable
solutions[5]. Modern computer systems' architecture is built on various processor
combinations. The capacity of multiprocessors to run several threads in parallel
allows threads for the same resource to be processed on many processors at once
[6]. The compact parallel processing capacity of multicore processors, which have
gained popularity, cannot be fully utilized unless the software being worked on is
designed for it. It's really difficult to write a parallel program that works and scales
[7].

Many parallels are required to execute a program on a larger number of cores
efficiently in order to maximize the performance of multi-core computers. several
processes running concurrently on many cores Although multi-core processors
have been present for a while, their significance increased as a result of the
technological constraints single-core processors now face, such as those relating to
high throughput, extended battery life, and great energy efficiency [8]. Building a
Uniprocessor (UP) system with a faster (and more expensive) processor is the first
method of increasing a computer's processing capability; building a system with
many processors is the second [9]. Parallel processing is the broad term used to
describe the second method. While intelligent multi-core computers are capable of
parallel processing by task, the development of image processing applications
typically necessitates multi-threaded coding [10]. Reducing processing time is
crucial for increasing efficiency in systems that handle massive amounts of data for
analysis. Long processing times are the result of large data quantities. As a result, it
is frequently necessary to shorten the time that these operations execute [11].

In various types of research settings, random forest classification is a widely
used machine learning technique for creating prediction models [12]. Reducing the
number of variables required to produce a forecast is frequently the aim of
prediction modeling, which aims to increase efficiency and lessen the workload
associated with data collecting. There are several techniques for selecting variables
when using random forest classification [13]. Random forest algorithms are useful
for parallel implementation since each decision tree is independent, which makes
them one of the hotspots for current large data research [14] However, huge data
and feature redundancy lead standard RF algorithms to suffer from low accuracy
and computational efficiency due to memory, time, and data complexity limits [15].

A type of operating system called a cloud is made to function in virtualization
and cloud computing networks. Virtual machines, virtual servers, virtual
infrastructure, hardware, and software backbone are all managed by a cloud
operating system. Particle physics, data retrieval, and other fields employ a
number of technologies that are employed in cloud computing technology. To

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1835

increase cloud computing performance, however, many strategies are applied.
While the term "cloud" is frequently used in certain businesses, it is not entirely
complete or helpful [16].

 This study demonstrates how CPU parallelism impacts Using the random
forest approach, CIFAR-10 is a multi-class dataset. Using CPU parallel and non-
parallel processing, the major objectives are to demonstrate how parallelism
affects algorithm performance. Determine the computational efficiency in terms of
processing time for both model training as well as forecasting with and without
CPU parallelization.

B. Background Theory

The design philosophy of microprocessors on the usage of many processing
cores changed as a result of advancements in the computer industry. This
modification enables the simultaneous execution of several instructions by a single
device [17]. These evolutions show a maximum core frequency and reveal a
tendency toward parallel computing as an alternative to serial computing in order
to surpass this limit. Modern processors are made up of several processing
components (multicores), as opposed to one powerful processing unit like those
found in older processors. The design of multiprocessors with several cores has
opened up new possibilities for enhancing computer simulation performance.
Prototypes of parallel programming are a growing and difficult problem in the era
of parallel computing. When computer applications with high processing demands
are identified, challenges in the form of effective programming models to design
are faced. With the help of these programming models, the software can assist the
performance of such apps while the hardware can handle the computations.
Improved programming is therefore required to make development easier and, at
the same time, to port a high performance [18].

