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Corrosion of pump unit components often occurs in coal mines and can lead 
to frequent failures of some components. As a result, a corrosion inspection 
needs to be performed on each component to minimize the possibility of 
damage. Currently, manual inspection methods are used for corrosion testing 
but there are still metal defects in the form of corrosion that are uninspected. 
Therefore, this study aimed to develop corrosion segmentation using 
computer vision with deep learning double architecture method for detection 
and evaluation of metal corrosion in order to reduce the loss due to manual 
inspections. To produce a faster and more accurate analysis method, deep 
learning double architecture algorithm, namely VGG16-UNET, can be applied 
with the help of computer vision technology. Consequently, the use of VGG16-
UNET method achieved an accuracy of 98.42%. This is in contrast with the 
single UNET architecture, which produced an accuracy of 92.6%. Based on 
these findings, it was concluded that the development of this recommended 
inspection made the analysis and evaluation of corrosion inspection to be 
quick and easy. 
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A. Introduction 
Corrosion is chemical or electrochemical deterioration of materials exposed to 

the environment such as metals, semiconductors, insulators, and polymers. In 
general, corrosion can damage industrial buildings including roofs, pipes, poles, 
bridges, and telecommunications towers [1] [2]. The deformation of metal in 
offshore industrial assets is a common problem in the industry. Therefore, corrosion 
detection is very important to ensure maintenance and safety. Instead of manually 
identifying the corrosion features, Machine Learning (ML) method can be used.  

ML offers new ways to comprehend and quantify data-intensive processes in 
agricultural operations, particularly when combined with big data and high-
performance computing. Among other fields, ML is characterized as a scientific 
discipline that allows machines to learn without being explicitly programmed [3]. 
Machine model can learn spatial aspects of corrosion, such as color or texture, 
thereby reducing the time required for detection. According to recent research, 
machine learning can be classified into three categories, namely supervised, 
unsupervised, and reinforcement learning [4]. In general, supervised learning 
methods are based on labeled data samples. This set of samples is used to describe 
the characteristics of the behavioral size distribution in each type of application, 
thereby producing a model from the data [5]. Furthermore, supervised learning can 
be categorized into classification and regression tasks. Classification issues arise 
when the output variable is categorical, such as red or blue, sick or not sick [6].  

This research focuses on supervised learning, specifically using CNN as the 
selected approach. Typically, CNN approach uses Deep Learning (DL) methods, 
which allow machines to examine raw data and automatically determine the 
representation required for classification or detection [7]. According to research 
conducted by [8], there are 2 types of architecture in deep learning, namely single 
architecture and double architecture. Specifically, single architecture uses only 1 
method, while double architecture combines 2 deep learning methods.  

A comparative analysis of corrosion segmentation techniques on critical assets 
within the Oil and Gas Offshore industry is presented. Even though the proposed 
method can adequately segment defects, there are still some errors in classifying 
corrosion during testing [9]. Another research titled “RustSEG – Automated 
Segmentation of Corrosion using DL”, uses Machine Learning methods, specifically 
CNN approach, to classify corrosion. However, the experiments conducted achieved 
an accuracy rate below 90%. Additionally, research performed by [11] titled 
“Application of Deep-Learning Architecture for Image Analysis-based Corrosion 
Detection” is among the investigations that use ML methods, specifically DLCNN. 
The experiment was a single UNET architecture, but due to the difference in the 
number of layers, an accuracy of more than 90% was achieved. 

Previous research explores corrosion inspection approach, using Deep 
Convolutional Neural Network Encoder-Decoder Architecture for segmentation 
tasks. In order to develop an accurate segmentation system, there is a need to 
perform validation. The success rate of visualization can be measured using 
intersection-over-union (IoU), which shows the amount of overlap per class. The 
system created is expected to effectively segment defects across various 
workspaces, including those with different patterns. Consequently, research 
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proposes combining several architectures to enhance accuracy and ensure precision 
in inspecting corrosion defects in workspaces. 
 
B. Experimental Procedures Details  

Materials, equipment, and experimental procedures, as well as theoretical or 
calculation procedures, are detailed in this section. The experimental section 
provides the necessary information for reproducing the results. 

 
1. Various Types of Corrosion 

Knowing the type of corrosion is very important because it is needed to find 

test materials to carry out experiments. Examples of corrosion types that can occur 

on iron plates include [12]: 

• Uniform Corrosion 

This type of corrosion causes the gradual weakening or softening of metallic 

material across its entire surface. It leads to uniform thinning or reduction in 

material thickness. 

• Pitting Corrosion 

Pitting corrosion is a localized form of corrosion characterized by the 

formation of microscopic pits or depressions on the metal surface. Typically, this 

type of corrosion is more severe than uniform corrosion as it affects only a small 

area of the metal surface. 

