
Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3526		
	 			 	 	

	
Lean	and	Agile	Software	Development	for	Managing	Technical	Debt	on	A	Large-
scale	Software:	A	Systematic	Literature	Review	
	
Surya	Seven	Y.	Simangunsong1,	Teguh	Raharjo2,	Anita	Nur	Fitriani3	
simangunsong.seven@gmail.com,	teguhr2000@gmail.com,	nurfitriani.anita@gmail.com	
1,2,3Faculty	of	Computer	Science,	Master	of	Information	Technology,	University	of	Indonesia,	
Jakarta	
Article	Information	 	 Abstract	

Submitted	:		17	Dec	2023	
Reviewed	:	 22	Dec	2023	
Accepted	:	 30	Dec	2023	

	

	
Agile	 methodologies	 are	 employed	 by	 software	 development	 teams	 for	
collaboration	 and	 adapting	 to	 changing	 requirements.	 However,	 this	
flexibility	may	lead	to	technical	debt	(TD),	causing	potential	bugs	in	the	long	
term.	Lean	principles,	focusing	on	waste	elimination	and	continuous	process	
improvement,	can	be	applied	to	manage	TD	in	agile	software	development.	
This	research	conducts	a	systematic	literature	review	on	using	lean	and	agile	
methodologies	 for	 TD	 management.	 The	 review	 identifies	 34	 papers,	
categorizing	 TD	 types,	 pinpointing	 lean	 and	 agile	 principles,	 and	 aligning	
technical	debt	categories	with	suitable	lean	and	agile	principles.	Additionally,	
three	existing	technical	debt	management	frameworks	are	identified:	the	TAP	
framework,	 the	 LTD	 framework,	 and	 the	 CoDVA	 framework.	 The	 study	
concludes	 that	 integrating	 lean	principles	 into	 agile	 software	development	
assists	organizations	in	effectively	managing	technical	debt.	Furthermore,	the	
research	 offers	 insights	 into	 selecting	 the	 most	 suitable	 TD	 management	
framework	based	on	an	organization's	needs	and	available	resources.	

Keywords		 	

Lean,	Agile,	Technical	
Debt,	Technical	Debt	
Management		
Framework,	Systematic	
Literature	Review	
	
	

	

	

	

	 	
	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3527		
	 			 	 	

A. Introduction	
Agile	methodology	is	an	approach	to	software	development	that	emphasizes	flexibility,	

team	 collaboration,	 and	 adaptation	 to	 changing	 requirements	 during	 the	 development	
process.	One	of	the	Agile	methodology	principles	is	the	ability	to	respond	to	changes	quickly	
and	 effectively.	 Agile	 methods	 have	 revolutionized	 the	 way	 software	 development	 is	
conducted,	emphasizing	active	end-user	 involvement,	 tolerance	 for	changes,	and	 iterative	
product	delivery	[1].	
	 In	 the	 realm	 of	 software	 industry	 practices,	 comprehensive	 planning	 and	 well-
designed	software	architecture	don't	always	accompany	software	development.	This	results	
in	the	emergence	of	technical	debt,	a	term	in	software	development	denoting	the	adverse	
effects	of	developer	choices	and	actions	that	prioritize	short-term	gains	or	speed	over	long-
term	quality.	Technical	debt	occurs	when	developers	opt	for	swift,	straightforward,	or	less-
than-optimal	 solutions	 to	 address	 immediate	 requirements	 without	 considering	 their	
repercussions	on	the	entire	system	[2].	
	 Like	financial	debt,	technical	debt	carries	inherent	interest,	which	involves	additional	
costs	or	adverse	effects	stemming	from	less-than-optimal	solutions.	If	this	accrued	interest	
becomes	 excessively	 high,	 it	 has	 the	 potential	 to	 trigger	 disruptive	 events	 such	 as	
development	 crises.	 Therefore,	 managing	 technical	 debt	 is	 crucial	 to	 prevent	 long-term	
losses.	The	primary	goal	is	to	improve	software	quality,	reduce	maintenance	costs	and	risks,	
ensure	 sustainability,	 and	 respond	 to	 changes	 quickly.	 By	 controlling	 technical	 debt	 and	
minimizing	its	negative	effects,	companies	can	avoid	costly	development	crises	and	ensure	
long-term	success	in	software	development[3].	
	 Agile	allows	 teams	 to	adapt	quickly,	but	 the	rapid	pace	can	 lead	 to	 technical	debt.	
However,	not	all	debt	needs	immediate	attention,	as	organizations	may	lack	the	necessary	
budgets	and	resources.	This	 is	especially	 true	when	developing	 large-scale	software	with	
limited	resources.	Handling	technical	debt	in	such	cases	should	be	based	on	assessing	the	
risks	and	impacts	on	the	software,	as	well	as	the	existing	business	priorities	[2].	Large-scale	
systems	are	typically	characterized	by	high	complexity,	scalability	required	to	handle	growth	
and	 high	 demand,	 the	 ability	 to	 process	 large-scale	 data	with	 good	 performance,	 and	 an	
architecture	that	enables	efficient	system	changes	and	evolution	[4].	
Holvitie	 et	 al.	 [5]	 carried	 out	 an	 international	 survey	 aimed	 at	 classifying	 the	 impacts	 of	
introducing	agile	methodologies	into	the	management	of	technical	debt	(TD).	A	study	of	184	
professionals	in	three	countries	found	that	practitioners	understand	TD	but	need	to	improve	
its	implementation.	TD	is	often	identified	in	legacy	systems,	but	it	can	be	difficult	to	provide	
specific	 examples,	which	 complicates	 its	management.	 The	 agile	 practices	 and	 processes	
studied	help	reduce	TD	and	approaches	that	validate	and	maintain	the	structure	and	clarity	
of	implemented	artifacts,	such	as	coding	standards	and	refactoring,	have	a	positive	impact	
on	TD	management.	 As	 a	 result,	 the	 parallels	 in	 TD	 instances	 indicate	 the	 practicality	 of	
instituting	a	systematic	approach	to	TD	management.	
	 A	study	by	Digkas	et	al.	 [6]	 investigated	the	relationship	between	using	code	from	
Stack	Overflow	 and	 the	 accumulation	 of	 Technical	 Debt	 (TD)	 in	 software	 systems.	 Their	
findings	 suggest	 that	 reusing	 small	 amounts	 of	 code	 can	 increase	 TD,	 highlighting	 the	
importance	of	code	quality	assessment	before	integrating	external	code.	In	a	separate	study,	
Gama	et	al.	[7]	examined	how	Stack	Overflow	users	identify	TD	issues	in	their	projects.	They	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3528		
	 			 	 	

discovered	that	developers	actively	engage	in	discussions	about	TD	identification,	revealing	
29	 specific	 indicators	 for	 recognizing	 architecture-related,	 code-related,	 test-related,	 and	
infrastructure-related	TD	issues.	

