
Indonesian Journal of Computer Science
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 Vol.	12,	No.	4,	Ed.	2023	|	page	1811		

	
Enhancing	the	Performance	of	Desk	Evaluation:	Final	Project	Web	Application	
through	Back-End	Maintenance	
	
Naufal	Aqil	Himawan1,	Tien	Fabrianti	Kusumasari2,	Nur	Ichsan	Utama3	
naufalaqil@student.telkomuniversity.ac.id,	tienkusumasari@telkomuniversity.ac.id,	
nichsan@telkomuniversity.ac.id	
1,2,3	Information	System	Department,	School	of	Industrial	and	System	Engineering,	Telkom	
University	
	
Article	Information	 Abstract	

Submitted	:		25	Aug	2023	
Reviewed	:	 	28	Aug	2023	
Accepted	:	 30	Aug	2023	

Software	 maintenance	 resolves	 issues	 in	 development,	 including	 web	
applications.	The	web	 application	 can	be	 split	 into	 front-end	 and	back-end	
perspectives.	Performance	improvements	can	be	achieved	through	back-end	
maintenance.	 Web	 applications	 with	 MVC	 (Model-View-Controller)	
architecture	 are	 maintained	 via	 code	 adjustment	 in	 the	 controllers.	 This	
research	focuses	on	maintaining	the	back-end	side	of	the	Desk	Evaluation,	a	
web	 application	 for	 the	 university's	 final	 project	 management.	 The	
Collaboration	 Model	 of	 Software	 Development	 is	 the	 method	 used	 in	 this	
research.	The	controllers	of	the	Desk	Evaluation	application	that	have	been	
maintained	 are	 tested	 using	 unit	 and	 load	 testing.	 Unit	 testing	 shows	 that	
controllers	give	a	proper	response.	Load	testing	indicates	a	98%	success	rate	
and	under	30	seconds	average	load	time	for	all	controllers.	Then,	the	code	in	
the	controllers	is	analyzed	with	SonarQube,	earning	an	A	rating	for	reliability,	
signifying	rule	compliance,	and	minimizing	bugs.	
	

Keywords		

Back-end,	Controller,	
Maintenance,	Web	
Application,	Testing	
	
	

	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1812	
	 	

A. Introduction	
Software	 Maintenance	 is	 one	 part	 of	 the	 software	 development	 cycle	 [1].	

According	 to	 [2],	 Software	 Maintenance	 plays	 an	 important	 role	 in	 software	
development.	Software	Maintenance	is	a	must	to	prevent	problems	that	can	arise	so	
that	if	ignored,	the	business	cannot	grow	optimally	[3].	

Software	 or	 applications	 can	 be	 built	 through	 the	 Software	 Engineering	
process	and	can	be	maintained	through	the	Software	Maintenance	process.	Software	
Maintenance	 is	 a	 process	 of	 Software	 Engineering	 that	 focuses	 on	 maintaining	
previously	 designed	 systems	 in	 the	 form	of	maintaining	 code	writing	 structures,	
design	maintenance,	and	maintenance	or	maintenance	of	specifications	that	are	not	
suitable	to	meet	the	desired	new	requirements	[4].	

According	 to	 [1],	 [5],	 Software	 Maintenance	 is	 classified	 into	 corrective	
maintenance,	 adaptive	 maintenance,	 perfective	 maintenance,	 and	 preventive	
maintenance.	Corrective	Maintenance	 is	 the	maintenance	stage	 for	problems	that	
occur	when	 a	 user	 has	 used	 the	 software.	 Adaptive	Maintenance	 is	 the	 stage	 of	
maintaining	software	so	that	it	can	still	be	used	when	the	application	environment	
changes.	Perfective	Maintenance	is	a	maintenance	phase	that	contains	the	addition	
of	 new	 features	 or	 changes	 to	 the	 code	 structure	 to	 make	 it	 better.	 Preventive	
Maintenance	 is	 a	maintenance	 phase	 that	 contains	 the	 prevention	 of	 errors	 that	
might	occur	in	the	software	and	is	repaired	before	the	user	discovers	it.	