Parallel Processing
Sequential or serial algorithms are those that need steps to be taken to

complete an operation. Parallel algorithms are those that allow for the
simultaneous execution of many operations. For a parallel computer, a parallel
algorithm is a collection of processes that may be run concurrently and can
communicate with one another to solve a particular issue. One definition of the
term "process" is a component of a program that a processor may execute. The
effectiveness of a parallel algorithm's usage of resources must be considered when
creating it [19]. After an algorithm in parallel has been created, its efficiency (or
performance) on a parallel computer should be assessed using a measurement.
Run time is a frequently used common measurement. Run time, which is
sometimes called elapsed time or completion time, is the amount of time an
algorithm needs to run on a parallel computer to solve a given issue. To be more
precise, it is the amount of time that passes between the initial processor starting
and the last processor (or last group of processors) ending. Run time, as opposed
to processor usage, is the most accurate way to gauge efficiency in a distributed
processing context. This is typically the case since the main objective of parallel
processing is to complete the calculation as quickly as feasible rather than to make

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1836

effective use of processors. To reduce the run time, it appears that multiplying the
number of processes involved in issue-solving might be a solution[20].

The idea of parallel processing, is by no means new. Performance research
has spent decades trying to find ways to speed up floating-point and other
processes associated with solving numerically demanding algorithms used in
domains like fluid dynamics and structural mechanics. The three main subfields of
parallel processing are server-side functions, server-process client-side functions,
and client-process object rendering. Parallel processing has two distinct uses or
applications. On the one hand, high-performance systems are used to accelerate
computationally intensive tasks. Large workstation clusters or conventional
supercomputer systems can be used to run these. However, some embedded
control systems operate on sequential hardware and need principles from parallel
programming in order to handle concurrent external actuators or internal
operations. Parallel software design is becoming more and more significant, and
parallel processing is widely used nowadays under mainstream operating systems
like Windows and Linux [21].

Image Processing Fundamentals
The idea of a digital picture was initially presented in the early 20th century

when digital images were sent over undersea cable systems [22][23].
Furthermore, the development of contemporary digital image processing
techniques was facilitated by advancements in computer hardware and processing
units. In particular, the field of remote sensing applications gave rise to digital
image processing. The image signal processing of a contemporary image capture
system is crucial to producing digital images with a high quality [24]. Light travels
via the color filter array (CFA) and lens. We are unable to get color information
because an image sensor without a CFA absorbs light throughout the whole
spectrum. Due to the heightened sensitivity of the human visual system to light at
the green wavelength, digital cameras often employ a standard CFA known as the
Bayer pattern, which consists of two green (G), one red (R), and one blue (B) filter
to create color images. To boost the quantity of light, the advanced CFA swaps out
the single green filter for a white filter [25].

Machine Learning
The fusion of distributed frameworks and artificial intelligence reveals itself

as a potent catalyst in the dynamic cloud computing ecosystem, transforming the
nature of services and apps [26]. The intersection of distributed frameworks and
artificial intelligence emerges as a fundamental hub for managing the barriers
manifest in contemporary computing standards in an era of unmatched
information volumes, elevated preparation requirements, and the unavoidability of
deft inventions. This innovative collaborative energy, which provides creative
solutions to a variety of intricate problems pertaining to asset coordination,
security, and adaptability in distributed frameworks, is the key to unlocking cloud
computing's otherwise untapped potential [27].

The goal of efficient machine learning model creation has led to the
standardization of the use of parallel processing to shorten training times. The
effects of employing parallel processing and the Random Forest approach are

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1837

examined in this paper. Two key performance parameters are evaluated: training
time and accuracy, in order to detect any significant differences in the model's
output. The results provide a comprehensive insight of how the Random Forest
method's prediction accuracy and computational efficiency are impacted by
parallel processing [28].

In machine learning, the efficiency of algorithms has a major impact on the
creation and use of models. Parallel processing is now a potent tool for speeding
up the training of complex models, allowing computers to handle the demands of
complex activities.

Random Forest
Random Forest is a bagging classifier that uses two stochastic decision levels

in its learning process. Each decision tree in the ensemble chooses a subset of
samples and features for training. Random Forest decision tree models are very
well-liked for application in various machine-learning situations due to their
simplicity of usage and interpretation. Each decision tree operates poorly when
used alone because it is vulnerable to overfitting [29].