In	a	different	research	endeavor,	Besker	and	their	team	explored	the	specific	effects	
of	Architectural	Technical	Debt	(ATD)	on	software	practitioners	 [8].	The	outcomes	of	 the	
study	 demonstrated	 the	 significant	 adverse	 impact	 of	 architectural	 ATD	 on	 the	 daily	
activities	of	software	practitioners	and	its	ramifications	on	various	roles	within	the	realm	of	
software	development.	Moreover,	the	software's	age	was	identified	as	an	influencing	factor	
in	the	extent	of	time	wasted	due	to	ATD.	In	a	later	investigation	conducted	by	Besker	and	
colleagues	[8],	the	findings	indicated	that	around	36%	of	the	time	allocated	to	development	
is	 lost	 because	 of	 Technical	 Debt	 (TD),	 particularly	 focusing	 on	 architectural	 and	
requirement	related	ATD.	Additionally,	 the	research	 indicated	that	software	practitioners	
frequently	introduce	new	TD	issues	because	of	existing	ones.	
	 Within	 the	 same	 study,	 Martini	 and	 Bosch	 [9]	 probed	 into	 the	 consequences	 of	
technical	debt,	 reporting	 that	TD	 items	can	be	 infectious,	 leading	 to	 the	contamination	of	
other	segments	within	the	system	with	the	same	problem,	potentially	resulting	in	nonlinear	
growth	in	interest.	
	 Addressing	technical	debt	is	not	cheap,	so	an	efficient	software	development	strategy	
is	needed.	This	involves	dealing	with	existing	technical	debt	and	prioritizing	software	quality	
in	future	development.	One	approach	to	achieving	this,	which	focuses	on	eliminating	waste	
and	improving	efficiency	in	the	development	process,	is	Lean	Software	Development	[10].	A	
vital	principle	 in	Lean	Software	Development	 is	preventing	 the	buildup	of	 technical	debt.	
This	means	 developers	 should	 prioritize	 quality,	 cleanliness,	 and	 continuity	 in	 code	 and	
software	 design.	 Following	 this	 principle	 helps	 the	 development	 team	 minimize	 the	
accumulation	 of	 technical	 debt,	 ensuring	 the	 system	 can	 evolve,	 be	 fixed,	 and	 improve	
efficiently	[11].	

The	high	cost	of	technical	debt	in	large	software	projects	is	driving	research	into	how	
lean	and	agile	approaches	can	be	used	to	manage	it.	This	research	will	analyze	the	principles	
of	both	approaches	and	combine,	adapt,	and	implement	them	in	software	development.	It	
will	 also	 discuss	 the	 benefits	 and	 challenges	 teams	 face	 when	 developing	 large-scale	
software	with	limited	resources,	and	how	to	prioritize	which	technical	debts	to	address.	The	
goal	 is	 to	 provide	 insights	 and	 practical	 guidance	 for	 companies	 on	 how	 to	 successfully	
manage	technical	debt.	
	
B. Research	Method	

The	 research	 method	 used	 in	 this	 study	 uses	 Systematic	 Literature	 review	 (SLR).	
Systematic	Literature	Review	(SLR)	is	a	systematic	and	structured	research	method	used	to	
identify,	 assess,	 and	 interpret	 all	 available	 research	 evidence	 to	 provide	 the	 answers	 to	
research	questions.	Through	the	Systematic	Literature	Review,	researchers	can	identify	gaps	
in	 existing	 research,	 gather	 existing	 evidence,	 and	 produce	 an	 objective	 and	 transparent	
summary	of	a	specific	topic	[20].	The	research	questions	for	this	research	are:	

RQ1:	What	are	the	types	of	Technical	Debt?	
RQ2:	How	to	use	the	Lean	Software	Development	and	Agile	approaches	in	managing	

Technical	Debt	on	large-scale	software?	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3529		
	 			 	 	

RQ3:	 According	 to	 Lean	 and	 Agile	 principles,	 which	 framework	 can	 be	 used	 for	
managing	technical	debt?	
A) Literature	Study	

This	 section	will	 explain	 some	 terms	 used	 in	 this	 research.	 In	 general,	 this	 section	
elaborates	on	technical	debt,	agile	approach,	lean	software	development,	lean	and	agile.	
The	concept	of	code	debt	(technical	debt)	was	̀ irst	introduced	by	Ward	Cunningham	in	1992.	
Cunningham	used	the	analogy	of	debt	to	convey	the	idea	that	when	development	teams	take	
shortcuts	or	sacri`ice	technical	quality	in	their	development	process,	they	'owe'	the	system	
and	will	incur	additional	costs	later	on	[12].	Technical	debt	consists	of	three	main	concepts:	
Debt:	The	amount	of	effort	required	to	address	existing	problems;	Interest:	The	additional	
cost	needed	to	repay	the	technical	debt;	Principal:	The	technical	cost	 incurred	because	of	
decisions	made	to	resolve	issues	stemming	from	technical	debt,	also	known	as	the	cost	of	
refactoring	[12].	
	 Technical	 debt	 (TD)	 is	 categorized	 into	 two	 types:	 intentional	 and	 unintentional	
technical	debt.	Unintentional	technical	debt	can	be	caused	by	selecting	simple	or	not	optimal	
solutions	to	meet	immediate	needs,	without	considering	the	impact	on	the	system,	such	as	
implementing	software	with	poor	code	quality.	 Intentional	technical	debt	arises	when	the	
development	 team	 chooses	 or	 makes	 shortcuts	 in	 developing	 a	 solution.	 Both	 types	 of	
technical	debt	can	result	in	similar	problems,	such	as	slowing	down	future	development	and	
deteriorating	code	quality.	Therefore,	it	is	crucial	for	the	development	team	to	understand	
and	effectively	manage	technical	debt	[13].	
	 In	Figure	1,	the	diagram	illustrates	the	progression	of	technical	debt	over	time	when	
left	 unattended.	 As	 the	 technical	 debt	 increases,	 so	 does	 the	 associated	 interest.	 In	 the	
absence	of	technical	debt,	maintenance	costs	stay	consistently	at	an	optimal	level	[14].	

	
	

Figure	1.	Technical	debt	and	its	associated	costs	accumulate	over	time	[14]	
	
The	Agile	approach	is	a	`lexible	and	collaborative	approach	to	software	development.	The	
use	of	Agile	methodologies	aims	to	deliver	business	value	and	enable	quick	adaptation	to	
changes	 throughout	 the	 development	 process.	 The	 Agile	 Manifesto,	 published	 in	 2001,	
provides	the	foundational	framework	for	this	approach.	The	Agile	Manifesto	emphasizes	the	
importance	of	collaboration,	responsiveness	to	change,	delivering	functional	software,	and	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3530		
	 			 	 	

focusing	on	individuals	and	interactions	in	software	development.	The	Agile	Manifesto	has	4	
core	 values	 and	 12	 principles	 that	 guide	 the	 Agile	 approach	 in	 software	 development	
projects.	 These	 values	 prioritize	 individuals	 and	 interactions	 over	 processes	 and	 tools,	
highlight	 the	 signi`icance	 of	 working	 software	 over	 extensive	 documentation,	 encourage	
collaboration	 with	 customers	 over	 contractual	 negotiations,	 and	 endorse	 adaptability	 to	
respond	to	changes	swiftly	[15].	The	Agile	Manifesto	can	be	seen	in	Figure	2.	
	

