
Indonesian Journal of Computer Science
ISSN	2549-7286	(online)	

Jln.	Khatib	Sulaiman	Dalam	No.	1,	Padang,	Indonesia	
Website:	ijcs.stmikindonesia.ac.id	|	E-mail:	ijcs@stmikindonesia.ac.id	

Attribution-ShareAlike	4.0	International	License	 Vol.	12,	No.	4,	Ed.	2023	|	page	1611		

	
A	Comparative	Study	of	Computer	Programming	Challenges	of	Computing	and	
Non-Computing	First-Year	Students	
	
Alain	Kabo	Mbiada1,	Bassey	Isong2,	Francis	Lugayizi3	
mbidaalain@gmail.com,	bassey.isong@nwu.ac.za.	francis.lugayizi@nwu.ac.za.	
Department	of	Computer	Science,	North-West	University,	Mafikeng,	South	Africa	
	
Article	Information	 Abstract	

Submitted	:			3	Aug	2023	
Reviewed	:	 11	Aug	2023	
Accepted	:	 27	Aug	2023	

The	 learning	of	computer	programming	comes	with	unique	difficulties	 that	
vary	 among	 students	 depending	 on	 their	 backgrounds,	 learning	 methods,	
and	 objectives.	 This	 paper	 investigates	 the	 programming	 challenges	 first-
year	 students	 from	 non-computing	 at	 the	 North-West	 University,	 South	
Africa,	and	computing	backgrounds	at	the	University	of	Dschang,	Cameroon	
face.	 A	 questionnaire-based	 data	 collection	 method	 is	 utilized	 and	
categorises	 participants	 based	 on	 their	 gender,	 age,	 fields	 of	 study,	 prior	
experiences	in	mathematics,	statistics,	English,	and	programming	languages,	
lab	use/access,	 learning	 strategies,	 and	material	preferences.	The	aim	 is	 to	
identify	and	analyse	the	student's	understanding	of	 the	basic	programming	
concepts	and	the	specific	challenges	met	during	 introductory	programming	
modules.	 Analysis	 of	 the	 collected	 data	 shows	 that	 while	 a	 considerable	
percentage	of	non-computing	students	have	prior	experience	in	mathematics	
and	 English,	 they	 lack	 familiarity	 with	 programming.	 Equally,	 while	 most	
computing	 students	 are	 proficient	 in	 spoken	 English,	 they	 face	 significant	
challenges	 in	 programming,	 mathematics,	 and	 written	 English.	 Notable	
difficulties	are	experienced	in	grasping	concepts	like	recursion,	arrays,	error	
handling,	and	 function/procedure	methods.	Moreover,	a	comparative	study	
reveals	that	both	groups	of	students	encounter	similar	challenges,	however,	
non-computing	 students’	 difficulties	 are	 more	 than	 their	 computing	
counterparts.	 This	 paper,	 therefore,	 suggests	 designing	 teaching	 methods	
and	 learning	 materials	 to	 specifically	 meet	 the	 needs	 of	 non-computer	
science	 students,	 and	 enhance	 their	 understanding	 and	 proficiency	 in	
computer	programming.	
	

Keywords		

IP,	Programming	
concepts,	Programming	
challenges,	
Computing/Non-
computing	students,	
Learning.	
	
	

	 	

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1612		 	

	
A. Introduction	
								Computing	 programming	 is	 a	 core	 element	 of	 any	 introductory	 Computer	
Science	 (CS)	 module	 due	 to	 its	 effect	 on	 the	 precision	 of	 thought,	 thorough	
presentation,	 and	 concern	 for	 details.	 It	 promotes	 the	 development	 of	
computational	 thinking	 and	 problem-solving,	 encouraging	 students	 to	 explore,	
learn	 and	 reflect.	However,	 a	 vast	 body	 of	 literature	 in	 the	 field	 of	 CS	 education	
emphasizes	 that	 novices	 find	 programming	 particularly	 difficult,	 leading	 to	 high	
percentages	of	 failure	 and	dropout	 among	 them	 [1]–[3].	This	 challenge	 is	due	 to	
several	 factors	 such	 as	 the	 individual’s	 background,	 learning	 style,	 goals,	
instruction	 complexity,	 diversity	 of	 languages,	 lack	 of	 resources,	 logical	
understanding	 difficulty,	 outcomes	 uncertainty,	 etc.	 	 To	 address	 this	 challenge,	
several	researchers	and	academics	have	carried	out	numerous	studies	to	 identify	
the	 difficulties	 novice	 students	 face	 in	 introductory	 programming	 (IP)	 courses	
ranging	from	efficient	teaching	methods	to	learning	material	tools	that	could	help	
novices	 learn	better	 [1],	 [4]–[7].	However,	most	of	 these	studies	have	 focused	on	
undergraduate	 CS	 students	 and	 unfortunately,	 only	 a	 fewer	 of	 them	 have	 paid	
attention	to	non-computing	students	from	other	study	fields	who	enrolled	for	IP	as	
an	elective	module.	These	sets	of	students	are	the	worst	affected	by	the	challenge	
posed	by	programming	difficulties.	Thus,	there	is	an	urgent	need	to	also	research	
the	various	challenges	they	face	while	offering	programming	modules	as	electives.	
Moreover,	it	is	also	of	paramount	importance	that	these	studies	are	also	performed	
on	different	institutions	or	nations	to	identify	if	this	challenge	is	a	general	one	or	
unique	to	a	particular	institution	or	nation.		
								Therefore,	this	paper	comprehensively	surveyed	to	identify	the	challenges	that	
still	 exist,	 and	 students	 faced	 despite	 the	 several	 interventions	 put	 in	 place	 to	
enhance	 the	 learning	 of	 programming	 in	 IP	 modules.	 This	 was	 achieved	 by	
designing	 a	 quantitative	 survey	 via	 a	 questionnaire	 that	 targeted	 first-year	
students	in	the	North-West	University	(NWU)’s	Faculty	of	Natural	and	Agricultural	
Sciences	 (FNAS),	 South	 Africa,	 and	 the	 first-year	 computing	 students	 in	 the	
Department	of	CS,	University	of	Dschang	(UDS),	Cameroon.	We	targeted	the	NWU	
students	who	are	not	pure	computing	students	but	double	major	students	offering	
CS	modules	 alongside	 other	 disciplines	 such	 as	Agricultural,	 Geography,	 Physics,	
Mathematics,	Chemistry,	Biology,	etc.	The	objective	of	this	study	was	to	identify	the	
students’	background	profiles,	teaching	and	learning	conditions,	learning	material	
preferences,	 and	 the	 challenges	 faced	 in	 their	 IP	 modules.	 in	 addition,	 it	 was	
designed	to	identify	if	the	programming	challenge	is	institution-based,	or	a	general	
challenge	 faced	 by	 computing	 and	 non-computing	 students.	 The	 questionnaires	
were	distributed	to	participants,	and	data	was	collected	and	analyzed.	The	analysis	
of	 the	 results	 and	 comparative	 study	 of	 these	 two	 groups	 on	 programming	
challenges	led	to	several	recommendations	for	the	design	of	an	effective	teaching	
method	and	learning	environment	for	non-computing	students.	
								The	 paper	 is	 structured	 as	 follows:	 Section	 1	 presents	 the	 background	
information,	Section	2	presents	some	related	work,	Section	3	describes	the	survey	
methodology,	 Section	 4	 presents	 the	 survey	 results	 and	 the	 analysis,	 Section	 5	
presents	 the	 comparative	 analysis,	 Section	 6	 discusses	 the	 results	 and	 provides	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1613		 	