Decision Tree
Decision tree approach is a widely used and easily comprehensible machine

learning methodology. A decision tree of options, as its name suggests, partitions
the data space into smaller subspaces, each of which is given a label or a
probability. As the tree is constructed during training, the algorithm examines
every possible split along every axis to make sure that every split is carried out as
efficiently as is practical. A number of metrics, including as entropy, information
gain, and Gini, may be used to quantify the impurity of the resulting two partitions,
and the optimal split point is identified as having the lowest impurity among them.

C. Introduction

In this research [30] describe the two primary issues that parallel algorithms
face: they shorten execution times at the expense of decreased prediction accuracy.
They also provide solutions to these issues. (1) To make the process of data
parallelism easier, data is partitioned vertically along feature space and
horizontally along samples. (2) Optimal and significant features are chosen using
the Parallel Multilevel Feature Selection (M-FS) method to enhance the
categorization of cancer subtypes. The chosen characteristics are assessed using
Spark's parallel Random Forest, and the outcomes are contrasted with both the
sequential implementation of the identical methods and findings from earlier
reports.

In this research [31]suggests a novel approach to HCS that is based on a
cloud environment and optimizes the choice of virtual machines (VMs) using
Parallel Particle Swarm Optimization (PPSO). Furthermore, a novel model for the
diagnosis and prognosis of chronic kidney disease (CKD) is suggested to assess the
effectiveness of our VMs model. Two successive approaches are used to create the
CKD prediction model: neural networks (NN) and linear regression (LR). LR is
used to identify important variables that affect CKD. NN is employed in CKD

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1838

prediction. According to the results, the suggested model performs 50% faster
overall during execution than the state-of-the-art models.

In this research [32] provide a development approach for a multi-computer,
multicore-processor distributed memory system. It is possible to use this
technique on distributed-shared memory systems, applying client/server
architectural concepts. The two main parts of the system that is being described
are programs that are run on distributed multi-core architectures with 2, 4, and 8
CPUs to do certain tasks, and programs that are managed. Three main scenarios
covering most of the design options must be taken into account during the
implementation process. The suggested system may calculate all key server
timings, including Started, Elapsed, CPU, Kernel, User, Waiting, and Finish, in
addition to the Total-Task-Time (TTT) on the client side.

In this research [33] discussed a high-performance computing (HPC)-capable
version of Iterative Random Forest (iRF). Explainable-AI eQTL analysis of SNP sets
including more than a million SNPs is made possible by this new implementation.
Additionally, it offers a cutting-edge method called iRF Leave One Out Prediction
(iRF-LOOP), which enables the development of Predictive Expression Networks
with a minimum of 40,000 genes through its use. It examines the time taken to
complete the task on Summit and Titan, the two fastest supercomputers in the
world, and compares the new implementation of iRF with the earlier R version.

The Parallel Random Forest (PRF) approach is available on the Apache Spark
platform for large data sets is discussed in. The PRF method is optimized using a
hybrid technique that combines task-parallel and data-parallel optimization. While
a vertical data-partitioning strategy is used to effectively reduce the cost of data
transmission, a data-multiplexing technique is used in data-parallel optimization to
limit the quantity of data and allow the training dataset to be reused. In order to
mitigate the issue of imbalanced data, proposed a novel weighted classes
classification strategy to protect the network from malicious nodes. We include a
supervised machine learning technique with a specially designed best effort
iterative methodology, utilizing historical network node data, into the proposed
system to enhance the accuracy of seldom detected assaults.

In this research [34] showed a distance-weighted optimal strategy for a
parallel random forest algorithm is presented to address the issues with the
current methods' lengthy time to execution and limited parallelism. The
experimental findings demonstrate that the parallel random forest algorithm's
optimization reduces the algorithm's execution time by 110 000 ms and
significantly boosts its operational efficiency, effectively resolving the issues with
the conventional random forest algorithm.