	
	

Figure	2.	Agile	Manifesto	[15]	
	
	 Agile	promotes	avoiding	a	large	build-up	of	technical	debt.	Through	iterative	cycles	
and	a	focus	on	delivering	functional	software,	teams	aim	to	consistently	uphold	the	quality	
and	sustainability	of	the	software.	Regularly	addressing	technical	debt	helps	teams	prevent	
substantial	accumulations	and	lowers	the	risk	of	expensive	changes	in	the	future	[16].	Agile	
software	 development	 is	 susceptible	 to	 technical	 debt	 due	 to	 its	 focus	 on	 quick	 project	
delivery.	 Prioritizing	 immediate	 functionality	 in	 short	 iterations	may	 lead	 to	 overlooking	
long-term	 software	 quality.	 Time	 constraints	 and	 pressure	 to	meet	 deadlines	 can	 lead	 to	
decisions	that	compromise	code	quality,	thorough	testing,	documentation,	or	architectural	
considerations.	[17].		

Lean	`irst	became	known	in	the	post-World	War	II	era	in	the	1940s.	This	approach	emerged	
as	part	of	the	industrial	renaissance	and	was	heavily	in`luenced	by	the	Toyota	Production	
System	 (TPS).	At	 that	 time,	 Japan	 faced	 signi`icant	 resource	 limitations,	 including	 limited	
capital,	raw	materials,	and	skilled	labor.	In	response	to	these	challenges,	Toyota	sought	ways	
to	improve	ef`iciency	and	eliminate	waste	in	its	manufacturing	processes.	Taiichi	Ohno,	an	
engineer	at	Toyota,	played	a	key	role	in	developing	the	system	that	later	became	known	as	
Lean.	However,	the	term	'Lean'	was	not	used	until	researchers	from	MIT	mentioned	that	Lean	
is	about	 ‘doing	more	with	less’	by	producing	 ‘the	right	things,	at	the	right	time	and	in	the	
right	place’	[18].	In	Error!	Reference	source	not	found.,	`ive	principles	in	the	Lean	concept,	
which	are	[11]:	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3531		
	 			 	 	

1. Value:	 In	 Lean,	 the	 `irst	 principle	 centers	 on	 recognizing	 value	 from	 the	 customer's	
viewpoint.	This	entails	understanding	what	customers	consider	valuable,	their	needs,	and	
how	 a	 product	 or	 service	 can	 deliver	 signi`icant	 bene`its.	 By	 grasping	 customer	
preferences,	organizations	can	concentrate	on	developing	products	or	services	that	meet	
those	needs.	

2. Value	 Stream:	 The	 second	 principle	 involves	 creating	 a	 seamless	 value	 stream	 in	 the	
business	process.	 This	 encompasses	 the	 steps	needed	 to	 transform	 raw	materials	 into	
`inished	products	or	deliver	services.	The	goal	 is	to	 identify	and	eliminate	waste	 in	the	
value	 stream,	 such	 as	 waiting	 time,	 rework,	 unnecessary	 transportation,	 and	 excess	
inventory.	

3. Flow:	The	third	principle	 is	about	establishing	a	smooth	`low	in	the	value	stream.	This	
includes	optimizing	the	work`low	to	ensure	tasks	are	performed	without	hindrances.	

4. Pull:	 This	 principle	 is	 the	 concept	 of	 a	 responsive	 “pull”	 system	 based	 on	 customer	
demand.	This	means	producing	goods	or	services	based	on	actual	demand	rather	than	on	
inventory.		

5. Strive	 for	 Perfection:	 The	 `inal	 principle	 highlights	 continuous	 improvement	 through	
Kaizen	 practices.	 The	 team	 is	 encouraged	 to	 continually	 look	 for	 ways	 to	 improve	
processes,	quality,	and	ef`iciency,	to	make	continuous	improvements	and	deliver	superior	
value	to	customers.	

	

	
	

Figure	3.	Lean	principles	[11]	
	
When	 Agile	 focuses	 on	 `lexibility	 and	 adaptability	 in	 dealing	 with	 changes	 to	 deliver	
customer	satisfaction	through	iterations	and	feedback,	Lean	Software	Development	focuses	
more	on	eliminating	waste	in	software	development	and	improving	ef`iciency.		
	 Lean	Software	Development	uses	methods	like	Value	Stream	Mapping,	Kanban,	Just-
in-Time	(JIT),	and	Continuous	Integration	(CI)	to	cut	waste	and	boost	value.	The	main	goal	is	
to	operate	with	minimal	resource	use,	covering	people,	space,	storage,	tools,	and	time.	While	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3532		
	 			 	 	

prioritizing	ef`iciency	and	minimizing	resources,	Lean	may	reduce	team	collaboration	and	
adaptability	 to	 sudden	 changes.	 If	 signi`icant	 shifts	 in	 requirements	 occur,	 Lean	 might	
struggle	to	adjust	quickly.	Combining	Lean	with	Agile	creates	`ive	values,	which	are	[19]:	
1. Customer	 Value:	 Agile	 emphasizes	 gathering	 customer	 "user	 stories"	 that	 describe	

speci`ic	features	and	outcomes	valued	by	the	customer.	It's	crucial	to	discuss	these	stories	
in	language	that	captures	the	customer's	needs.	

2. Continuous	Improvement:	Sprints,	lasting	1-2	weeks,	aim	to	shorten	the	learning	cycle	
and	adjust	plans	based	on	outcomes	and	customer	feedback.	Agile	avoids	lengthy	design	
and	development	cycles,	adapting	to	changing	project	needs,	aligning	with	Lean's	focus	on	
multiple	iterations	for	signi`icant	improvement.	

3. Flexibility:	Agile	was	designed	to	help	organizations	navigate	constant	change.	Successful	
organizations	are	`lexible,	adapting	quickly	to	changing	customer	needs,	competition,	and	
markets,	with	`lexible	organizational	structures.	

4. Respect:	The	Agile	manifesto	prioritizes	"Individuals	and	interactions	over	processes	and	
tools."	 In	 high-performing	 teams,	 everyone	 is	 respected	 and	 trusted	 to	 complete	 their	
chosen	task.	

5. Flow:	Agile	focuses	on	smart	work	for	greater	value	with	less	effort,	following	Lean's	`low	
principles.	Each	sprint	completes	user	stories,	delivering	new	 features,	and	addressing	
documentation,	testing,	and	user-interface	requirements	upfront	for	faster	feedback	and	
precise	documentation.	 Sprints	 reduce	 traditional	batching,	 akin	 to	Lean's	 "continuous	
`low."	 Some	 Agile	 methods,	 like	 Kanban,	 draw	 from	 Lean's	 just-in-time	 concept,	
emphasizing	ef`iciency	in	development.		