Software	 maintenance	 can	 also	 include	 maintenance	 of	 web-based	
applications.	Web-based	applications	are	systems	with	application	components	that	
work	on	the	client	side	and	communicate	with	application	components	on	a	web	
server	 to	 process	 data	 [6].	 In	 their	 design,	 web-based	 applications	 have	 an	
architecture	in	them.	This	architecture	is	designed	so	that	content,	page	design,	and	
navigation	 on	 a	website	 can	 be	 structured	 properly	 so	 that	 the	 goals	 of	website	
development	can	be	fulfilled	[5].	

One	architecture	that	can	be	used	to	develop	a	web-based	application	is	the	
MVC	(Model-View-Controller)	architecture.	MVC	is	an	architecture	that	divides	the	
application	 into	 three	 interconnected	 parts.	 MVC	 separates	 the	 application's	
internal	 information	 from	 the	 information	 that	 will	 be	 displayed	 to	 application	
users.	[7].	

	

	
	

Figure	1.	Illustration	of	Model-View-Controller	[5]	

The	model	is	the	part	that	manages	web-based	application	data	so	that	later	it	
can	be	used	on	the	View	side.	The	model	communicates	directly	with	the	database.	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1813	
	 	

View	is	the	part	that	manages	all	forms	of	user	interface	and	can	interact	directly	
with	users	in	the	form	of	web	pages.	All	data	displayed	in	the	View	is	data	in	the	
Model.	 The	 controller	 is	 the	 part	 that	 manages	 all	 requests	 made	 by	 the	 user.	
Requests	 that	 occur	 on	 the	 View	 side	 such	 as	 creating,	 reading,	 changing,	 and	
deleting	data	will	be	conveyed	by	the	Controller	to	the	model	so	that	it	becomes	a	
bridge	between	the	View	and	the	Model	 [8].	MVC	architecture	 illustration	can	be	
seen	in	Figure	1.	

According	to	[9],	the	perspective	of	web-based	applications	is	divided	into	two,	
namely	front-end	and	back-end.	Front-end	is	a	component	where	users	interact	with	
the	 appearance	 of	 a	 web	 such	 as	 images,	 colors,	 and	 various	 display	 designs.	
Meanwhile,	the	back-end	is	a	component	that	manages	everything	that	is	invisible	
to	 the	 user,	 such	 as	 the	 authentication	 process,	 database	 configuration,	 and	
management	of	various	requests	sent	by	the	user.	

This	 research	 will	 focus	 on	 the	 Desk	 Evaluation	 application	 maintenance	
process.	 Desk	 Evaluation	 is	 a	 web-based	 application	 to	 manage	 student	 final	
projects	at	a	university.	This	application	has	various	main	features.	From	the	student	
side,	some	of	 the	 features	are	 the	submission	of	 final	project	 topics,	uploading	of	
guidance	reports,	and	uploading	of	final	project	reports.	From	the	lecturer's	point	of	
view,	some	of	its	features	are	uploading	final	project	topics,	approving	student	topic	
submissions,	and	assessing	student	final	project	reports.	

The	Desk	Evaluation	 application	 still	 has	many	 shortcomings.	 For	 example,	
there	were	bugs	 in	some	existing	 features.	 In	addition,	 there	were	requests	 from	
users	of	the	Desk	Evaluation	application	to	add	new	features.	Therefore,	this	study	
will	discuss	the	maintenance	process	for	the	Desk	Evaluation	application	and	will	
focus	on	back-end	maintenance.	

The	 purpose	 of	 this	 research	 is	 to	 improve	 the	 performance	 of	 web-based	
applications	 through	 maintenance	 on	 the	 back-end	 side.	 According	 to	 [10],	
maintenance	 on	 the	 back-end	 side	 aims	 to	manage	 logic	 on	 the	 server	 side	 and	
improve	 performance	 and	 responsiveness.	 Thus,	 this	 research	 is	 expected	 to	
contribute	to	improving	the	performance	of	web-based	applications.	
	
B. Research	Method	

	

	
	

Figure	2.	Collaboration	Model	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1814	
	 	

This	 research	 was	 conducted	 using	 the	 Collaboration	 Model	 of	 Software	
Development	method.	The	Collaboration	Model	is	one	of	several	models	that	use	an	
Agile	approach.	The	phases	in	the	model	consist	of	five	generic	Software	Engineering	
phases	 [5],	 namely	 communication,	 planning,	 modeling,	 construction,	 and	
deployment.	Figure	2	shows	an	illustration	of	the	Collaboration	Model	used	in	this	
study.	