some	 recommendations,	 Section	 7	 discusses	 the	 validity	 threats,	 and	 Section	 8	
concludes	the	paper.	
	
B. Lterature	Review	

	
1. Computer	programming	

Computer	programming	is	a	process	of	creating	computer-readable	and	executable	
instructions	to	solve	a	problem.	It	incorporates	a	set	of	skillful,	logical,	and	critical	
thinking	 activities	 that	 range	 from	 analysis,	 and	 design,	 to	 maintaining	 the	
program	 [8].	 Creating	 the	 instructions	 involves	 using	 languages	 such	 as	 Java,	 C,	
C++,	 Python,	 PHP,	 JavaScript,	 etc.	 on	 tools	 such	 as	 text	 editors,	 integrated	
development	environment	(IDE),	and	so	on.	Computing	programming	which	plays	
a	critical	role	in	the	advancement	of	technology,	has	a	wide	range	of	applications,	
and	 its	 skill	 has	 become	 a	 core	 competence	 of	 any	 computing	 and	 related	
computing	 students	 as	 it	 allows	 them	 to	 develop	 software	 solutions	 and	 create	
innovative	 technologies.	 With	 the	 increasing	 demand	 for	 technology	 in	 various	
industries,	the	ability	to	code	has	become	an	essential	skill.	However,	its	activities	
are	 complex,	 requiring	 logical	 thinking,	 problem-solving	 skills,	 and	 attention	 to	
detail.	Thus,	understanding	programming	 logic	has	been	 considered	difficult	 and	
often	poses	a	 source	of	 frustration	 to	 first-year	 students,	 sometimes	 leading	 to	a	
lack	of	motivation	for	learning	and	failure	and	drop-out.	The	challenges	in	grasping	
IP	 modules	 may	 have	 various	 origins	 [9]–[12]	 such	 as	 unsuitable	 teaching	
strategies,	 lack	 of	 attention	 to	 novices’	 initial	 backgrounds,	 use	 of	 expert-level	
content	explanation,	instructor	skill	in	the	subject,	learners	being	busy	with	other	
courses,	 students	 are	 used	 to	 memorizing	 instead	 of	 understanding,	 large	 class	
size,	 difficulty	 in	 combining	 programming	 concepts	 to	 solve	 programming	
problems,	mix-up	of	native	 languages	and	programming	syntaxes,	use	of	 line-by-
line	methods	 for	 solutions,	 short	 module	 duration,	 absence	 of	 computer	mental	
model	for	novices,	etc.	Though	programming	is	hard,	it	is	not	impossible	to	learn,	
and	being	aware	of	the	sources	of	the	challenge	is	a	sine	qua	non	to	designing	and	
implementing	a	good	programming	teaching	and	learning	strategies.	
	

2. Related	works	
									This	section	presents	some	of	the	studies	conducted	over	the	years	to	identify	
the	 difficulties	 encountered	 by	 beginners	 in	 IP	 modules.	 Lahtinen	 et	 al.	 [1]	
surveyed	 to	 identify	 the	 difficulties	 encountered	 and	 perceived	 by	 students	 and	
teachers	 during	 object-oriented	 (OO)	 or	 imperative	 programming	 courses.	 They	
found	that	students	needed	help	with	program	construction	and	error	correction.	
Recursion,	arrays,	pointers,	error	handling,	and	the	use	of	libraries	were	found	to	
be	the	most	difficult	basic	programming	concepts	experienced	by	students.	Mainly,	
working	with	 C++,	 an	 OO	 programming	 language,	Milne	 and	 Rowe	 [4]	 surveyed	
second-year	 students	 and	 instructors	 on	 individual	 language	 concepts	 they	
struggle	 to	 learn	 and,	 consequently,	 to	 teach,	 and	 found	 that	 students	have	poor	
mental	model	 representation	 of	what	 happens	 during	 program	 execution.	 In	 the	
same	 vein,	 Thomasson	 et	 al.	 [5]	 studied	 the	 difficulties	 beginners	 faced	 in	
designing	an	OO	class.	They	 identified	 two	common	errors,	namely	unreferenced	
classes	and	problems	linked	to	class	attributes	and	cohesion.	In	addition,	Tan	et	al.	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1614		 	

[6]	 surveyed	 undergraduate	 students	 enrolled	 in	 a	 computing	 programming	
course	at	a	Malaysian	university,	 to	 identify	 the	challenges	they	 faced	 in	 learning	
the	 programming	 language	 and	 their	 perceptions	 of	 how	 the	 learning	 should	
proceed	naturally.	Furthermore,	Piteira	et	Costa	[7]	identified	the	basic	concepts	of	
IP	 modules	 and	 organized	 them	 from	 a	 low	 to	 a	 high	 level	 of	 students’	
understanding.	 The	 concepts	 with	 a	 low	 comprehension	 level	 are	 arrays,	
structured	 data	 types,	 recursion,	 pointers	 and	 references,	while	 concepts	with	 a	
high	 level	 of	 comprehension	 are	 selection	 structures,	 variables,	 loop	 structures,	
operators	and	precedence.		
								The	 above	 highlighted	 some	 of	 the	 studies	 conducted	 to	 elicit	 programming	
difficulties	 in	 students.	 While	 these	 studies	 in	 [1],[4-7]	 focus	 on	 computing	
students	and	specific	institutions,	our	study	is	designed	to	identify	the	challenges	
both	computing	and	computing	students	face	and	across	institutions.	