	

	
	

Figure	4.	Combining	Lean	with	Agile	[19]	

	
In	Figure	4,	the	previous	research	has	looked	into	combining	Lean	and	Agile	methods,	but	
there's	not	much	on	how	they	integrate	in	managing	technical	debt	for	large-scale	software.	
This	 study	 aims	 to	 find	 new	 and	 effective	 ways	 to	 handle	 technical	 debt	 in	 large-scale	
software	systems	by	merging	Lean	Software	Development	and	Agile	approaches.	The	goal	is	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3533		
	 			 	 	

to	 help	 organizations	 identify,	 reduce,	 and	 prevent	 technical	 debt,	 leading	 to	 improved	
quality	and	sustainability	in	complex	systems.	
	 The	 results	 of	 this	 research	 can	 provide	 insights	 and	 practical	 guidance	 for	
organizations	to	effectively	manage	technical	debt,	optimize	resource	utilization,	 improve	
development	efficiency,	and	produce	software	systems	that	are	more	maintainable	and	of	
high	quality	in	the	future.		
B) Research	Design	

This	study	uses	the	Kitchenham	method	which	consists	of	planning,	implementation,	
and	reporting	stages.	Each	stage	of	the	Systematic	Literature	Review	(SLR)	will	be	discussed	
in	the	following	subsections.	
1) Planning	the	SLR	

In	this	stage,	the	researcher	identifies	the	research	objectives	and	research	questions	
to	be	answered.	Then,	a	search	is	conducted	based	on	the	predetermined	research	questions.	
The	databases	used	for	searching	related	research	include	ACM,	IEEE	Xplore,	Google	Scholar,	
Springer,	and	ScienceDirect.	In	searching	for	related	research,	the	first	set	of	keywords	used	
in	the	search	process	 is	related	to	the	approach,	way,	and	advancement	 in	Lean	Software	
Development	and	Agile.	These	keywords	are	(“APPROACH”	OR	“WAY”	OR	“ADVANCE”	OR	
“FRAMEROWK”).	 The	 second	 set	 of	 keywords	 is	 (“CHALLENGES”	 OR	 “OBSTACLES”	 OR	
“ISSUES”).	 The	 third	 set	 of	 keywords	 is	 (“LEAN”	 OR	 “AGILE”	 OR	 “SOFTWARE”	 OR	
“DEVELOPMENT”).	 The	 first	 and	 second	 sets	 of	 keywords	 are	 combined	 to	 form	
(“APPROACH”	 OR	 “WAY”	 OR	 “ADVANCE”)	 AND	 (“CHALLENGES”	 OR	 “OBSTACLES”	 OR	
“ISSUES”).	Then,	these	sets	of	keywords	are	further	combined	with	“managing	technical	debt	
in	large-scale	software”.	Therefore,	the	final	set	of	keywords	used	in	the	database	search	is	
(“APPROACH”	 OR	 “WAY”	 OR	 “ADVANCE”)	 AND	 (“CHALLENGES”	 OR	 “OBSTACLES”	 OR	
“ISSUES”)	 AND	 (“LEAN”	 OR	 “AGILE”	 OR	 “SOFTWARE”	 OR	 “DEVELOPMENT”)	 AND	
(“TECHNICAL”	OR	“DEBT”).	

In	the	search	results,	inclusion	(IN)	and	exclusion	(EX)	filters	were	applied	to	identify	
relevant	papers.	The	IN1	criterion	is	the	search	timeframe,	which	is	from	2019	to	2023.	The	
IN2	criterion	is	the	English	language	for	writing,	the	IN3	criterion	is	the	type	of	publication	
(journal	and	international	conferences),	the	IN4	criterion	is	selecting	the	field	of	engineering	
and	computer	science,	and	 the	 IN5	criterion	 is	 choosing	publications	 that	are	 in	 the	 final	
stage.	 The	 exclusion	 (EX)	 criterion,	 EX1,	 involves	 eliminating	 research	 papers	with	 titles	
unrelated	 to	 Lean	 and	 Agile	 in	 project	 management	 or	 technical	 debt	 management.	
Additionally,	elimination	was	performed	based	on	abstracts	that	were	not	related	to	Lean	
and	Agile	in	tech	debt	management.	
2) Implementation	of	SLR	

The	paper	selection	process	began	with	700	articles	identified	through	keywords	and	
criteria	 (IN1,	 IN2,	 IN3,	 IN4,	 IN5).	After	applying	 the	EX1	criterion,	200	articles	remained.	
Further	elimination	based	on	irrelevant	abstracts	resulted	in	19	relevant	papers	focused	on	
Lean	and	Agile	in	tech	debt	management.	The	snowballing	technique,	exploring	reference	
lists,	 added	 5	 more	 relevant	 papers.	 A	 Google	 Scholar	 search	 contributed	 10	 additional	
papers,	bringing	the	total	to	34	relevant	papers.	These	papers	were	used	for	data	extraction,	
and	their	synthesis	addressed	the	research	questions.	See		Figure	5	for	the	search	process.	

	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3534		
	 			 	 	

	
	

Figure	5.	The	procedure	of	this	mapping	study	
	
3) Reporting	the	SLR	

The	study	uses	past	research	to	answer	formulated	research	questions.	For	RQ1,	the	
researcher	identifies	types	of	technical	debt	based	on	studies	by	[13]	and	[20].	Addressing	
RQ2,	 the	 researcher	 starts	with	 the	 foundational	 principles	 of	 Lean	 and	Agile,	 discussing	
their	 role	 in	 software	 development,	 including	 the	 values	 in	 the	 Agile	 Manifesto,	 Lean	
Software	 Development,	 and	 waste	 in	 software	 development.	 This	 discussion	 leads	 to	
identifying	practices	for	combining	Lean	and	Agile,	particularly	in	managing	technical	debt.	
The	researcher	then	identifies	frameworks	for	managing	technical	debt	from	past	research	
and	 explains	 each.	 Finally,	 recommendations	 for	 user	 needs	 are	 provided.	 The	 reporting	
method	for	the	Systematic	Literature	Review	(SLR)	is	shown	in	Figure	6.	

	

	
	

Figure	6.	SLR	reporting	technique	
	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3535		
	 			 	 	

The	data	search	process	was	conducted	from	2019	to	the	end	of	October	2023.	The	
results	showed	that	34	research	papers	were	used	as	data	for	the	study.	Table	1	provides	a	
distribution	of	the	34	research	sources	used.	The	largest	number	of	high-quality	research	
sources	was	obtained	from	IEEE	Xplore.	The	distribution	of	studies	by	years	can	be	seen	in	
Figure	7.	

	
Table	1.	Result	mapping	online	database	
Database	 Quantity	 (%)	

IEEE	Xplore	 11	 32.35%	
SpringerLink	 5	 14.71%	
Google	
Scholar	 8	 23.53%	

ScienceDirect	 9	 26.47%	
ACM	 1	 2.94%	
Total	 34	 100%	

	
	

Figure	7.	Distribution	of	research	sources	by	publication	year	
	
C. Result	and	Discussion	

This	 chapter	 will	 discuss	 the	 results	 of	 the	 conducted	 research.	 It	 includes	 the	
categorization	 of	 Technical	 Debt	 (TD),	 followed	 by	 a	 discussion	 on	 the	 Lean	 and	 Agile	
approaches	 in	 Software	Development.	 Additionally,	 a	mapping	 of	 the	 challenges	 faced	 in	
managing	Technical	Debt	will	be	conducted.	
A) Technical	Debt	Classification	

To	answer	RQ1,	a	literature	review	was	conducted	on	previous	studies.	In	categorizing	
TD,	the	researchers	carried	out	mapping,	which	can	be	seen	in	Table	2.	Related	literature	on	
TD	is	conducted	as	a	prerequisite	for	determining	the	approach	in	managing	technical	debt.	
Based	 on	 Table	 2	 most	 common	 types	 of	 software	 development	 technical	 debt	 are	
Architectural	 (Constructive)	 TD,	 Design-related	 TD,	 Test-related	 TD,	 Code	 TD	 and	
Requirement	 TD.	 Using	 the	 results	 of	 this	 classification,	 mapping	 will	 be	 carried	 out	 to	
determine	 solutions	 for	 each	 technical	 debt	during	 implementation	using	Lean	and	Agile	
methodologies.	