In this research [35] suggested a strategy to do the prediction a specific
amount of time ahead of the anticipated time point was proposed. This would
enable a sufficient amount of time for scheduling tasks depending on the
anticipated workload. We provide a workload prediction technique based on
clustering, which first divides all the jobs into many groups and then trains a
model for forecasting for each category independently, to further increase the
forecast accuracy. The workload prediction techniques based on clustering
outperform previous comparative approaches and enhance the forecast accuracy

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1839

to approximately 90 percent in both CPU and memory, as shown by the trace-
driven studies conducted using Google cluster trace.

In this research [36] investigates the maintaining the classification and
regression trees (CARTs) with superior classification effects and lowering the
correlations between the CARTs make up the core notion. To be more precise, each
CART was used to forecast three sets of reserved data in the classification impact
assessment section, after which the mean accuracy of classification were attained,
one by one. Compared to the five random forests used as a reference, the suggested
enhanced random forest produced an average classification accuracy that was
greater, and the lead was steady.

In this research [37] discusse the three optimizing elements of the suggested
FastForest algorithm—Subsample Aggregating, or "Subbagging," Logarithmic Split-
Point Sample collection, and Dynamic Limited Subspacing—combine to produce
this outcome. Empirical testing on 45 datasets on PC and smartphone platforms
reveals that Fast Forest maintains classification accuracy while offering an average
24% speed boost over Random Forest in model-training.

In this research [38] to successfully lower the cost of data transfer, a vertical
data-partitioning approach is utilized, and a data-multiplexing technique is used to
minimize the volume of data and enable the dataset used for training to be reused.
When it comes to task-parallel optimization, RF is trained using a dual parallel
technique, and a task Directed Acyclic Graph (DAG) is produced based on PRF's
parallel training process and the reliance on the Resilient Distributed Datasets
(RDD) objects. Comprehensive testing outcomes demonstrate the superiority and
noteworthy benefits of the PRF algorithm in terms of classification accuracy,
performance, and scalability when compared to the pertinent methods used by
Spark MLlib and other research.

In this research [39] suggests using parallel computing to create the random
forest approach using the R programming language. When random forest is
implemented, one typical issue that frequently arises is high processing times since
it takes a lot of data and builds a lot of tree models to construct random trees on a
single processor. Among the instances utilized in this study are the Iris flower
dataset, wine quality data, and Pima Indian woman's diabetes diagnostic data. The
overall study findings demonstrate that utilizing parallel computing to run random
forests reduces the computational time compared to using a single processor to
run standard random forests.

In this research [40] focuses on creating a system with two primary stages:
program monitoring and control. The program may operate on several multicore
system architectures, such as those with 2, 4, and 8 CPUs. The work's algorithms
are designed to be able to provide information about dependent computer
systems, check the status of all processes that are currently running and provide
pertinent information, and run all possible cases of processes and threads that
make up the user program and may contain one of these scenarios (Single-
Processes/Single-Threads, Single-Process/Multi-Thread, Multi-Process/single-
Thread, Multi-Process/Multi-Thread and Multi-Process/ Single-Multi-Thread).

D. The Proposed Method

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1840

The proposed approach's general framework is depicted in Figure 1. First,
sets for training and testing are created using the CIFAR-10 test dataset, with a
preset allocation of 80% for training and 20% for assessment. Next, the random
forest technique was used to utilize the training data first without doing any
parallel processing, and subsequently it was used to use the same data using
parallel processing. Main purpose of the system is to demonstrate the deference in
performance and time execution of the random forest algorithm with parallel
processing and without parallel processing. These experiments were conducted on
a system equipped with an AMD Ryzen 5 Microsoft Surface (R) Edition 2.10 GHz
processor (8 CPUs) and 8GB of RAM.

Figure 1. Flowchart for the proposed approach.

Dataset
The CIFAR-10 dataset is used in this investigation. This multi-class dataset

has 60,000 32x32 color image divided into 10 classes, with 6,000 images in each
class. Ten thousand test images and fifty thousand training images in total. [41].