	
C. Methodology	

This	section	presents	the	methdodlogy	and	research	design	of	this	study.		
Research	 design	 and	 participants:	 In	 this	 paper,	 we	 conducted	 a	 comprehensive	
survey	 based	 on	 a	 quantitative	 research	 design	methodology	 using	 a	 structured	
questionnaire.	The	study	was	intended	to	answer	the	following	research	questions	
(RQs)	which	is	to	identify	the	challenges	students	face	in	computing	programming	
and	how	unique	the	challenges	are	across	institutions.	The	RQs	include:	

RQ1:	 What	 are	 the	 attributes	 possessed	 by	 computing	 and	 non-computing	
students	offering	IP	modules	and	what	challenges	do	they	face?		
RQ2:	 How	 are	 these	 challenges	 affect	 computing	 and	 non-computing	
students?	

The	 target	 population	 included	 first-year	 students	 of	 FNAS	 from	 NWU,	 South	
Africa,	 as	 non-computer	 science	 students	 (Group	 1)	 which	 comprise	 two	
campuses:	Mafikeng	and	Potchefstroom,	and	the	first-year	CS	students	from	UDS,	
Cameroon,	(Group2).	The	study	adopted	a	cross-sectional	design	method	which	led	
to	a	sample	size	of	260	respondents	where	81%	are	from	NWU	and	19%	from	UDS.		
	
Data	collection	and	analysis:	For	logistical	reasons,	we	conducted	both	online	and	
face-to-face	 surveys,	 and	 the	 questionnaires	 used	 for	 data	 collection	 were	
distributed	 to	 the	 participants:	 NWU	 Mafikeng	 campus	 (face-to-face),	 NWU	
Potchefstroom	campus	(online),	and	UDS	(online).	The	questionnaire	was	designed	
with	 six	 sections,	 each	 having	 a	 set	 of	 structured	 questions	which	 are	 short	 and	
precise	 to	 reduce	 the	 risk	 of	 misunderstanding.	 Section	 A	 identifies	 important	
information	 about	 students’	 backgrounds,	 Section	 B	 assesses	 students'	 learning	
situation	 preferences	 in	 programming	 modules,	 Section	 C	 discusses	 students'	
preferences	 for	 learning	materials,	Section	D	 investigates	students'	knowledge	of	
core	 programming	 concepts,	 Section	 E	 examines	 students'	 general	 perception	 of	
programming	 issues,	 and	 Section	 F	 looks	 at	 the	 different	 programming	 concepts	
taught	 at	 the	 beginning	 of	 learning	 programming.	 The	 study	 used	 an	 exhaustive	
approach	 for	 building	 responses	 to	 questions	 and	 the	 questions	 required	
participants	to	give	answers	based	on	the	following	ordinal	scale	values:	{Poor	(1),	
Insufficient	(2),	Average	(3),	Good	(4),	Very	good	(5)}.	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1615		 	

							Moreover,	 the	data	collected	were	analyzed	using	descriptive	statistics	on	the	
SPSS	 software	 tool,	 and	 the	 results	were	 presented.	 The	 results	 of	 sections	A,	 B,	
and	C	of	the	questionnaire	will	answer	RQ1,	while	the	analysis	of	the	data	obtained	
in	 sections	D,	 E,	 and	 F	will	 answer	 RQ2.	 The	 IP	modules	 of	 interest	were	 C	 and	
Python	programming	languages	modules.		
	
Ethical	 considerations:	 Before	 data	 collection	 from	 NWU	 students,	 the	 ethics	
application	was	submitted	and	approved,	and	a	certificate	of	ethics	was	issued	by	
the	FNAS	ethics	committee.	This	signifies	the	study’s	commencement	and	contrast;	
no	requirements	were	made	before	data	collection	from	NWU	students.	

	
D. Result	and	Analysis	

This	section	presents	the	results	of	research	and	their	analysis.	
	

1. Participant	characteristics	
Background	 profile:	 This	 paper	 studies	 the	 general	 background	 of	 both	 groups'	
participants	 relative	 to	 gender,	 prior	 programming,	 maths	 and	 English	
experiences,	lab	accessibility	and	usage,	and	course	duration,	which	are	important	
success	 factors	 in	 IP	 courses	 [13]–[22].	 The	 knowledge	 of	 these	 features	 can	 be	
helpful	 in	the	design	of	a	novel	teaching	method	and	learning	tools	that	meet	the	
needs	of	these	students.	The	surveyed	population	includes	both	males	(72.3%)	and	
females	 (27.3%),	 largely	 aged	 between	 18	 and	 20	 years	 at	 57.7%.	 Over	 52%	 of	
participants	felt	that	the	time	allocated	to	the	IP	modules	was	insufficient,	and	67%	
have	 no	 prior	 programming	 experience.	 For	 Group	 1	 specifically,	 Fig.	 1.	 depicts	
their	 distribution	 into	 respective	 fields.	 The	 analysis	 reveals	 that	 most	 Group	 1	
respondents	 (52.2%)	 expressed	 at	 least	 an	 average	 level	 in	 mathematics,	 while	
over	50%	from	Group	2	had	at	most	an	insufficient	level	in	mathematics	as	shown	
in	 Fig.	 2.	 The	 information	 demonstrates	 that	 students	 offering	 these	 IP	modules	
were	 young	 and	 tend	 to	 have	 very	 diverse	 experience	 levels,	 making	 it	
cumbersome	 to	 plan	 instruction	 in	 a	 way	 that	 is	 engaging	 and	 useful	 for	 all	
learners.	

	
Figure1.	Distribution	of	NWU	participants	by	field	of	study	

	

CS and
Chemistry

4%
CS and

Electronics
16%CS and

Geography
19%CS and

Mathematics
21%

CS and Physic
7%

Information
Technology

21%

Other
12%

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1616		 	

	
Figure	2.	Participants	backgound	information	

	
Learning	situations	preferences:	The	analysis	of	results	in	Fig.	3	shows	that	most	of	
the	 Group	 1	 respondents	 learn	 less	 during	 lecture	 sessions	 and	 are	 not	 self-
confident	 when	 it	 comes	 to	 studying	 alone	 and	working	 alone	 on	 programming	
assignments.	 They	 enjoyed	 the	 other	 learning	 situations.	 Similarly,	 Group	 2	
respondents	 learned	 also	 less	 during	 lecture	 sessions,	 however,	 they	 are	 self-
confident	to	learn	alone	and	enjoy	other	learning	situations.	Some	studies	[1],	[6]	
also	 identified	 lecture	 sessions	 as	 activities	 that	 decrease	 students’	 commitment.	
This	 highlights	 the	 issue	 of	 teaching	methods	 that	 interest	 and	 engage	 Group	 1	
respondents	in	their	learning	activities	and	develop	self-confidence.	
	