• Stress Corrosion Cracking 

Stress corrosion cracking (SCC) occurs in metallic materials due to mechanical 

stress and corrosive conditions. In addition, SCC can create fissures in metallic 

materials without significantly altering the surface appearance. 

• Erosion Corrosion 

Erosion corrosion results from a combination of mechanical erosion and 

corrosive chemical reactions on metallic surfaces. The process frequently occurs 

when metallic materials are exposed to fluid streams containing corrosive 

particles or chemicals. 

 

2. Data Collection and Preparation 
The dataset development of corrosion images was carried out by labeling each 

pixel. Initially, the dataset used was split into each folder, totaling 600 images. In 
particular, the data collected were images of iron affected by corrosion. Some 
samples of iron corrosion datasets were labeled as seen in Figure 1, with a size of 
512 x 512, captured using a camera under different lighting intensities. To 
construct the defect detection system, the image dataset was divided into 60% and 
40% training and testing data, respectively. Subsequently, the collected dataset 
was carefully selected to ensure optimal detection results. Images with similar 
patterns, sourced from multiple samples of varying sizes, went through traditional 
preprocessing, which includes resizing to standardize input according to the 
designated architecture. The required image input size was set at 512 x 512 pixels 
and was obtained by photographing and downloading metal images with corrosion 
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on the internet, So the dataset created by the researcher is not available to the 
public and the dataset used is purely the development of the researcher. 

 

 

Figure 1. Dataset File for Input Image Before Labeling. 
 

To distinguish between rust and background, area segmentation was 
performed by using labelme, a tool contained in Anaconda software. Subsequently, 
the Images that had been adapted to the input architecture were labeled for each 
image pixel according to the label class. Typically, the system uses 2 labels, namely 
rust and background, to determine the label class for each pixel. The background 
class is colored black while the rust is red as shown in Figure 2. In order to make 
segmentation easier at this stage, polygon tools can be used to follow the shape of 
the corrosion. 

 

 

Figure 2. Labelling Input Dataset Using labelme. 
 
After all the data is labeled according to their respective classes, it can be 

saved. However, the saved file is in .json format and can be converted into a folder 
containing images in PNG format via the command prompt. Following the 
conversion process, a folder appears bearing the designated name specified in the 
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command prompt. The original image is contained in the folder along with their 
labels and visualized labels. 

 
3. Selection of specific architecture 

• VGG-16-UNET Architecture  

VGG16 network has 13 convolutions, 5 unions, and 3 fully connected layers at 

the end of the network. The network has a homogeneous architecture that only 

performs 3 × 3 convolutions and a maximum of 2 × 2 union throughout its 

structure. For the improved VGG16-UNet shown in Figure 3, the last 3 fully 

connected layers of VGG16 are substituted with an architecture resembling the 

decoding segment of U-Net. In general, the segment forms an extension path with 

a convolution layer and an upsampling layer. Meanwhile, VGG16 without the last 3 

fully connected layers is retained as a contraction path. Furthermore, this research 

introduces 3 additional modifications, and the original rectified linear unit (ReLu) 

functions in the 7 convolution layers (the last four convolution blocks in Figure 3) 

were replaced with Leaky ReLu (α = 0.1). A total of 4 jump connections namely 3 

merges and 1 sum, were used to combine feature maps from different modules in 
both the contraction and expansion paths. 

 
Figure 3. VGG16-UNET Architecture Model. 

 
• UNET Architecture 

Image segmentation is a series of image processing operations performed by 

labeling each pixel of the image. In this context, the image is categorized into several 

parts such that the pixels in one part have the same characteristics. In this corrosion 

research, the image is divided into two parts, namely the metal affected by corrosion 

and the background. Specifically, the metal corrosion segmentation process is carried 

out by applying U-Net architecture, which also has two paths, namely the encoder and 

decoder. The encoder path is used to capture feature information from the input image 

and reduce the dimensions of the input image size. Meanwhile, the decoder path is used 

to capture feature information from the encoder results and as an output for the 
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segmentation results. The U-Net architecture for corrosion segmentation proposed in 

this study can be seen in Figure 4. 

 

Figure 4. UNET Architecture Model 
 

Figure 4 shows the U-Net architecture, consisting of two paths, namely the 
encoder on the left side and the decoder on the right side. The encoder path starts 
with a double 3 × 3 convolution layer process, followed by the ReLU activation 
function, resulting in 64 feature maps. Subsequently, a 2 × 2 max-pooling process 
was performed. In the encoder path, this research uses four convolution blocks, 
where the number of feature maps increases in each convolution block by 2. 
Subsequently, the process moved to the fifth block, which represents the 
connection between the encoder path and the decoder path. The stages are the 
same as the first block, except that the max-pooling process does not need to be 
followed. Furthermore, the decoder path begins with a 2 × 2 upsampling process 
and then continues with the same process as the first block without the max-
pooling process. In the decoder path, this research uses four convolution blocks 
thereby reducing the number of feature maps for each block. The final 2 stages in 
this path are the 1 × 1 convolution layer process and the sigmoid activation 
function, which is multiplied until the number of feature maps matches the original 
number used to produce a segmented image. 