	
Table	2.	Technical	Debt	classification	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3536		
	 			 	 	

No	 Technical	Debt	Type	 Technical	Debt	Subtype	
1	

Requirements	TD	
Incomplete	Requirement	[14],	[21]	

Over-engineering	[21],	[22]	
2	 Architectural	

(Constructive)	TD	
Architecture	smells	[2],	[23],	[24]	

Violations	of	good	architectural	practices	[23],	[25]	

System-level	structure	quality	issues	[19],	[20],	[21]	
3	 Design-related	TD	 Code	smells	[28],	[29]	

Complex	classes	or	methods	[29]	

Incompatible	design[23],	[29],	[30]	
4	

Code	TD	

Low-quality	code	[28],	[31]	

Duplicate	code	[28],	[32]	

Complex	code	[28],	[32]	
5	 Test-related	TD	 Code	smells	[28],	[29]	

Complex	classes	or	methods	[29]	

Incompatible	design[23],	[29],	[30]	
6	 Documentation	TD	 Low-quality	code	[28],	[31]	

Duplicate	code	[28],	[32]	

Complex	code	[28],	[32]	
7	 Infrastructure	TD	 Old	technology	Issue	[22]	

Lack	of	continuous	Integration	[33],	[34]	

Poor	release	Planning	[35]	

	
B) Lean	and	Agile	Practices	in	Managing	Technical	Debt	
Based	 on	 previous	 research,	 it	 was	 found	 that	 Lean	 principles	 generally	 consist	 of	 5	

principles	as	shown	in	Table	3.	Meanwhile,	Agile	principles	consist	of	8	principles,	as	can	be	
seen	in		
	
	

	
	
	
	
	

Table	4.	
	

Table	3.	Lean	principles	
No	 Lean	Principles	 Related	Study	
1	 Define	value	from	costumer	perspective	 [1],	[10],	[11],	[15],	

[17],	 [19],	 [36]–
[38]	

2	 Identify	the	value	stream	
3	 Make	the	flow	
4	 Implement	pull	based	production	
5	 Strive	for	perfection	continuously	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3537		
	 			 	 	

	
	
	
	
	
	
	
	
	

Table	4.	Agile	principles	
No	 Agile	Principles	 Related	Study	
1	 Customer	satisfaction		 [1],	 [10],	 [11],	 [15],	

[17],	[19],	[36]–[38]	2	 Embrace	changing	requirements:	
3	 Deliver	working	software	

frequently	
4	 Collaborative	approach	
5	 Technical	excellence	
6	 Functional	products	
7	 Simplicity	
8	 Self-organized	teams	

	
By	using	Lean	and	Agile	principles,	mapping	is	done	between	types	of	technical	debt	and	

practices	 that	 can	 be	 implemented	 to	 prevent	 or	 address	 existing	 technical	 debt.	 This	
mapping	can	be	seen	in	Table	5.	
	

Table	5.	Lean	and	Agile	practices	to	handle	TD	

No	 Technical	Debt	Type	 Lean	and	Agile	Practices	
1	 Requirements	TD	 - Involving	stakeholders	in	requirement	management	[1]	

- Defining	requirements	based	on	the	customer's	
perspective	[36]	

- Prioritizing	important	technical	debt	that	needs	to	be	
addressed	immediately	and	less	critical	ones	that	can	be	
worked	on	later	[2]	

2	 Architectural	TD	 - evolutionary	designs	[38]	
- Regularly	performing	refactoring	[11]	
- Involving	every	team	member	in	architectural	design	

decisions	[1]	
- Conducting	architecture	evaluation	through	peer	review,	

retrospectives,	or	other	discussion	forums	[15]	
3	 Design	TD	 - Avoiding	unnecessary	complex	designs	[11]	

- Collaborating	among	team	members	with		
- diverse	knowledge,	such	as	architects,	developers,	and	

analysts	[11]	
- Implementing	an	iterative	approach	to	design	[1],	[15]	

4	 Code	TD	 - Performing	code	reviews	[16]	
- Conducting	refactoring	[11]	
- Practicing	pair	programming	[11]	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3538		
	 			 	 	

No	 Technical	Debt	Type	 Lean	and	Agile	Practices	
5	 Test	TD	 - Implementing	the	TDD	(Test-Driven	Development)	

approach	[11]	
- Implementing	automation	testing	[11],	[39]	
- Applying	Continuous	Integration	and	Continuous	

Testing	(CI/CT)	[11]	
- Collaboration	between	developers	and	testers	[11]	

6	 Documentation	TD	 - Documenting	important	and	relevant	information	[40]	
- Updating	documentation	when	there	are	changes	[22]	
- Involving	the	team	in	testing	and	verifying	

documentation	[11]	
7	 Infrastructure	TD	 - Implementing	version	control,	continuous	integration,	

and	code	review	practices	[14],	[31]	
- Monitoring	the	performance,	weaknesses,	and	security	

of	the	infrastructure	[11]	
8	 Defect	TD	 - Implementing	automation	testing	[41]	

- Organizing	the	defect	backlog	[11]	
- Conducting	retrospectives	to	evaluate	development	[16]	
- Regular	regression	testing	[41]	

	
C) Framework	for	Technical	Debt	Management	
Based	 on	 previous	 research,	 several	 frameworks	 have	 been	 identified	 for	 the	

management	 of	 technical	 debt	 in	 software	 development.	 These	 frameworks	 include	 the	
Technical	Debt	Aware	Project	(TAP)	framework,	the	Less	Technical	Debt	(LTD)	framework,	
and	the	Continuous	Debt	Valuation	Approach	(CoDVA).	
1) 	TAP	Framework	
The	 TAP	 Framework	 is	 a	 framework	 for	 managing	 technical	 debt/TD,	 and	 it	 was	

developed	and	established	in	an	IT	unit	in	early	2018.	The	focus	of	the	IT	unit	that	developed	
this	framework	is	on	systems	that	support	advertising	in	print,	online,	and	mobile	media,	a	
volatile	and	competitive	market	[42].	The	TAP	Framework	flows	can	be	seen	in	Figure	8.	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3539		
	 			 	 	

	
Figure	8.	TAP	framework	[42]	

2) 	LTD	Framework	
LTD	 is	a	 framework	 that	assists	agile	 teams	 in	managing	 technical	debt	 (TD).	LTD	 is	a	

lightweight	and	flexible	framework,	making	it	adaptable	to	the	needs	of	agile	teams.	Teams	
can	choose	to	implement	all	or	some	of	the	LTD	activities	and	can	customize	these	activities	
to	align	with	their	existing	workflow	[43].	The	LTD	Framework	flows	can	be	seen	in	Figure	
9.	

	
Figure	9.	LTD	Framework	[43]	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3540		
	 			 	 	

3) CoDVA	Framework	
CoDVA	is	an	approach	for	assessing	and	prioritizing	technical	debt	(TD)	relative	to	each	

other.	 CoDVA	 combines	 several	 factors,	 including	 refactoring	 size,	 expected	 benefits,	
business	priorities,	and	inter-TDI	dependencies	[44].	The	CoDVA	Framework	flows	can	be	
seen	in	Figure	10.	