	

	
Figure	3.	Students’	situational	learning	preferences	

	
Learning	 materials	 preferences:	 Analysis	 of	 results	 in	 Fig.	 4	 reveals	 that	 the	
majority	 of	 respondents	 find	 programming	 textbooks,	 lecture	 notes,	 and	
PowerPoint	 slides	 less	 useful	 than	 other	 learning	 materials.	 Programming	
textbooks	have	also	been	highlighted	in	other	studies	such	as	[1],	[23]	as	being	less	
useful	to	students.	Thus,	teaching	methods	and	learning	tools	should	then	be	more	
innovative	 in	 terms	 of	 visualization	 and	 interaction,	 enabling	 students	 to	 easily	
understand	programming	texts	and	manuals	used	in	or	out	of	the	classroom.		

0
5

10
15
20
25
30
35
40
45
50

Le
ve

l i
n

M
at

he
m

at
ic

s

Le
ve

l i
n

w
rit

te
n

En
gl

is
h

Le
ve

l i
n

re
ad

in
g

En
gl

is
h

Le
ve

l i
n

St
at

is
tic

s

C
om

pu
te

r L
ab

 a
cc

es
s

C
om

pu
te

r L
ab

 u
se

s

Le
ve

l i
n

M
at

he
m

at
ic

s

Le
ve

l i
n

w
rit

te
n

En
gl

is
h

Le
ve

l i
n

re
ad

in
g

En
gl

is
h

Le
ve

l i
n

St
at

is
tic

s

C
om

pu
te

r L
ab

 a
cc

es
s

C
om

pu
te

r L
ab

 u
se

s

NWU UDS

Poor (%)

Insufficient (%)

Average (%)

Good (%)

Very good (%)

0,0 50,0 100,0 150,0 200,0 250,0

Poor (%)
Insufficient (%)

Average (%)
Good (%)

Very good (%)
Poor (%)

Insufficient (%)
Average (%)

Good (%)
Very good (%)

N
W

U
U

D
S

During lectures During exercise sessions in small groups

During practical sessions While studying alone

While working alone on programming coursework While exploring online tutorials

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1617		 	

	

	
Figure	4.	Students’	learning	materials	preferences	

	
2. Difficulties	faced	in	learning	IP	modules	

Based	 on	 the	 IP	 modules	 considered	 in	 this	 study,	 C	 and	 Python	 programming	
languages,	 the	 analysis	 of	 the	 results	 in	 Fig.	 5	 illustrates	 that	most	 issues	 of	 this	
part	were	 rated	 at	most	 "Insufficient"	 by	 the	 respondents.	 They,	 therefore,	 faced	
the	same	difficulties	as	most	programming	beginners.	Other	studies	came	out	also	
with	 similar	 results	 [1],	 [6],	 [23].	A	well-designed	 teaching	 strategy	and	 learning	
tools	 are	 then	 needed	 to	 help	 these	 students	 grasp	most	 of	 these	 programming	
issues.		
	

0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0 45,0 50,0

Programming textbook

Lecture notes and PowerPoint slides

Exercises and answers

Example of programs

Interactive visualizations content and exercises

Online resources or tutorials (e-learning platforms,…

Reuse code

Programming textbook

Lecture notes and PowerPoint slides

Exercises and answers

Example of programs

Interactive visualizations content and exercises

Online resources or tutorials (e-learning platforms,…

Reuse code
N

W
U

U
D

S

Good (%) Average (%) Insufficient (%) Poor (%)

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1618		 	

	
Figure	5.	Students’	geeneral	perception	of	IP	modules	

	
On	 the	 other	 hand,	 the	 analysis	 of	 results	 in	 Fig.	 6	 in	 F	 depicts	 that	 the	
understanding	 of	 core	 programming	 concepts	 in	 most	 cases	 is	 at	 most	 rated	
"Insufficient"	for	most	Group	1	respondents.	The	comparison	operator	concept	was	
the	only	one	rated	as	"Average",	with	66%	for	this	group.	Respondents	of	Group	2	
rated	 most	 of	 the	 concepts	 at	 least	 "average".	 The	 only	 concepts	 rated	 as	
"insufficient"	 at	 most	 by	 this	 group	 of	 respondents	 were	 recursion	 and	 error	
handling.	 The	 level	 of	 appreciation	 of	 the	 basic	 programming	 topics	 is	 relatively	
weak	 for	Group	1	 respondents	 and	 the	 difficulties	 observed	 are	 similar	 to	 those	
encountered	 by	 most	 beginners.	 When	 going	 into	 detail,	 the	 following	
programming	 concepts	 appear	 to	 be	 more	 difficult	 for	 both	 groups:	 recursion,	
arrays,	 and	 error	 handling.	 Some	 studies	 also	 presented	 recursion	 and	 error	
handling	as	challenging	concepts	 in	programming	[1],	 [6],	 [7],	 [23].	These	results	
detail	 most	 of	 the	 topics	 that	 make	 learning	 programming	 difficult	 for	 these	
students	 who	 need	 appropriate	 strategies	 during	 class	 by	 the	 instructor	 to	
improve	their	learning.	
								Furthermore,	 participants	 were	 also	 asked	 to	 select	 the	 concepts	 that	 were	
discussed	 in	 class	when	 they	were	 first	 learning	 to	program.	The	 analysis	 of	 the	
corresponding	results	in	Fig.	6	reveals	that	some	respondents	could	not	remember	
certain	core	programming	concepts	which	might	highlight	their	lack	of	interest	or	
commitment	to	the	module	since	there	is	no	way	for	example,	that	a	programming	
course	could	be	taught	without	variables	being	introduced.		

0,0 10,0 20,0 30,0 40,0 50,0 60,0

Poor (%)

Insufficient (%)

Average (%)

Good (%)

Very good (%)

Poor (%)

Insufficient (%)

Average (%)

Good (%)

Very good (%)

N
W

U
U

D
S

Rate your ability to use the programming
IDE (C7)

Rate your ability to analyze and predict
the behaviour of a given program (C6)

Rate your ability to debug a program
when an error is generated after
compilation (C5)

Rate your understanding of the syntax of
the programming language (C4)

Rate your ability in organizing and
deploying effort and time to think to solve
problems (C3)

Rate your ability in using fundamental
concepts in a specific order to write a
program that works and solves a given
task (C2)
Rate your understanding of the
fundamental programming concepts (C1)

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1619		 	

	
	