 
4. Hyperparameter tuning 

An important stage in deep learning is hyperparameter tweaking. Recent 
research showed that instead of introducing new learning paradigms, cutting-edge 
image classification benchmarks can be improved through appropriate tuning of 
existing methods. Generally, hyperparameters can be categorized into three types, 
and the first is model hyperparameters, which define the essential construct of a 
neural network architecture. This type includes parameters such as filter size, 
pooling, stride, and padding. For example, in the UNET architecture, filter size 
ranges from 16 to 128 for each layer, with one stride and the same padding. 
Typically, Max-pooling is a technique used for determining the feature map patch 
with the highest pixel value. The second is optimizer hyperparameters, a technique 
or procedure that changes neural network features, such as learning rate and 
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weights in order to minimize losses. It is crucial to be aware that optimizers 
contained gradient descent, stochastic gradient descent (SGD), Adam, RMSprop, 
and Adadelta. The Adaptive Moment Estimation (Adam) algorithm is a popular 
deep neural network training strategy in several machine learning systems [13]. 
Moreover, the third category is the data hyperparameter which is generally used 
when there is insufficient or variance in the data. Consequently, techniques such 
as cropping, resizing, binarization, and data augmentation can be used to improve 
the amount of data available. 

 

   
Figure 5. Model Summary with the Number of Parameters at Each Layer  

 
5. Model training and validation 

The input images and their associated segmentation masks or ground truth, 
are fed into a deep learning-based VGG16-UNet implementation in order to train 
the network. Specifically, Jupiter Notebook was used to train 600 photos with 
segmented masks, and a batch size of 14 and 100 epochs was specified. A batch is 
a hyperparameter that determines the number of data points processed before 
updating the model's internal parameters. Meanwhile, the epochs specify the 
number of times the learning algorithm runs through the training data [14]. During 
the training phase, the model takes approximately 9 hours to achieve satisfactory 
results in terms of prediction accuracy and validation. The model demonstrates 
effective training as it achieved 98.42 % accuracy, with a loss of 0.0158 %, as well 
as 98.34 % validation accuracy, with a 0.0165 % loss. It should be acknowledged 
that the training and validation data showed similar accuracy, thereby indicating 
excellent performance. Figure 6 showed the process of data testing and validation. 
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Figure 6. Examples of Validation Data Results. 

 
6. Confusion matrix 

The confusion matrix calculated in segmentation is slightly different from object 

classification segmentation, where in segmentation the confusion matrix is 

calculated per pixel, where later per pixel that has detected corrosion will be 

included in the calculation of true positive corrosion, the TP, TN, FP, FN table will be 

shown in Figure 7 below this. 

 

Figure 7. Confusion Matrix 
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C. Result and Discussion 

A personally collected dataset was assembled based on documented sources. 
The dataset consists of various metal images with different conditions, types, and 
shapes of metal. These images are standardized to a size of 512 x 512-pixel size to 
match the pre-prepared input image. The datasets used include 200, 400, and 600 
RGB images, with 60% and 40 % for training and testing, respectively. An 
implementation of VGG16-UNET, compatible with Anaconda and Jupiter Notebook 
GPU, was developed using publicly available optimization library functions. To 
facilitate a better understanding of the system architecture, the write-up is 
segmented into several parts. Before segmenting corrosion on metal, the dataset 
was classified based on the training data and the process included. 
• Preparation of a dataset in the form of images with various metals subjected to 

corrosion processes. 
• Determination of the number of classes and labels, achieved using Labellme in 

the Anaconda application. 
• Semantic segmentation to assign pixel label classes, using VGG16-UNET. 

In the course of the training, most learning methods use SGD to initialize 
weights appropriately and adjust learning rates accordingly [14]. To maximize GPU 
utilization and minimize CPU memory transfers, mini-batches were used [15]. 
Optimization learning was performed using 30, 50, and 100 epochs with 41 
iterations per epoch. The encoder-decoder is trained to move the cross-entropy loss 
label through mini-batches. Some examples of differences in each class in the 
training set include the background associated with corrosion dataset. This results 
in different weight derivations based on the actual class, necessitating class 
balancing. The median offset of frequencies whose weights are sorted by class in the 
loss function is used for this purpose. To compare quantitative performance, three 
commonly used performance measures include 1) Global Accuracy, which measures 
the percentage of correct pixels in the dataset, 2) Average accuracy per pixel, and 3) 
Average Intersection over Union (mIoU) for all classes [16]. The IoU metric, also 
known as the Jaccard Index is used to assess interaction, while mIoU metric is 
stricter than average age as it penalizes false positive predictions [17]. Despite this 
condition, mIoU may not always be appropriate qualitatively, as it does not restrict 
boundaries. Measuring the contour score in semantic segmentation is performed by 
evaluating the F1 measure, which comprises the precision and recall values between 
the prediction and ground truth boundaries. Subsequently, the average of all tests 
denoted by F1 size limit (BF) was calculated together with the average F1 size of the 
image. The implementation, conducted using Jupiter Notebook, uses 512 x 512-pixel 
image input and NVIDIA GeForce MX110. 
 