Random Forest
 The Random Forest classifier is a group of tree-structured classifiers with

evenly distributed random vectors that are independently distributed [42]. Stated
differently, RF creates regression trees and then takes the average of the results
once it receives the input vector that contains the characteristic values for a
particular training set. By eliminating the association between distinct decision

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1841

trees, random forest reduces the variance in bagging by creating trees from several
training data subsets. Through replacement sampling, the random forest model
resamples the original dataset to provide training data using the bagging
technique.

The enhanced consistency and predictability of the random forest method is
aided by this bagging feature. To build a tree and improve generalization ability
while lowering generalization error, random forest employs the best-split
variables in a selected at random evidentiary feature subset. Samples designated
as "out-of-bag" (OOB) were those that were not chosen for the bagging procedure
training. Classification algorithms perform better and are more stable when there
are comparatively less characteristics used in the classification process. Selecting
pertinent characteristics for the building of classifiers has so drawn a lot of
attention.

Figure 2 shows the Diagram for the Random Forest. By averaging the
predictions of individual trees T, the Random Forest method provides forecast

for a given input X:

 (1)

N represents the number of trees in the forest. The goal of adjusting the

Random Forest model's parameters, which involve the total number of trees,
maximum depth, and minimum samples per leaf, is to either minimize the mean
squared error (MSE) or increase the coefficient of determination.

Figure 2. Random Forest diagram [42]

E. Results

In this study, the Random Forest approach is investigated with and without
parallel processing using Python as the programming language. The predictive
capacity of the model is measured by accuracy, and the computational
effectiveness is measured by training time. These are the two main performance
metrics that this study looks at. By means of a comparative analysis, the study

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1842

seeks to ascertain the impact of parallel processing on Random Forest method
performance.

The Random Forest approach is trained using a CIFAR-10 dataset, and its
performance was assessed in two separate scenarios: one with parallel processing
and the other without. The key findings are as follows:

Even with parallel processing, the accuracy stayed at 97.50%.
The accuracy score shows that adding parallel processing has no effect on the

model's ability to generate accurate predictions. Since any variation might indicate
potential issues with the parallel processing approach, this accuracy consistency is
crucial for evaluating the success of parallelization efforts.

Efficiency in Terms of Time without Using Parallel Processing The model
took 0.6187 seconds to train. The task was completed in 0.4753 seconds due to
parallel processing, indicating a significant reduction in training time. It is evident
that time efficiency is increased by parallel processing. The shortened training
period implies that the parallelized Random Forest algorithm's execution
benefited from simultaneously performing tasks, making the model's training
process more time-efficient.

In this study the dataset that was used is relatively small in size that’s why it
does not show clearly the difference in time when executing the random forest
algorithm in parallel and without parallelism. However; if we use a large size
dataset the time required to execute the algorithm in parallel mode would be
significantly less that executing it without parallelism.

F. Discussion and Comparison

When used in the context of parallel processing, the Random Forest method
showed a reduction in training time while maintaining the high level of prediction
accuracy displayed by the non-parallelized model. This demonstrates that
increasing the Random Forest algorithm's computational efficiency through
parallel processing is a workable strategy that maintains the functionality of the
model.

The same accuracy ratings of the two situations indicate that the decision-
making processes were properly synchronized across parallel threads or cores by
the parallel processing solution.

Particularly noteworthy is the observed reduction in training time, which
highlights the practical advantages of parallel processing when processing capacity
is scarce. When tasks are successfully finished in parallel, machine learning
becomes more productive overall. Faster model installation, modification, and
creation are all part of this.

However, it is important to consider the scalability of these results. It may be
feasible to gain a better grasp of the adaptability and potential benefits of parallel
processing by experimenting with larger datasets or more intricate models.
Moreover, the hardware architecture is crucial, and more powerful parallel
processing systems may yield even greater efficiency gains.