	
Figure	7.	Frequency	of	selection	of	some	core	programming	concepts	
	

3. Comparative	analysis	
							To	 determine	 the	 level	 of	 effect	 the	 challenges	 have	 on	 both	 non-computing	
and	 computing	 students	 across	 NWU	 and	 UDS	 and	 answer	 RQ2,	 this	 paper	
performed	 a	 comparative	 study	 of	 the	 data	 collected	 on	 the	 two	 groups	 and	
analysed	 the	 results.	 The	 data	 consists	 of	 the	 difficulty	 levels	 of	 respondents	 in	
both	groups	on	the	variables	D1,	D2,	D3,	D4,	D5,	D6,	D7,	D8,	and	D9	presented	in	
Fig.	6.	
								To	 determine	 the	 level	 of	 significance	 of	 the	 challenges,	 we	 formulated	 and	
tested	 hypotheses	 based	 on	 the	 understanding	 of	 each	 programming	 concept	 as	
shown	 in	 Fig.	 6.	 The	 null	 hypotheses	 used	 in	 assessing	 the	 	 significance	 of	 the	
equality	of	respondents'	difficulties	levels	in	the	two	groups	(i.e.	the	difficulty	level	

0 50 100 150 200 250

Variables

Comparison operators

Loop structures

Sequential and conditional structure

Arrays

Functions and procedure

Input/Output handling

Recursion

D1: Variables; D2: Comparison operator; D3: Loop structures; D4: Sequential and conditional structure; D5: Input/output
instructions; D6: Functions and procedures or Methods; D7: Recursion; D8: Arrays; D9: Error handling

Figure	6.	Students’	understanding	of	some	core	programming	concepts	
	

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

D1 D2 D3 D4 D5 D6 D7 D8 D9 D1 D2 D3 D4 D5 D6 D7 D8 D9

NWU UDS

Poor (%) Insufficient (%) Average (%) Good (%) Very good (%)

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1620		 	

on	any	concept	is	the	same	for	both	non-computing	and	computing	students)	are	
as	follows	respectively:	

H01:	µD1	=	0,	H02:	µD2	=	0,	H03:	µD3	=	0,	H04:	µD4	=	0,	H05:		µD5	=	0,	H06:	µD6	=	0,	
H07:	µD7	=	0,	H08:	µD8	=	0,	and	H09:	µD9	=	0.	

						Furthermore,	the	formulated	hypotheses	were	tested	on	the	SPSS	software	tool	
using	the	Mann-Whitney	U-test	technique	for	the	two	independent	groups.	Due	to	
the	 percentages	 involved	 in	 the	 groups,	 we	 randomly	 selected	 49	 respondents	
from	Group	1	to	match	the	number	in	Group	2.	The	variables	considered	showed	a	
non-normal	 distribution,	 which	 was	 confirmed	 by	 the	 Shapiro-Wilk	 Test	 and	
applied	α	=	0.05	significance	level	where	p-value,	ρ	>	0.05	will	be	accepted.		
	

Table	1.	Hypotheses	testing	results	
 D1 D2 D3 D4 D5 D6 D7 D8 D9
Mann-Whitney
U

772.500 965.000 661.500 846.500 879.000 804.000 611.000 543.000 852.000

Z-index -3.198 -1.747 -4.024 -2.640 -2.398 -3.017 -4.599 -4.924 -2.639
P-value
Asymptotic.
Sig.

0.001 0.081 0.000 0.008 0.016 0.003 0.000 0.000 0.008

						Table	 1	 presents	 the	 results	 of	 the	 Mann-Whitney	 U-test	 and	 the	 analysis	 of	
these	results	shows	that	for	the	variable	D1,	the	H01	is	rejected,	as	ρ=0.001	<	0.05.	
This	 means	 that	 there	 is	 a	 significant	 difference	 between	 both	 groups.	 The	 CS	
students	 at	 UDS	 (Group	 2)	 expressed	 fewer	 difficulties	 than	 non-CS	 students	 at	
NWU	(Group	1),	as	Group	1	has	a	Mean	Rank	of	T1=44.77	and	Group	2	has	a	Mean	
Rank	 of	 T2=58.23.	 For	 the	 comparison	 operators	 variable	 (D2),	 H02	 is	 accepted	
since	ρ=0.082	>	0.05,	 indicating	 that	 the	 level	of	difficulties	 is	 approximately	 the	
same	for	both	groups.	For	 the	rest	of	 the	variables,	we	achieved	ρ	<	0.05	 in	each	
which	signifies	the	rejection	of	the	following	H03,	H04,	H05,	H06,	H07,	H08,	and	H09.	Thus,	
the	 level	 of	 difficulty	 of	 Group	 1	 respondents	 is	 higher	 than	 that	 of	 Group	 2	
respondents	 in	 terms	 of	 the	 following	 basic	 programming	 concepts:	 loop	
structures,	 sequential	 and	 conditional	 structures,	 input/output	 instructions,	
functions	 and	 procedures	 or	 methods,	 recursion,	 arrays	 and	 error	 handling,	
respectively.	 These	 results	 are	 perfectly	 in	 line	with	 those	 presented	 above	 and	
further	 confirm	 that	 computing	 students	 encounter	 fewer	 difficulties	 than	 non-
computer	science	students	in	IP	modules.		
	
E. Discussion	
								The	 survey	 results	 from	 the	 background	 profile	 confirmed	 that	 NWU	
respondents	are	 from	different	 fields	of	 study	and	correspond	 to	non-computing	
students.	 On	 the	 other	 hand,	 the	 mathematics	 and	 English	 experiences	 they	
expressed	did	not	guarantee	their	performance	in	the	module,	given	the	difficulties	
expressed	 and	 identified,	 which	 are	 in	 contradiction	with	 some	 studies	 detailed	
here	 [13],	 [15],	 [24]	 that	 have	 confirmed	 these	 elements	 as	 success	 factors	 in	
programming	courses.	We	suspect	they	overestimated	their	level	in	mathematics.	
They	may	also,	like	most	beginners,	be	confused	between	the	English	language	and	
the	 syntax	 of	 the	 programming	 language	 [11].	 By	 contrast,	 the	 lack	 of	 prior	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1621		 	