According	 to	 [11],	 this	 model	 emphasizes	 the	 importance	 of	 collaboration	
between	 customers	 and	developers	 such	as	 face-to-face	 communication	between	
users,	developers,	and	stakeholders	as	well	as	the	collaboration	tools	used	by	them.	

In	 the	 Communication/Requirement	 phase,	 information	 was	 collected	
regarding	the	Desk	Evaluation	application	through	face-to-face	interviews	with	all	
users	of	the	Desk	Evaluation	application,	namely	students,	lecturers,	and	staff	who	
act	as	admins	in	the	Desk	Evaluation	application.	The	number	of	sources	obtained	
were	10	students,	2	lecturers,	and	1	admin.	The	number	of	sources	depends	on	the	
completeness	of	the	information	provided	by	the	sources	[12].	This	information	will	
later	become	maintenance	requirements.	

In	 the	 Planning	 phase,	 the	 Desk	 Evaluation	 application	 requirements	 have	
been	determined	and	classified,	based	on	the	classification	of	software	maintenance	
[1],	[5].	Figure	3.	shows	the	distribution	of	determined	and	classified	requirements	
in	 the	 form	of	a	bar	chart.	As	shown	in	Figure	3,	 the	maintenance	 is	divided	 into	
corrective	maintenance	and	perfective	maintenance.	

	

	
	

Figure	3.	Classified	Requirements	

In	the	Modeling	phase,	UML	(Unified	Modeling	Language)	had	been	designed	
to	help	describe	how	the	system	works.	UML	is	a	standard	language	used	to	create	
software	blueprints	such	as	visualizing,	specifying,	constructing,	and	documenting	
the	artifacts	of	a	software-intensive	system.	One	of	them	is	use	case	diagrams.	Use	
case	diagrams	are	the	center	of	modeling	the	behavior	of	a	system,	a	sub-system,	or	
a	class	[13].	Figure	4.	shows	a	use	case	diagram	for	the	Desk	Evaluation	application.	
The	yellow	use	case	diagram	is	a	new	use	case	that	is	proposed	for	maintenance	in	
this	study.	

	

15

11

0

5

10

15

20

Corrective Maintenance Perfective Maintenance

Classified Requirements

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1815	
	 	

	
	

Figure	4.	Use	Case	Diagram	for	Desk	Evaluation	

In	the	Construction	phase,	programming	and	testing	had	been	carried	out	on	
the	back-end	side.	Maintenance	is	done	by	creating	and	repairing	code	logic	on	the	
Desk	Evaluation	application	controllers.	After	the	code	logic	in	the	controllers	had	
been	maintained,	the	functionality	and	loading	of	the	controllers	were	tested.	
	
C. Result	and	Discussion	

The	 Desk	 Evaluation	 application	 was	 previously	 built	 using	 Sails	 as	 a	
framework	 on	 the	 back-end	 side.	 Sails	 is	 a	 back-end	 framework	 based	 on	 the	
JavaScript	 programming	 language.	 Sails	 implement	 an	 MVC	 architecture	 that	
already	supports	API	requirements	[14].	Figure	5	shows	the	models	and	controllers	
of	 the	 MVC	 architecture	 in	 the	 Desk	 Evaluation	 application	 that	 was	 being	
maintained	in	this	study.	

	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1816	
	 	

	
	

Figure	5.	Maintained	MVC	of	Desk	Evaluation	

The	controllers	that	were	maintained	are	divided	into	two	parts	according	to	
their	function,	namely	views	and	non-views.	The	controller	that	has	the	prefix	view	
name	is	the	controller	that	functions	to	return	data	from	the	model	to	the	view.	The	
data	format	returned	by	the	controller	with	the	view	prefix	name	is	JSON	(JavaScript	
Object	Notation),	while	 non-view	 controllers	 do	 not	 return	 values	 but	 update	 or	
delete	commands	for	existing	data	in	the	model.	
	