G. Conclusion

This paper investigates the impact of parallel processing on the machine
learning performance of the Random Forest method. The Random Forest

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1843

technique is developed using the CIFAR-10 dataset, and the study emphasizes
accuracy and training time as key performance metrics. Two scenarios were
assessed, one with parallel processing and the other without. The algorithm's
strong potential for forecasting is proved by the data, which indicate that accuracy
remains constantly high at 97.50% with parallel processing. Furthermore, the
research indicates that training times utilizing parallel processing are much lower
(0.4753 seconds) compared to those that do not (0.6187 seconds). This increase in
time efficiency demonstrates the value of parallelization by showing how
concurrent task execution improves the computational efficiency of the training
process. The findings offer valuable new insights into the application of parallel
processing techniques for machine learning algorithm optimization.

H. References
[1] I. M. I. Zebari, S. R. M. Zeebaree, and H. M. Yasin, “Real time video streaming

from multi-source using client-server for video distribution,” in 2019 4th
Scientific International Conference Najaf (SICN), IEEE, 2019, pp. 109–114.

[2] Z. S. Ageed et al., “A state of art survey for intelligent energy monitoring
systems,” Asian Journal of Research in Computer Science, vol. 8, no. 1, pp. 46–
61, 2021.

[3] K. Jacksi, N. Dimililer, and S. R. Zeebaree, “State of the art exploration systems
for linked data: a review,” Int. J. Adv. Comput. Sci. Appl. IJACSA, vol. 7, no. 11,
pp. 155–164, 2016.

[4] A. Salih, S. T. Zeebaree, S. Ameen, A. Alkhyyat, and H. M. Shukur, “A survey on
the role of artificial intelligence, machine learning and deep learning for
cybersecurity attack detection,” in 2021 7th International Engineering
Conference “Research & Innovation amid Global Pandemic"(IEC), IEEE, 2021,
pp. 61–66.

[5] D. A. Hasan, B. K. Hussan, S. R. M. Zeebaree, D. M. Ahmed, O. S. Kareem, and M.
A. M. Sadeeq, “The impact of test case generation methods on the software
performance: A review,” International Journal of Science and Business, vol. 5,
no. 6, pp. 33–44, 2021.

[6] S. R. Zeebaree, R. R. Zebari, K. Jacksi, and D. A. Hasan, “Security approaches for
integrated enterprise systems performance: A Review,” Int. J. Sci. Technol. Res,
vol. 8, no. 12, pp. 2485–2489, 2019.

[7] P. Y. Abdullah, S. R. Zeebaree, H. M. Shukur, and K. Jacksi, “HRM system using
cloud computing for Small and Medium Enterprises (SMEs),” Technology
Reports of Kansai University, vol. 62, no. 04, p. 04, 2020.

[8] M. A. Omer, S. R. M. Zeebaree, M. A. M. Sadeeq, B. W. Salim, Z. N. Rashid, and L.
M. Haji, “Efficiency of malware detection in android system: A survey,” Asian
Journal of Research in Computer Science, vol. 7, no. 4, pp. 59–69, 2021.

[9] S. R. M. Zeebaree, A. B. Sallow, B. K. Hussan, and S. M. Ali, “Design and
simulation of high-speed parallel/sequential simplified DES code breaking
based on FPGA,” in 2019 International Conference on Advanced Science and
Engineering (ICOASE), IEEE, 2019, pp. 76–81.

[10] J. Saeed and S. Zeebaree, “Skin lesion classification based on deep
convolutional neural networks architectures,” Journal of Applied Science and
Technology Trends, vol. 2, no. 01, pp. 41–51, 2021.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1844

[11] Z. M. Khalid and S. R. M. Zeebaree, “Big data analysis for data visualization: A
review,” International Journal of Science and Business, vol. 5, no. 2, pp. 64–75,
2021.

[12] M. R. Mahmood, M. B. Abdulrazzaq, S. Zeebaree, A. K. Ibrahim, R. R. Zebari,
and H. I. Dino, “Classification techniques’ performance evaluation for facial
expression recognition,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 21, no. 2, pp. 176–1184, 2021.