programming	experience	expressed	in	the	majority	of	cases	is	consistent	with	the	
fact	 that	 they	 are	 struggling	 and	 confirms	 some	 studies	 detailed	 here	 [16],	 [17].	
The	core	programming	concepts	are	a	challenge	for	most	of	these	respondents	as	
for	 most	 other	 beginners	 as	 well.	 Most	 challenges	 reported	 in	 this	 study	 are	
recursion,	 arrays,	 and	 error	 handling	 and	 were	 also	 confirmed	 in	 the	 previous	
studies	 [1],	 [6],	 [23].	 These	 difficulties	 were	 also	 observed	 among	 Group	 2	
respondents,	 most	 of	 whom	 had	 no	 prior	 programming	 experience,	 and	 the	
majority	of	whom	expressed	an	"Insufficient"	 level	of	mathematics,	 statistics,	and	
written	English,	as	well	as	insufficient	access	to	and	use	of	laboratories.	However,	
using	 the	 Mann-Whitney	 U-test	 technique	 to	 compare	 these	 two	 groups,	 we	
observed	 that	 Group	 2	 respondents	 expressed	 fewer	 difficulties	 with	 basic	
programming	 concepts	 than	 the	 non-computing	 students.	 Note	 that	 the	 most	
difficult	 basic	 programming	 concepts	 remain	 the	 same	 as	 those	 expressed	 by	
Group	 1	 participants.	 This	 means	 that	 these	 concepts	 require	 special	 attention	
from	the	instructor.	Therefore,	non-computing	students	cannot	be	assimilated	into	
CS	students	in	terms	of	teaching	approach	and	learning	materials	tools.		
										Thus,	 this	 study	 assumes	 that	 they	 need	 specific	 teaching	 approaches	 and	
learning	materials	 to	 improve	 their	motivation,	 engagement,	 and	performance	 in	
IP	 courses.	 Elsewhere,	 these	 challenges	 observed	 can	 be	 explained	 by	 the	
insufficient	 time	devoted	 to	 IP	modules,	 as	pointed	out,	 and	by	 the	 respondents’	
lack	 of	 motivation	 and	 engagement.	 Indeed,	 most	 respondents	 reported	 being	
unable	to	well	organize	and	deploy	effort	and	time	to	think	to	solve	programming	
problems	 (see	 Fig.	 6),	 and	 some	 of	 them	 did	 not	 be	 able	 to	 recall	 certain	 core	
programming	concepts.	Nevertheless,	all	students	of	IP	courses	must	be	aware	of	
them	and	should	master	these	concepts.	They	should	always	be	taught,	regardless	
of	the	programming	paradigm	engaged,	whether	it	is	imperative	or	object-oriented	
[7].	 Moreover,	 the	 results	 of	 the	 survey	 on	 learning	 situations	 and	 learning	
material	 preferences	 revealed	 participants’	 disregard	 for	 lecture	 sessions	 on	 the	
one	hand,	 and	 for	programming	manuals	 and	PowerPoint	 slides	on	 the	other,	 as	
also	noted	in	other	studies	detailed	here	[1],	[23].	The	teaching	strategies	could	be	
an	issue	as	well	as	students'	motivation	and	engagement.	A	novel	teaching	strategy	
must	 therefore,	 take	 into	 consideration	 respondents'	 interest	 in	 interaction	
expressed	 through	 practical	 sessions	 and	 collaborative	 programming	 which	 can	
have	 a	 good	 impact	 on	 students'	 performance	 in	 programming	 as	 confirmed	 in	
some	studies	[25]–[28].		
								Again,	 NWU	 respondents	 are	 not	 self-confident	 when	 it	 comes	 to	 studying	
alone	 compared	 to	 UDS	 participants.	 Still,	 the	 teachers	 will	 provide	 them	 with	
appropriate	 learning	 material	 tools	 such	 as	 online	 tutorials	 with	 interactive	
content	 and	 assignments	 that	 correspond	 to	 their	 background	 profile	 as	well	 as	
exercises	and	answers,	 reuse	code,	and	examples	of	programs.	The	new	teaching	
method	will	 be	 designed	 to	 give	 students	 time	 to	work	 on	 their	 own	during	 the	
course	and	to	develop	their	self-efficacy	and	self-confidence.	The	learning	material	
tools	 must	 also	 be	 easily	 integrated	 into	 the	 teaching	 practices	 for	 direct	
instruction	and	to	enable	students	 to	discover	concepts,	uncover	knowledge,	and	
put	 skills	 into	practice.	Moreover,	 for	 these	 students,	we	 recommend	a	 cognitive	
teaching	 approach,	 rather	 than	 the	 constructivism-based	 approach	 that	 has	
inspired	 many	 IP	 teaching	 methods	 [29],	 as	 most	 of	 them	 have	 no	 prior	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1622		 	

programming	 experience,	 need	 quality	 guidance	 from	 their	 instructors,	 and	 lack	
in-depth,	 well-organized	 necessary	 knowledge	 to	 implement	 effective	 problem-
solving	processes.	The	teaching	method	must	then	prepare	students	by	defining	a	
quality	 strategy	 for	 each	 basic	 programming	 concept,	 whether	 the	 instructor	
wishes	 to	practice	 collaborative	or	 individual	 learning.	The	 lecture	 time	must	be	
capitalized	 and	 captured	 as	 much	 as	 possible	 student’s	 attention,	 as	 non-
computing	 students	 are	 busy	 with	 other	 subjects	 that	 have	 nothing	 to	 do	 with	
computing	and	find	it	hard	to	manage	their	time	and	effort	to	solve	programming	
problems.	Also,	to	reduce	non-computing	students’	frustration	and	capture	more	of	
their	attention,	and	thus,	improve	their	debugging	skills,	the	teaching	method	and	
learning	material	must	include	students’	misconceptions	about	programming	and	
how	 experts’	 reason	 to	 solve	 programming	 problems.	 These	measures	will	 then	
prevent	and	avoid	them	to	make	the	same	mistakes	as	other	beginners	or	experts.	

	
F. Validity	Threats	

In	 the	 survey	 conducted,	 it	 was	 not	 possible	 to	 collect	 more	 data	 from	 all	
students,	especially	from	foundation	students	at	the	NWU.	Both	the	foundation	and	
the	first-year	students	attend	the	same	module	given	at	different	time	frames	and	
with	different	instructors.	Moreover,	students	at	the	NWU's	Vaal	campus	were	not	
considered	 and	 the	 design	 of	 the	 questions	 could	 negatively	 impact	 the	 findings	
and	 their	 generalization.	 However,	 some	 measures	 were	 taken	 to	 minimize	 the	
threats.	 We	 conducted	 comparative	 studies	 to	 sustain	 the	 generalization	 of	 the	
results.	Moreover,	to	guarantee	the	reliability	of	data	and	avoid	response	bias,	the	
questions	were	made	simple	for	ease	of	comprehension.	Furthermore,	to	eliminate	
misunderstanding,	 module	 instructors	 provided	 some	 explanations	 during	 the	
distribution,	and	the	participants	were	informed	to	answer	with	the	most	sincerity	
without	 fear.	 They	 were	 not	 forced	 to	 respond,	 and	 to	 prevent	 them	 from	
answering	more	than	once,	only	one	questionnaire	paper	was	given	to	each	for	the	
face-to-face	survey.	For	the	online	survey,	students	were	not	allowed	to	answer	the	
survey	more	 than	 once	 using	 the	 same	 computer,	 and	 the	 link	was	 sent	 to	 their	
WhatsApp	group	by	the	teachers	with	the	necessary	 instructions.	The	analysis	of	
results	 showed	 that	 all	 the	 questions	 were	 answered	 by	 all	 participants	 and	
included	all	the	group	ages	representative	of	the	population.	We	are	confident	the	
exclusion	of	Foundation	students	will	not	adversely	affect	the	findings	presented.	