	
	

Figure	6.	Unit	Testing	on	view-dashboard	Controller	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1817	
	 	

	
	

Figure	7.	Testing	Output	of	view-dashboard	Controller	

Controllers	that	had	been	maintained	were	tested	using	unit	testing	and	load	
testing.	Unit	testing	is	the	testing	of	a	function	performed	by	a	developer	who	has	an	
understanding	of	the	structure	of	the	application	code	so	that	it	is	included	in	the	
white	box	testing	technique.	Load	testing	is	testing	to	ensure	that	the	application	
can	handle	high	loads.	This	test	is	included	in	the	gray	box	testing	because	the	tester	
has	a	limited	understanding	of	the	application,	but	tests	the	application	with	a	tool	
designed	to	be	able	to	find	out	the	internal	structure	of	the	code	[15].	

Figure	6	shows	the	script	of	the	unit	testing	that	was	performed	on	the	view-
dashboard	 controller.	 This	 unit	 testing	 was	 done	 using	 Mocha	 as	 the	 testing	
framework	 for	 the	 JavaScript	 program.	 Figure	 7	 shows	 the	 testing	 output	 of	 the	
view-dashboard	controller,	where	the	controller	returns	the	desired	JSON	response	
and	returns	the	status	code	200.	

The	unit	testing	results	of	controllers	that	had	been	maintained	are	shown	in	
Table	1.	It	shows	that	the	unit	functions	on	each	controller	can	run	well.	Controllers	
that	are	functioning	properly	will	send	a	response	according	to	what	was	requested	
on	the	Desk	Evaluation	application	page	and	marked	with	a	check	(✓)	in	the	pass	
column.	

	
Table	1.	Unit	Testing	of	Maintained	Controllers	of	Desk	Evaluation	

No	 Controller	 Pass	
1	 view-dashboard	 ✓	
2	 view-dashboard-dosen	 ✓	
3	 view-pengumpulan-de	 ✓	
4	 view-dashboard-dosen-labriset	 ✓	
5	 view-class-metlit-student	 ✓	
6	 view-student-score	 ✓	
7	 reset-topic-status-group	 ✓	
8	 delete-score-pembimbing-student	 ✓	
9	 delete-score-reviewer-student	 ✓	
10	 evaluation-score	 ✓	
11	 view-topics	 ✓	
12	 get-nilai-proposal	 ✓	
13	 input-scores	 ✓	
14	 update-scores	 ✓	

	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1818	
	 	

As	a	comparison,	Table	2	shows	the	results	of	load	testing	or	load	testing	on	
several	existing	Desk	Evaluation	application	features	that	had	not	been	maintained.	
The	 endpoints	 being	 tested	 are	 existing	 endpoints	 that	 will	 later	 undergo	
maintenance.	

	
Table	2.	Load	Testing	of	Existing	Controllers	of	Desk	Evaluation	

No	 Controller	 Virtual	Users	
(VUs)	

Average	Request	
Time	

Success	
Rate	

1	 view-dashboard	 1000	VUs	 6	requests/s	 100%	
2	 view-class-metlit-student	 400	VUs	 3	requests/s	 100%	

	
	

Table	3.	Load	Testing	of	Maintained	Controllers	of	Desk	Evaluation	
No	 Controller	 Virtual	Users	

(VUs)	
Average	Request	

Time	
Success	
Rate	

1	 view-dashboard	 1000	VUs	 6	requests/s	 100%	
2	 view-dashboard-dosen	 400	VUs	 3	requests/s	 100%	
3	 view-pengumpulan-de	 400	VUs	 5	requests/s	 100%	
4	 view-dashboard-dosen-labriset	 40	VUs	 2	requests/s	 100%	
5	 view-class-metlit-student	 40	VUs	 3	requests/s	 100%	
6	 view-student-score	 40	VUs	 1	request/2s	 98,4%	
7	 get-nilai-proposal	 20	VUs	 1	request/s	 100%	

	
The	results	of	 load	testing	 is	shown	in	Table	3.	There	are	differences	 in	 the	

number	 of	 virtual	 users	 tested	 in	 each	 controller.	 This	 difference	 is	 because	 the	
number	of	students,	lecturers,	and	admins	does	not	have	the	same	number	so	the	
number	of	 virtual	users	 is	 adjusted	 to	 the	number	of	 each	 role.	 It	 shows	 that	 all	
endpoints	of	controllers	that	had	been	maintained	have	an	average	request	duration	
of	under	30	seconds,	which	means	that	they	have	met	the	standard	web	application	
loading	time	[16].	The	success	rate	on	all	load	testing	cases	is	between	98	and	100	
percent	 so	 the	 probability	 of	 a	 server	 experiencing	 a	 load	 failure	 is	 less	 than	 2	
percent.	Load	Testing	on	Table	2	and	Table	3	was	done	on	the	local	server.	Table	4	
shows	the	specifications	of	the	local	server.	
	