	

Figure	10.	CoDVA	Framework	[44]	
	
4) TAP,	LTD,	and	CoDVA	Framework	
The	TAP	framework	is	a	simple	framework	that	can	be	adapted	to	the	needs	of	agile	teams.	

This	 framework	 is	 easy	 to	 implement	 and	 use	 for	 organizations	 that	 have	 small-scale	
software.	[42].	The	LTD	framework	is	more	comprehensive	but	guides	all	aspects	of	TDM,	
including	 identification,	 prioritization,	 and	 reduction	 of	 TD.	 Managing	 TD	 using	 this	
framework	may	be	more	complex,	but	it	is	more	detailed	than	the	TAP	framework,	so	it	is	
suitable	for	large-scale	software	[43].	
The	CoDVA	framework	is	a	quantitative	framework	that	uses	a	metric	called	CoDVA_index	

to	prioritize	TD	items.	this	framework.	is	the	most	complex	framework	compared	to	TAP	and	
LTD.	However,	the	advantage	of	this	framework	is	that	it	identifies	and	prioritizes	TD	based	
on	business	objectives	and	can	provide	guidance	on	all	aspects	of	TDM.	Apart	from	that,	this	
framework	also	includes	TD	monitoring	and	review	activities.	So,	for	software	that	is	quite	
large	and	very	strict	with	business	objectives,	this	framework	is	suitable	[44].		
Comparison	of	frameworks	for	managing	technical	debt	based	on	agile	principles	can	be	

seen	in	Table	6.	
	

Table	6.	Comparison	of	frameworks	for	managing	technical	debt	based	on	agile	principles	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3541		
	 			 	 	

Practices	 Categories	 TAP	[34]	 CoDVA	[36]	 LTD[35]	
Define	value	from	costumer	
perspective	[7]	

Lean	 ✕	 ✓	 ✕	

Identify	the	value	[6]	 Lean	 ✓	 ✓	 ✓	
Technical	Debt	Prioritization	
[12]	

Lean	 ✓	 ✓	 ✓	

Pengelolaan	biaya	dan	Sumber	
daya	[5]	

Lean	 ✕	 ✓	 ✓	

Fleksibilitas	dan	Adaptabilitas	
[38]	

Agile	 ✓	 ✕	 ✓	

Dapat	diintegrasikan	dengan	
praktik	Scrum	[30]	

Agile	 ✓	 ✓	 ✓	

	
In	 the	 Table	 6,	 in	 the	 define	 value	 point	 from	 the	 customer	 perspective,	 the	 CoDVA	

framework	is	used.	In	the	identify	value	and	TD	prioritization	points,	all	three	frameworks	
have	implemented	their	practices.	The	cost	and	resource	management	practices	are	applied	
by	CoDVA	and	LTD.	TAP	and	LTD	have	implemented	practices	for	flexibility	and	adaptability.	
All	three	frameworks	can	be	integrated	with	Scrum,	making	them	suitable	for	organizations	
using	that	method.	
D. Conclusion	

This	 research	 aims	 to	 examine	 technical	 debt	 management	 practices	 and	 provide	
recommendations	for	a	framework	for	managing	technical	debt.	In	this	research,	the	types	
of	technical	debt	in	software	development	are	categorized	into	7	types.	Next,	the	Lean	and	
Agile	principles	were	identified.	Based	on	the	identification	of	7	types	of	technical	debt,	5	
Lean	principles,	and	8	Agile	principles	found	in	previous	research,	a	mapping	was	carried	
out	 between	 each	 type	 of	 technical	 debt	 and	 related	 solutions	 or	 practices	 that	 can	 be	
implemented	based	on	Lean	and	Agile	Software	Development	principles.	In	this	research,	3	
frameworks	were	also	identified	that	can	be	used	to	manage	technical	debt.	This	framework	
can	 be	 implemented	 to	 each	 organization's	 unique	 needs	 and	 characteristics.	 For	
organizations	with	large-scale	software,	the	first	option	is	recommended	to	use	the	CoDVA	
framework	but	will	be	more	complex	because	it	must	calculate	the	CoDVA	index	first,	and	
the	second	option	uses	the	LTD	framework.	If	an	organization	is	small-scale	software	and	
looking	 for	 a	 lightweight	 and	 easy-to-use	 framework,	 then	 the	TAP	 framework	 is	 a	 good	
choice.	

This	research	is	limited	to	research	on	SLR	results,	so	it	is	possible	that	another	relevant	
research	is	not	included.	There	may	be	bias	in	the	selection	of	literature	because	it	depends	
on	the	researcher's	abilities.	Inaccuracies	in	data	extraction	and	bias	in	data	synthesis	are	
also	possible.	During	the	data	extraction	process,	inaccuracies	can	occur	due	to	the	reliance	
on	a	single	researcher,	which	is	subject	to	their	knowledge	and	understanding.	Bias	in	data	
synthesis	may	arise	because	not	all	papers	provide	detailed	information	on	the	data	to	be	
extracted,	potentially	reducing	the	accuracy	of	the	synthesized	data.	

This	study	is	primarily	centered	on	the	phases	within	the	software	development	lifecycle	
that	give	rise	to	technical	debt	(TD).	It	involves	the	identification	of	appropriate	strategies	
aligning	with	Lean	and	Agile	principles	to	mitigate	such	TD.	Subsequent	research	endeavors	
might	 delve	 into	 further	 classifications	 of	 TD	 and	 explore	 prevalent	 TD	 challenges	 faced	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3542		
	 			 	 	

during	 the	 development	 of	 extensive	 software	 projects.	 Additionally,	 this	 study	 has	 the	
potential	 for	 expansion	 by	 integrating	 Lean	 principles	 with	 other	 methodologies	 like	
DevOps,	Waterfall,	Rapid,	Prototype,	and	others.	Researchers	can	explore	each	framework	
individually	 or	 assess	 potential	 synergies	 between	 these	 methodologies	 to	 develop	
innovative,	optimized	frameworks	for	TD	management.	

	
E. References	
[1]	 M.	 Zorzetti,	 I.	 Signoretti,	 L.	 Salerno,	 S.	 Marczak,	 and	 R.	 Bastos,	 “Improving	 Agile	

Software	 Development	 using	 User-Centered	 Design	 and	 Lean	 Startup,”	 Inf	 Softw	
Technol,	vol.	141,	Jan.	2022,	doi:	10.1016/j.infsof.2021.106718.	

[2]	 V.	 Lenarduzzi,	 T.	 Besker,	 D.	 Taibi,	 A.	 Martini,	 and	 F.	 A.	 Fontana,	 “Technical	 Debt	
Prioritization:	State	of	the	Art.	A	Systematic	Literature	Review,”	Apr.	2019,	[Online].	
Available:	http://arxiv.org/abs/1904.12538	

[3]	 M.	Soliman,	P.	Avgeriou,	and	Y.	Li,	“Architectural	design	decisions	that	incur	technical	
debt	 —	 An	 industrial	 case	 study,”	 Inf	 Softw	 Technol,	 vol.	 139,	 Nov.	 2021,	 doi:	
10.1016/j.infsof.2021.106669.	