	
G. Conclusion	
								This	 paper	 described	 key	 characteristics	 of	 the	 first-year	 non-CS	 students	 of	
the	Faculty	of	Natural	 and	Agricultural	 Sciences,	 of	 the	North-West	University	 in	
South	 Africa,	 and	 first-year	 CS	 students	 of	 the	 Department	 of	 CS,	 University	 of	
Dschang,	 Cameroon,	who	 attend	 IP	 courses.	 This	 population	 includes	males	 and	
females,	aged	between	17	and	20	years.	NWU	respondents	are	from	various	fields	
such	 as	 computer	 biology,	 computer	 geography,	 etc.,	 with	 good	 experiences	 in	
English	and	Mathematics,	but	weak	experiences	in	programming.	The	study	found	
that	 NWU	 respondents	 are	 not	 self-confident	 when	 it	 comes	 to	 studying	 alone.	
Respondents	 of	 the	 two	 groups	 learn	 less	 programming	 during	 lectures	 session	
and	 while	 working	 on	 assignments	 and	 they	 learn	 better	 in	 the	 other	 learning	
situations	 presented,	 such	 as	 group	 work,	 practical	 sessions,	 etc.	 Similarly,	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1623		 	

programming	 books	 and	 PowerPoint	 slides	 are	 different	 from	 their	 preferred	
learning	materials,	unlike	others	such	as	online	tutorials,	reuse	code,	the	example	
of	programs,	etc.	Their	first	programming	languages	were	C	and	Python,	and	they	
faced	 programming	 problems	 like	 those	 of	 most	 beginners,	 as	 described	 in	 the	
literature,	 but	 with	 much	 more	 difficulties	 than	 some	 CS	 beginners.	 Those	
difficulties	 include	 debugging,	 deployment	 effort	 and	 time,	 understanding	 basic	
programming	 concepts,	 etc.	 Furthermore,	 most	 programming	 core	 concepts	 are	
also	a	challenge	for	most	beginners.	The	following	are	the	most	difficult	recursion,	
arrays,	and	error	handling,	and	reveal	that	the	results	of	this	study	match	up	well	
with	 the	 main	 findings	 of	 other	 researchers	 on	 the	 subject.	 Although	 these	
populations	expressed	a	certain	similarity	in	terms	of	difficulties	in	the	IP	modules,	
the	comparative	study	carried	out	using	Mann-Whitney	U-test	showed	that	NWU	
respondents	have	more	difficulties	with	programming	than	those	 from	UDS.	This	
information	was	used	to	formulate	some	recommendations	for	the	design	of	a	new	
and	efficient	pedagogical	approach	and	learning	tools	for	non-computing	students.	
For	example,	unlike	other	studies	that	have	mainly	used	the	constructivism-based	
teaching	approach,	we	recommend	that	the	new	method	of	teaching	IP	modules	to	
non-computer	science	students	be	based	on	 the	cognitivist	approach	 to	 teaching.	
That	 novel	 pedagogical	 approach	 should	 encourage	 individual	 and	 pair	
programming,	as	well	as	the	teaching	of	strategies	that	detail	the	steps	needed	to	
grasp	 a	 programming	 concept,	 as	 these	 students	 are	 young	 and	 need	 quality	
follow-up	 support.	 Moreover,	 both	 new	 pedagogical	methods	 and	 learning	 tools	
should	 include	 the	 use	 of	 results	 of	 students’	 misconceptions	 studies	 to	 reduce	
non-computing	 students’	 frustration	 and	 improve	 their	 motivation	 and	
engagement	in	the	course.	
	
H. Acknowledgment	
	 			This	 research	 was	 supported	 by	 the	 UDSC,	 the	 Department	 of	 Computer	
Science	 at	 the	 North-West	 University	 Mafikeng	 campus	 and	 the	 Council	 for	
Scientific	and	Industrial	Research	(CSIR).		

	
I. References	
[1] R.	 Ramos,	 “Thesis	 Title,”	 Ph.D	 Thesis,	 College	 van	 Dekanen,	 University	 of	

Twente,	The	Netherland,	1992.	
[2] J.	Bennedsen	and	M.	E.	Caspersen,	‘Failure	rates	in	introductory	programming:	

12	years	later’,	ACM	Inroads,	vol.	10,	no.	2,	pp.	30–36,	2019.	
[3] P.	 A.	 Kirschner,	 J.	 Sweller,	 and	 R.	 E.	 Clark,	 ‘Why	 minimal	 guidance	 during	

instruction	 does	 not	 work:	 An	 analysis	 of	 the	 failure	 of	 constructivist,	
discovery,	 problem-based,	 experiential,	 and	 inquiry-based	 teaching’,	 Educ.	
Psychol.,	vol.	41,	no.	2,	pp.	75–86,	2006.	

[4] I.	 Milne	 and	 G.	 Rowe,	 ‘Difficulties	 in	 learning	 and	 teaching	 programming—
views	of	students	and	tutors’,	Educ.	Inf.	Technol.,	vol.	7,	pp.	55–66,	2002.	

[5] B.	 Thomasson,	 M.	 Ratcliffe,	 and	 L.	 Thomas,	 ‘Identifying	 novice	 difficulties	 in	
object-oriented	design’,	ACM	SIGCSE	Bull.,	vol.	38,	no.	3,	pp.	28–32,	2006.	

[6] P.-H.	 Tan,	 C.-Y.	 Ting,	 and	 S.-W.	 Ling,	 ‘Learning	 difficulties	 in	 programming	
courses:	 undergraduates’	 perspective	 and	 perception’,	 in	 2009	 International	
Conference	on	Computer	Technology	and	Development,	IEEE,	2009,	pp.	42–46.	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1624		 	

[7] M.	Piteira	and	C.	Costa,	‘Computer	programming	and	novice	programmers’,	in	
Proceedings	 of	 the	 Workshop	 on	 Information	 Systems	 and	 Design	 of	
Communication,	2012,	pp.	51–53.	