[13] J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, “A comparison of random forest
variable selection methods for classification prediction modeling,” Expert Syst
Appl, vol. 134, pp. 93–101, 2019.

[14] M. A. S. Ali et al., “A Novel Method for Survival Prediction of Hepatocellular
Carcinoma Using Feature-Selection Techniques,” Applied Sciences, vol. 12, no.
13, p. 6427, 2022.

[15] L. Yin, K. Chen, Z. Jiang, and X. Xu, “A Fast Parallel Random Forest Algorithm
Based on Spark,” Applied Sciences, vol. 13, no. 10, p. 6121, 2023.

[16] H. Malallah et al., “A comprehensive study of kernel (issues and concepts) in
different operating systems,” Asian Journal of Research in Computer Science,
vol. 8, no. 3, pp. 16–31, 2021.

[17] D. A. Zebari, H. Haron, S. R. M. Zeebaree, and D. Q. Zeebaree, “Multi-level of
DNA encryption technique based on DNA arithmetic and biological
operations,” in 2018 International Conference on Advanced Science and
Engineering (ICOASE), IEEE, 2018, pp. 312–317.

[18] K. Jacksi, S. R. M. Zeebaree, and N. Dimililer, “Lod explorer: Presenting the
web of data,” Int. J. Adv. Comput. Sci. Appl. IJACSA, vol. 9, no. 1, pp. 1–7, 2018.

[19] A. AL-Zebari, S. Zeebaree, K. Jacksi, and A. Selamat, “ELMS–DPU ontology
visualization with Protégé VOWL and Web VOWL,” Journal of Advanced
Research in Dynamic and Control Systems, vol. 11, pp. 478–485, 2019.

[20] S. R. Zeebaree, “DES encryption and decryption algorithm implementation
based on FPGA,” Indones. J. Electr. Eng. Comput. Sci, vol. 18, no. 2, pp. 774–781,
2020.

[21] H. Shukur, S. Zeebaree, R. Zebari, O. Ahmed, L. Haji, and D. Abdulqader, “Cache
coherence protocols in distributed systems,” Journal of Applied Science and
Technology Trends, vol. 1, no. 3, pp. 92–97, 2020.

[22] N. O. M. Salim, S. R. M. Zeebaree, M. A. M. Sadeeq, A. H. Radie, H. M. Shukur,
and Z. N. Rashid, “Study for food recognition system using deep learning,” in
Journal of Physics: Conference Series, IOP Publishing, 2021, p. 012014.

[23] H. Dino et al., “Facial expression recognition based on hybrid feature
extraction techniques with different classifiers,” TEST Engineering &
Management, vol. 83, pp. 22319–22329, 2020.

[24] D. A. Zebari, H. Haron, S. R. M. Zeebaree, and D. Q. Zeebaree, “Enhance the
mammogram images for both segmentation and feature extraction using
wavelet transform,” in 2019 International Conference on Advanced Science and
Engineering (ICOASE), IEEE, 2019, pp. 100–105.

[25] M. B. Abdulrazaq, M. R. Mahmood, S. R. M. Zeebaree, M. H. Abdulwahab, R. R.
Zebari, and A. B. Sallow, “An analytical appraisal for supervised classifiers’
performance on facial expression recognition based on relief-F feature

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1845

selection,” in Journal of Physics: Conference Series, IOP Publishing, 2021, p.
012055.

[26] S. M. Mohammed, K. Jacksi, and S. Zeebaree, “A state-of-the-art survey on
semantic similarity for document clustering using GloVe and density-based
algorithms,” Indonesian Journal of Electrical Engineering and Computer
Science, vol. 22, no. 1, pp. 552–562, 2021.

[27] D. A. Hasan, S. R. M. Zeebaree, M. A. M. Sadeeq, H. M. Shukur, R. R. Zebari, and
A. H. Alkhayyat, “Machine Learning-based Diabetic Retinopathy Early
Detection and Classification Systems-A Survey,” in 2021 1st Babylon
International Conference on Information Technology and Science (BICITS),
IEEE, 2021, pp. 16–21.