Table	4.	Local	Server	Specification	
Description	 Specification	

Operating	System	 Windows	11	
CPU	 AMD	Ryzen	5	5600H	
RAM	 16	GB	
	 	

After	 the	 maintenance	 was	 done,	 the	 source	 code	 of	 Desk	 Evaluation	 was	
analyzed	 using	 SonarQube.	 SonarQube	 is	 a	 tool	 that	 can	 check	 the	 source	 code.	
SonarQube	can	check	the	lines	of	code	and	adapt	them	to	the	programming	rules	
according	to	the	programming	language	[17].		

As	 a	 comparison,	 Figure	 8	 shows	 the	 analysis	 of	 the	 source	 code	 before	
maintenance	 from	 the	 previous	 research	 and	 Figure	 9	 shows	 the	 analysis	 of	 the	
source	 code	 after	 maintenance	 using	 SonarQube,	 where	 the	 Desk	 Evaluation	
application's	code	reliability	post-maintenance,	which	improved	to	an	A	rating	from	
its	initial	C	rating,	as	shown	in	Figure	8.	This	indicates	that	the	lines	of	code	written	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1819	
	 	

are	according	to	the	applicable	programming	rules	to	minimize	errors	in	the	Desk	
Evaluation	application.	

	

	
	

Figure	8.	Analysis	of	The	Source	Code	Before	Maintenance	[18]	

	

	
	

Figure	9.	Analysis	of	The	Source	Code	After	Maintenance	

D. Conclusion	
This	study	concludes	that	it	has	succeeded	in	improving	the	performance	of	

the	 Desk	 Evaluation	 application	 through	 maintenance	 on	 the	 back-end	 side.	
Maintenance	 includes	 changes	 to	 the	 logic	 side	of	models	 and	 controllers.	 In	 the	
model,	attributes	are	added	to	add	columns	to	tables	in	the	database.	Meanwhile,	in	
the	 controller,	 there	 have	 been	 many	 changes	 including	 the	 creation	 of	 a	 new	
controller.	Changes	to	the	old	controller	aim	to	fix	incorrect	code	and	add	missing	
code	while	creating	a	new	controller	aims	to	serve	views	or	pages	as	well	as	new	
features	proposed.	

Testing	of	features	that	have	been	repaired	shows	good	results.	Unit	testing	on	
the	controller	gives	pass	results	on	all	controllers,	which	means	the	controllers	are	
running	properly	and	according	to	the	needs	of	the	view	or	page.	

The	 results	 of	 testing	 the	 processing	 duration	 of	 the	 Desk	 Evaluation	
application	after	being	repaired	showed	satisfactory	results.	Endpoints	 that	were	
tested	have	an	average	request	duration	of	under	30	seconds	and	all	endpoints	had	
loading	rates	above	98	percent,	indicating	that	the	controllers	have	met	the	standard	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1820	
	 	

average	request	duration	[16]	and	the	probability	of	the	controller	failing	to	cope	
with	the	request	was	extremely	low.	

The	 source	 code	 from	 the	 Desk	 Evaluation	 application	 that	 has	 undergone	
maintenance	is	checked	using	SonarQube,	which	is	a	tool	that	can	check	lines	of	code	
that	have	been	maintained	with	compliance	with	programming	rules	according	to	
the	programming	language	used	[17].	The	results	show	that	the	source	code	of	the	
Desk	Evaluation	application	does	not	indicate	any	errors.	
	
E. References	
[1]	 A.	Masrat,	 H.	 Gawde,	 and	M.	 A.	Makki,	 “Software	Maintenance	Models	 and	

Processes:	 An	 Overview,”	 2021.	 [Online].	 Available:	
https://ssrn.com/abstract=3913486	

[2]	 R.	 Rani	 and	 A.	 K.	 Cheema,	 “A	 Review	 on	 Software	 Maintenance	 Cost	
Evaluation,”	no.	09,	2015,	[Online].	Available:	www.ijspr.com	

[3]	 B.	Tarika,	“A	Review	on	Importance	of	Maintenance	in	Software	Engineering,”	
vol.	3,	pp.	2617–4596,	2020,	doi:	10.31058/j.mana.2020.31002.	