[4]	 T.	Bures	et	al.,	“Software	Engineering	for	Smart	Cyber-Physical	Systems	(SEsCPS	2018)	
-	Workshop	Report,”	ACM	SIGSOFT	Software	Engineering	Notes,	vol.	44,	no.	4,	pp.	11–
13,	Dec.	2019,	doi:	10.1145/3364452.3364465.	

[5]	 J.	 Holvitie	 et	 al.,	 “Technical	 debt	 and	 agile	 software	 development	 practices	 and	
processes:	An	industry	practitioner	survey,”	Inf	Softw	Technol,	vol.	96,	pp.	141–160,	
2018.	

[6]	 G.	Digkas,	N.	Nikolaidis,	A.	Ampatzoglou,	and	A.	Chatzigeorgiou,	“Reusing	code	from	
stackoverflow:	 the	 effect	 on	 technical	 debt,”	 in	2019	45th	Euromicro	Conference	 on	
Software	Engineering	and	Advanced	Applications	(SEAA),	IEEE,	2019,	pp.	87–91.	

[7]	 E.	Gama,	S.	Freire,	M.	Mendonça,	R.	O.	Spinola,	M.	Paixao,	and	M.	I.	Cortes,	“Using	Stack	
Overflow	 to	 Assess	 Technical	 Debt	 Identification	 on	 Software	 Projects,”	 in	 ACM	
International	Conference	Proceeding	Series,	Association	for	Computing	Machinery,	Oct.	
2020,	pp.	730–739.	doi:	10.1145/3422392.3422429.	

[8]	 T.	 Besker,	 A.	Martini,	 and	 J.	 Bosch,	 “Impact	 of	 architectural	 technical	 debt	 on	daily	
software	 development	 work—a	 survey	 of	 software	 practitioners,”	 in	 2017	 43rd	
Euromicro	 Conference	 on	 Software	 Engineering	 and	 Advanced	 Applications	 (SEAA),	
IEEE,	2017,	pp.	278–287.	

[9]	 T.	Besker,	A.	Martini,	and	J.	Bosch,	“Managing	architectural	technical	debt:	A	unified	
model	and	systematic	literature	review,”	Journal	of	Systems	and	Software,	vol.	135,	pp.	
1–16,	2018.	

[10]	 R.	 Hoda,	 “Using	 Agile	 Games	 to	 Invigorate	 Agile	 and	 Lean	 Software	 Development	
Learning	in	Classrooms.”	

[11]	 P.	Rodríguez,	M.	Mäntylä,	M.	Oivo,	L.	Lwakatare,	P.	Seppänen,	and	P.	Kuvaja,	“Advances	
in	 Using	 Agile	 and	 Lean	 Processes	 for	 Software	 Development,”	 2019.	 [Online].	
Available:	https://www.sciencedirect.com/science/article/pii/S0065245818300299	

[12]	 W.	Cunningham,	“A	’92	Addendum	to	the	Proceedings	Experience	Report-The	WyCash	
Portfolio	Management	System,”	1992.	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3543		
	 			 	 	

[13]	 S.	 Mcconnell,	 “Managing	 Technical	 Debt,”	 2008.	 [Online].	 Available:	
www.construx.com/whitepapers	

[14]	 F.	Zampetti,	C.	Vassallo,	S.	Panichella,	G.	Canfora,	H.	Gall,	and	M.	Di	Penta,	“An	empirical	
characterization	of	bad	practices	in	continuous	integration,”	Empir	Softw	Eng,	vol.	25,	
no.	2,	pp.	1095–1135,	Mar.	2020,	doi:	10.1007/s10664-019-09785-8.	

[15]	 N.	 Ozkan	 and	 A.	 K.	 Tarhan,	 “Investigating	 Causes	 of	 Scalability	 Challenges	 in	 Agile	
Software	Development	from	a	Design	Perspective,”	in	1st	International	Informatics	and	
Software	Engineering	Conference:	Innovative	Technologies	for	Digital	Transformation,	
IISEC	2019	 -	Proceedings,	 Institute	of	Electrical	and	Electronics	Engineers	 Inc.,	Nov.	
2019.	doi:	10.1109/UBMYK48245.2019.8965633.	

[16]	 J.	 Holvitie	 et	 al.,	 “Technical	 debt	 and	 agile	 software	 development	 practices	 and	
processes:	An	industry	practitioner	survey,”	Inf	Softw	Technol,	vol.	96,	pp.	141–160,	
Apr.	2018,	doi:	10.1016/j.infsof.2017.11.015.	

[17]	 T.	Dingsoeyr,	D.	Falessi,	and	K.	Power,	“Agile	Development	at	Scale:	The	Next	Frontier,”	
IEEE	Software,	vol.	36,	no.	2.	 IEEE	Computer	Society,	pp.	30–38,	Mar.	01,	2019.	doi:	
10.1109/MS.2018.2884884.	

[18]	 L.	Gaikwad	and	V.	Sunnapwar,	“The	Role	of	Lean	Manufacturing	Practices	in	Greener	
Production:	 A	Way	 to	 Reach	 Sustainability,”	 International	 Journal	 of	 Industrial	 and	
Manufacturing	 Systems	 Engineering,	 vol.	 5,	 no.	 1,	 p.	 1,	 2020,	 doi:	
10.11648/j.ijimse.20200501.11.	

[19]	 S.	Sadeghi,	A.	Akbarpour,	and	H.	Abbasianjahromi,	“Provide	a	Lean	and	Agile	Strategy	
for	an	Antifragile	Sustainable	Supply	Chain	in	the	Construction	Industry(residential	
complex),”	 Cleaner	 Logistics	 and	 Supply	 Chain,	 vol.	 5,	 Dec.	 2022,	 doi:	
10.1016/j.clscn.2022.100079.	

[20]	 N.	Brown	et	al.,	“Managing	technical	debt	in	software-reliant	systems,”	in	Proceedings	
of	the	FSE/SDP	Workshop	on	the	Future	of	Software	Engineering	Research,	FoSER	2010,	
2010,	pp.	47–51.	doi:	10.1145/1882362.1882373.	

[21]	 N.	Rios,	R.	O.	Spínola,	M.	Mendonça,	and	C.	Seaman,	“The	practitioners’	point	of	view	
on	the	concept	of	technical	debt	and	its	causes	and	consequences:	a	design	for	a	global	
family	of	industrial	surveys	and	its	first	results	from	Brazil,”	Empir	Softw	Eng,	vol.	25,	
no.	5,	pp.	3216–3287,	Sep.	2020,	doi:	10.1007/s10664-020-09832-9.	

[22]	 B.	 Kitchenham,	 O.	 Pearl	 Brereton,	 D.	 Budgen,	M.	 Turner,	 J.	 Bailey,	 and	 S.	 Linkman,	
“Systematic	 literature	 reviews	 in	 software	 engineering	 -	 A	 systematic	 literature	
review,”	Information	and	Software	Technology,	vol.	51,	no.	1.	pp.	7–15,	Jan.	2009.	doi:	
10.1016/j.infsof.2008.09.009.	