[28] K. Jacksi, R. K. Ibrahim, S. R. M. Zeebaree, R. R. Zebari, and M. A. M. Sadeeq,
“Clustering documents based on semantic similarity using HAC and K-mean
algorithms,” in 2020 International Conference on Advanced Science and
Engineering (ICOASE), IEEE, 2020, pp. 205–210.

[29] X. Zhou, P. Lu, Z. Zheng, D. Tolliver, and A. Keramati, “Accident prediction
accuracy assessment for highway-rail grade crossings using random forest
algorithm compared with decision tree,” Reliab Eng Syst Saf, vol. 200, p.
106931, 2020.

[30] L. Venkataramana, S. G. Jacob, and R. Ramadoss, “A parallel multilevel feature
selection algorithm for improved cancer classification,” J Parallel Distrib
Comput, vol. 138, pp. 78–98, 2020.

[31] A. Abdelaziz, M. Elhoseny, A. S. Salama, and A. M. Riad, “A machine learning
model for improving healthcare services on cloud computing environment,”
Measurement, vol. 119, pp. 117–128, 2018.

[32] D. M. ABDULQADER, S. R. M. ZEEBAREE, R. R. ZEBARI, S. A. L. I. SALEH, Z. N.
RASHID, and M. A. M. SADEEQ, “SINGLE-THREADING BASED DISTRIBUTED-
MULTIPROCESSOR-MACHINES AFFECTING BY DISTRIBUTED-PARALLEL-
COMPUTING TECHNOLOGY,” Journal of Duhok University, vol. 26, no. 2, pp.
416–426, 2023.

[33] A. Cliff, J. Romero, D. Kainer, A. Walker, A. Furches, and D. Jacobson, “A high-
performance computing implementation of iterative random forest for the
creation of predictive expression networks,” Genes (Basel), vol. 10, no. 12, p.
996, 2019.

[34] Q. Wang and H. Chen, “Optimization of parallel random forest algorithm
based on distance weight,” Journal of Intelligent & Fuzzy Systems, vol. 39, no.
2, pp. 1951–1963, 2020.

[35] J. Gao, H. Wang, and H. Shen, “Machine learning based workload prediction in
cloud computing,” in 2020 29th international conference on computer
communications and networks (ICCCN), IEEE, 2020, pp. 1–9.

[36] Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, “An improved random
forest based on the classification accuracy and correlation measurement of
decision trees,” Expert Syst Appl, vol. 237, p. 121549, 2024.

[37] D. Yates and M. Z. Islam, “FastForest: Increasing random forest processing
speed while maintaining accuracy,” Inf Sci (N Y), vol. 557, pp. 130–152, 2021.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 13, No. 2, Ed. 2024 | page 1846

[38] J. Chen et al., “A parallel random forest algorithm for big data in a spark cloud
computing environment,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 4, pp. 919–933, 2016.

[39] N. Azizah, L. S. Riza, and Y. Wihardi, “Implementation of random forest
algorithm with parallel computing in R,” in Journal of Physics: Conference
Series, IOP Publishing, 2019, p. 022028.

[40] L. M. Haji, S. R. M. Zeebaree, O. M. Ahmed, M. A. M. Sadeeq, H. M. Shukur, and
A. Alkhavvat, “Performance Monitoring for Processes and Threads Execution-
Controlling,” in 2021 International Conference on Communication &
Information Technology (ICICT), IEEE, 2021, pp. 161–166.

[41] Y. Abouelnaga, O. S. Ali, H. Rady, and M. Moustafa, “Cifar-10: Knn-based
ensemble of classifiers,” in 2016 International Conference on Computational
Science and Computational Intelligence (CSCI), IEEE, 2016, pp. 1192–1195.

[42] D. Wang and A.-X. Zhu, “Soil mapping based on the integration of the
similarity-based approach and random forests,” Land (Basel), vol. 9, no. 6, p.
174, 2020.