Training Model VGG16-UNET & UNET 
The training process uses Jupiter Notebook and Python, considering 1400 images.  
Specifically, the dataset consists of 200, 400, and 600 different images for the 
training set, 150 for the validation set, and 50 for the test set process. The training 
was carried out for 30, 50, and 100 epochs with the batch size set to 14, and the 
input image dimension configured to 512 x 512. The outcome of the training process 
can be seen in Table 1. 
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Table 1. Training Result VGG16-UNET 
Number of 

pictures 
Epoch Accuracy Loss 

200 30 87,5% 12,5% 
200 50 89,26% 10,66% 
200 100 95,34% 4,64% 
400 30 88% 12% 
400 50 92,4% 7,6% 
400 100 96,76% 3,24% 
600 30 89,51% 10,42% 
600 50 92,71% 7,24% 
600 100 98,42% 1,58% 

 
Table 1 shows the accuracy and loss values for training with VGG16-UNET 

using datasets of 200, 400, and 600 images across different epochs, namely 30, 50, 
and 100. The accuracy result for each dataset and epoch configuration includes 
87.5%, 89.26%, and 95.34% for 200 images at 30, 50, and 100 epochs, respectively.  
For the 400 image dataset, accuracies were 88%, 92.4%, and 96.76% for 30, 50, and 
100 epochs, respectively. Similarly, for the 600 image dataset, the accuracies include 
89.51%, 92.71%, and 98.42% for 30, 50 and 100 epochs, respectively. Therefore, 
VGG16-UNET method produced higher accuracy compared to RustSEG [10] and 
UNET [9], as shown in Table 2. 
 

Table 2. Training Result RustSEG [10] & UNET [9] 
Method Number of 

pictures 
Accuracy Loss 

RustSEG 1200 77.83% 22.17% 
UNET 423 67.59% 32.41% 

 
Based on the reference in Table 2, the two methods with a single architecture 

did not achieve less than 90% accuracy for validating the learning process of single 
UNET architecture using the image dataset consisting of 600 images in 100 epochs. 
The results in Table 3 show that the accuracy of 600 images in 100 epochs is 92.6%. 

 
Table 3. Training Result UNET  

Method Number of 
pictures 

Accuracy Loss 

UNET 600 92.6% 7.34% 
 

Testing Image Segmentation Results VGG16-UNET & UNET 
Figure 7 shows the image segmentation results of VGG16-UNET model. The 

figure shows that VGG16-UNET model used has successfully segmented corroded 
iron objects. 
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(a)                                  (b)                                (c)  

 
 

                              (d)                                 (e)                                (f)  

 
Figure 8. Model Validation Results (a) 200 Image Datasets (b) 400 Image 

Datasets (c) 600 Image Datasets (d) UNET 600 Image Dataset (e) Input Image 
 (f) Groundtruth. 

 
In addition to the test as shown in Figure 8 above, a confusion matrix will be 

used to ensure that the test carried out has correctly detected corrosion or not, the 
results of the confusion matrix test will be shown in Figure 9 below. 

 

 
 

(a)                                  (b)                                (c) 

 
Figure 9. Model Validation Results (a) Input Image Datasets (b) 

Segmentation Image (c) Confusion Matrix. 

 
D. Conclusion 

In conclusion, the research results using VGG16-UNET showed its capability in 
metal segmentation. Specifically, the post-training results showed an accuracy of 
95.34% for 100 epochs with 200 images, 96.76% for 400 images, and 98.42% for 
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600 images. This showed that the model produced a high level of accuracy in object 
detection. Comparatively, VGG16-UNET obtained more accurate results compared 
to previous metal segmentation methods, such as RustSEG and UNET. The validation 
of UNET single architecture learning process, using a dataset comprising 600 images 
produced an accuracy of 92.60%. With the implementation of the double-
architecture deep learning method, the metal segmentation was better than the 
single architecture. This enhancement was crucial as high accuracy translated to 
good segmentation results. Finally, by applying this method, it was expected that 
manufacturing industry losses resulting from manual inspection errors would 
decrease. In addition, the method offered an improved metal segmentation system, 
because accuracy directly influenced segmentation quality. 
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