[23]	 F.	Tian,	P.	Liang,	and	M.	A.	Babar,	 “How	developers	discuss	architecture	smells?	An	
exploratory	 study	 on	 stack	 overflow,”	 in	 Proceedings	 -	 2019	 IEEE	 International	
Conference	on	Software	Architecture,	ICSA	2019,	Institute	of	Electrical	and	Electronics	
Engineers	Inc.,	Apr.	2019,	pp.	91–100.	doi:	10.1109/ICSA.2019.00018.	

[24]	 F.	Tian,	P.	Liang,	and	M.	A.	Babar,	 “How	developers	discuss	architecture	smells?	An	
exploratory	 study	 on	 stack	 overflow,”	 in	 Proceedings	 -	 2019	 IEEE	 International	
Conference	on	Software	Architecture,	ICSA	2019,	Institute	of	Electrical	and	Electronics	
Engineers	Inc.,	Apr.	2019,	pp.	91–100.	doi:	10.1109/ICSA.2019.00018.	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3544		
	 			 	 	

[25]	 P.	 Di	 Francesco,	 P.	 Lago,	 and	 I.	 Malavolta,	 “Architecting	 with	 microservices:	 A	
systematic	mapping	study,”	Journal	of	Systems	and	Software,	vol.	150,	pp.	77–97,	Apr.	
2019,	doi:	10.1016/j.jss.2019.01.001.	

[26]	 T.	 Sharma,	 “How	 Deep	 is	 the	 Mud:	 Fathoming	 Architecture	 Technical	 Debt	 Using	
Designite”,	doi:	10.5281/zenodo.2566832.	

[27]	 R.	L.	Nord,	 I.	Ozkaya,	P.	Kruchten,	and	M.	Gonzalez-Rojas,	 “In	search	of	a	metric	 for	
managing	 architectural	 technical	 debt,”	 in	 Proceedings	 of	 the	 2012	 Joint	 Working	
Conference	 on	 Software	 Architecture	 and	 6th	 European	 Conference	 on	 Software	
Architecture,	WICSA/ECSA	2012,	2012,	pp.	91–100.	doi:	10.1109/WICSA-ECSA.212.17.	

[28]	 A.	Walker,	D.	Das,	 and	T.	 Cerny,	 “Automated	 code-smell	 detection	 in	microservices	
through	static	analysis:	A	case	study,”	Applied	Sciences	(Switzerland),	vol.	10,	no.	21,	
pp.	1–20,	Nov.	2020,	doi:	10.3390/app10217800.	

[29]	 L.	Sousa,	W.	Oizumi,	A.	Garcia,	A.	Oliveira,	D.	Cedrim,	and	C.	Lucena,	“When	are	smells	
indicators	of	architectural	refactoring	opportunities?	a	study	of	50	software	projects,”	
in	IEEE	International	Conference	on	Program	Comprehension,	IEEE	Computer	Society,	
Jul.	2020,	pp.	354–365.	doi:	10.1145/3387904.3389276.	

[30]	 T.	 Bi,	 P.	 Liang,	 and	 A.	 Tang,	 “Architecture	 Patterns,	 Quality	 Attributes,	 and	 Design	
Contexts:	How	Developers	Design	with	Them?”	

[31]	 S.	Martinez-Fernandez	et	al.,	“Continuously	Assessing	and	Improving	Software	Quality	
with	Software	Analytics	Tools:	A	Case	Study,”	IEEE	Access,	vol.	7,	pp.	68219–68239,	
2019,	doi:	10.1109/ACCESS.2019.2917403.	

[32]	 P.	 Avgeriou	 et	 al.,	 “An	 Overview	 and	 Comparison	 of	 Technical	 Debt	 Measurement	
Tools.”	

[33]	 O.	Lehti,	“State,	reasons,	and	effects	of	technical	debt	in	a	Finnish	IoT-domain	software	
project.”	

[34]	 L.	Rosser,	“A	Systems	Perspective	on	Technical	Debt,”	2021.	
[35]	 R.	Verdecchia,	P.	Kruchten,	P.	Lago,	and	I.	Malavolta,	“Building	and	evaluating	a	theory	

of	architectural	technical	debt	in	software-intensive	systems,”	Journal	of	Systems	and	
Software,	vol.	176,	Jun.	2021,	doi:	10.1016/j.jss.2021.110925.	

[36]	 A.	 Rasheed	 et	 al.,	 “Requirement	 Engineering	 Challenges	 in	 Agile	 Software	
Development,”	Mathematical	 Problems	 in	 Engineering,	 vol.	 2021.	 Hindawi	 Limited,	
2021.	doi:	10.1155/2021/6696695.	

[37]	 C.	Research,	N.	Rios,	M.	Mendonça,	C.	Seaman,	and	R.	Oliveira	Spínola,	“Technical	Debt	
Causes	and	Effects	in	Agile	Projects	Causes	and	Effects	of	the	Presence	of	Technical	
Debt	in	Agile	Software	Projects,”	2019.	

[38]	 S.	Freire	et	al.,	“Pitfalls	and	Solutions	for	Technical	Debt	Management	in	Agile	Software	
Projects,”	IEEE	Softw,	vol.	38,	no.	6,	pp.	42–49,	2021,	doi:	10.1109/MS.2021.3101990.	

[39]	 A.	S.	E.	Hamed,	H.	M.	Elbakry,	A.	E.	Riad,	and	R.	Moawad,	“A	Proposed	Technical	Debt	
Management	 Approach	 Applied	 on	 Software	 Projects	 in	 Egypt,”	 Journal	 of	 Internet	
Services	 and	 Information	 Security,	 vol.	 13,	 no.	 3,	 pp.	 156–177,	 Aug.	 2023,	 doi:	
10.58346/JISIS.2023.I3.010.	

[40]	 A.	Almeida	Da	Costa	Júnior,	“A	Maturity	Model	based	on	ISO/IEC/IEEE	42010:2011	to	
Identify	Technical	Debt	in	Software	Architecture.”	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


Indonesian	Journal	of	Computer	Science	
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 																							Vol.	12,	No.	6,	Ed.	2023	|	page	3545		
	 			 	 	

[41]	 B.	 S.	 Aragão	 et	 al.,	 “TestDCat:	 Catalog	 of	 Test	 Debt	 Subtypes	 and	 Management	
Activities,”	pp.	279–295,	2019,	doi:	10.1007/978-3-030.	

[42]	 M.	Wiese,	P.	Rachow,	M.	Riebisch,	and	J.	Schwarze,	“Preventing	technical	debt	with	the	
TAP	framework	for	Technical	Debt	Aware	Management,”	Inf	Softw	Technol,	vol.	148,	
Aug.	2022,	doi:	10.1016/j.infsof.2022.106926.	

[43]	 L.	Xavier,	R.	Dos	Santos,	and	M.	T.	Valente,	“Agile	Technical	Debt	Management	using	
the	LTD	Framework,”	2022.	

[44]	 M.	G.	Stochel,	T.	Borek,	M.	R.	Wawrowski,	and	P.	Chołda,	“Business-driven	technical	
debt	management	 using	 Continuous	 Debt	 Valuation	 Approach	 (CoDVA),”	 Inf	 Softw	
Technol,	vol.	164,	Dec.	2023,	doi:	10.1016/j.infsof.2023.107333.	

		

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