[8] A.	Robins,	J.	Rountree,	and	N.	Rountree,	‘Learning	and	teaching	programming:	
A	review	and	discussion’,	Comput.	Sci.	Educ.,	vol.	13,	no.	2,	pp.	137–172,	2003.	

[9] R.	 Horváth	 and	 S.	 Javorskỳ,	 ‘New	 teaching	 model	 for	 Java	 programming	 subjects’,	
Procedia-Soc.	Behav.	Sci.,	vol.	116,	pp.	5188–5193,	2014.	

[10] N.	Salleh,	M.	S.	 I.	Abdullahi,	A.	Nordin,	and	A.	A.	Alwan,	 ‘Cloud-based	learning	
system	 for	 improving	 students’	 programming	 skills	 and	 self-efficacy’,	 J.	 Inf.	
Commun.	Technol.,	vol.	17,	no.	4,	pp.	629–651,	2018.	

[11] N.	 Shi,	 Z.	 Min,	 and	 P.	 Zhang,	 ‘Effects	 of	 visualizing	 roles	 of	 variables	 with	
animation	and	IDE	 in	novice	program	construction’,	Telemat.	 Inform.,	vol.	34,	
no.	5,	pp.	743–754,	2017.	

[12] S.	 I.	 Malik	 and	 J.	 Coldwell-Neilson,	 ‘A	 model	 for	 teaching	 an	 introductory	
programming	course	using	ADRI’,	Educ.	Inf.	Technol.,	vol.	22,	no.	3,	pp.	1089–
1120,	2017.	

[13] Y.	 Ayalew,	 E.	 Tshukudu,	 and	 M.	 Lefoanea,	 ‘Factors	 affecting	 programming	
performance	of	 first	year	students	at	a	University	 in	Botswana’,	Afr.	 J.	Res.	Math.	Sci.	
Technol.	Educ.,	vol.	22,	no.	3,	pp.	363–373,	2018.	

[14] M. Ayub and O. Karnalim, ‘Predicting outcomes in introductory programming
using J48 classification’, World Trans. Eng. Technol. Educ. WTETE, vol. 15, no. 2,
pp. 132–136, 2017.	

[15] Y.	Qian	and	J.	D.	Lehman,	‘Correlates	of	success	in	introductory	programming:	
A	study	with	middle	school	students.’,	 J.	Educ.	Learn.,	vol.	5,	no.	2,	pp.	73–83,	
2016.	

[16] A.	 K.	 Veerasamy,	 D.	 D’Souza,	 and	 M.-J.	 Laakso,	 ‘Identifying	 novice	 student	
programming	 misconceptions	 and	 errors	 from	 summative	 assessments’,	 J.	
Educ.	Technol.	Syst.,	vol.	45,	no.	1,	pp.	50–73,	2016.	

[17] X.	 Zhang,	 C.	 Zhang,	 T.	 F.	 Stafford,	 and	 P.	 Zhang,	 ‘Teaching	 introductory	
programming	 to	 IS	 students:	The	 impact	 of	 teaching	 approaches	on	 learning	
performance’,	J.	Inf.	Syst.	Educ.,	vol.	24,	no.	2,	pp.	147–155,	2013.	

[18] K.	Longi	and	others,	‘Exploring	factors	that	affect	performance	on	introductory	
programming	courses’,	2016.	

[19] R.	A.	Alturki	and	others,	‘Measuring	and	improving	student	performance	in	an	
introductory	programming	course’,	Inform.	Educ.-	Int.	J.,	vol.	15,	no.	2,	pp.	183–
204,	2016.	

[20] S. Wiedenbeck, D. Labelle, and V. N. Kain, ‘Factors affecting course outcomes in
introductory programming.’, in PPIG, 2004, p. 11.	

[21] C.	O’Malley	and	A.	Aggarwal,	‘Evaluating	the	Use	and	Effectiveness	of	Ungraded	
Practice	Problems	in	an	Introductory	Programming	Course’,	 in	Proceedings	of	
the	 Twenty-Second	 Australasian	 Computing	 Education	 Conference,	 2020,	 pp.	
177–184.	

[22] G.	Sharma,	‘Computer	Programming	Comp103:	Who	Does	Better?’,	2019.	
[23] M.	 Othman	 and	 M.	 Othman,	 ‘The	 proposed	 model	 of	 collaborative	 virtual	

learning	 environment	 for	 introductory	 programming	 course’,	 Turk.	 Online	 J.	
Distance	Educ.,	vol.	13,	no.	1,	pp.	100–111,	2012.	

[24] J.	Bennedsen	and	M.	E.	Caspersen,	‘An	investigation	of	potential	success	factors	
for	an	 introductory	model-driven	programming	course’,	 in	Proceedings	of	 the	

	 	 ISSN	2549-7286	(online)	

Indonesian	Journal	of	Computer	Science		 	 Vol.	12,	No	4.,	Ed.	2023	|	page	1625		 	

first	 international	workshop	on	Computing	education	research,	2005,	pp.	155–
163.	

[25] R.	Gonzalez	and	A.	Biørn-Hansen,	‘Web-Based	Collaborative	Learning	in	CS1:	A	
Study	on	Outcomes	of	Peer	Code	Review’,	in	Norsk	IKT-konferanse	for	forskning	
og	utdanning,	2020.	

[26] B.	 Isong,	 T.	 Moemi,	 N.	 Dladlu,	 N.	 Motlhabane,	 O.	 Ifeoma,	 and	 N.	 Gasela,	
‘Empirical	Confirmation	of	Pair	Programming	Effectiveness	in	the	Teaching	of	
Computer	 Programming’,	 in	2016	 International	 Conference	 on	 Computational	
Science	 and	 Computational	 Intelligence	 (CSCI),	 2016,	 pp.	 276–281.	 doi:	
10.1109/CSCI.2016.0060.	

[27] L.	Williams	and	R.	R.	Kessler,	Pair	programming	 illuminated.	Addison-Wesley	
Professional,	2003.	

[28] M.	Laal	 and	M.	Laal,	 ‘Collaborative	 learning:	what	 is	 it?’,	Procedia-Soc.	Behav.	
Sci.,	vol.	31,	pp.	491–495,	2012.	

[29] A.	 K.	 Mbiada,	 B.	 Isong,	 F.	 Lugayizi,	 and	 A.	 Abu-Mahfouz,	 ‘Introductory	
Computer	Programming	Teaching	and	Learning	Approaches:	Review’,	in	2022	
International	 Conference	 on	 Electrical,	 Computer	 and	 Energy	 Technologies	
(ICECET),	IEEE,	Jul.	2022.	doi:	10.1109/icecet55527.2022.9873427.	

	