[4]	 I.	Sommerville,	Software	engineering.	Pearson	Education,	2016.	
[5]	 R.	 S.	 Pressman	 and	 B.	 R.	 Maxim,	 Software	 Engineering:	 A	 Practitioner’s	

Approach,	9th	ed.,	vol.	9.	Boston:	McGraw-Hill	Education,	2020.	
[6]	 N.	Dissanayake	 and	K.	Dias,	Web-based	Applications:	 Extending	 the	 General	

Perspective	of	the	Service	of	Web.	2017.	
[7]	 S.	J.	Patel	and	P.	D.	Pancholi,	“Implementation	and	Comparison	of	MVC	Model	

in	 ASP.net	 Frameworkand	 PHP	 Framework,”	 2018.	 [Online].	 Available:	
http://ijrar.com/	

[8]	 M.	 S.	 Singh,	 “MVC	 Framework:	 A	 Modern	 Web	 Application	 Development	
Approach	 and	Working,”	 International	Research	 Journal	 of	 Engineering	and	
Technology,	2020,	[Online].	Available:	www.irjet.net	

[9]	 J.	 Shetty,	 D.	 Dash,	 and	 A.	 K.	 Joish,	 “Review	 Paper	 on	 Web	 Frameworks,	
Databases	and	Web	Stacks,”	International	Research	Journal	of	Engineering	and	
Technology,	2020,	[Online].	Available:	www.irjet.net	

[10]	 K.	 P.	 Hathwar	 and	 R.	 Ravishankar,	 “IJARCCE	 Back-End	 Web-Application	
Development	and	 the	Role	of	an	Admin,”	 International	 Journal	of	Advanced	
Research	 in	Computer	and	Communication	Engineering	ISO,	vol.	3297,	no.	9,	
2007,	doi:	10.17148/IJARCCE.2017.6911.	

[11]	 T.	 F.	 Kusumasari,	 I.	 Supriana,	 K.	 Surendro,	 and	 H.	 Sastramihardja,	
“Collaboration	model	of	 software	development,”	 in	Proceedings	of	 the	2011	
International	 Conference	 on	 Electrical	 Engineering	 and	 Informatics,	 ICEEI	
2011,	2011.	doi:	10.1109/ICEEI.2011.6021769.	

[12]	 A.	Heryana,	“Informan	dan	Pemilihan	Informan	dalam	Penelitian	Kualitatif,”	
Dec.	2018.	

[13]	 Grady.	 Booch,	 James.	 Rumbaugh,	 and	 Ivar.	 Jacobson,	 The	 unified	 modeling	
language	user	guide.	Addison-Wesley,	1999.	

[14]	 I.	Nathan	and	M.	McNeil,	Sails.js	in	Action.	Manning,	2017.	
[15]	 N.	Anwar	and	S.	Kar,	“Review	Paper	on	Various	Software	Testing	Techniques	

&	Strategies,”	Global	Journal	of	Computer	Science	and	Technology,	pp.	43–49,	
May	2019,	doi:	10.34257/gjcstcvol19is2pg43.	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 																Vol.	12,	No.	4,	Ed.	2023	|	page	1821	
	 	

[16]	 J.	D.	Meier,	C.	Farre,	P.	Bansode,	S.	Barber,	and	D.	Rea,	“Performance	Testing	
Guidance	for	Web	Applications,”	2007.	

[17]	 V.	 Lenarduzzi,	 F.	 Lomio,	 H.	 Huttunen,	 and	 D.	 Taibi,	 “Are	 SonarQube	 Rules	
Inducing	 Bugs?,”	 Jun.	 2019,	 [Online].	 Available:	
http://arxiv.org/abs/1907.00376	

[18]	 Y.	 Gianinda,	 “PENAMBAHAN	 MODUL	 PADA	 APLIKASI	 FINAL	 PROJECT	
MANAGEMENT	(TA-PROPOSAL),”	2020.	

		

	
	

	

