
Indonesian Journal of Computer Science
ISSN 2549-7286 (online)

Jln. Khatib Sulaiman Dalam No. 1, Padang, Indonesia
Website: ijcs.stmikindonesia.ac.id | E-mail: ijcs@stmikindonesia.ac.id

Attribution-ShareAlike 4.0 International License Vol. 12, No. 3, Ed. 2023 | page 933

Goal-Oriented Modeling of an Urban Subway Control System Using KAOS

Lokanna Kadakolmath1, Umesh D. Ramu2
lokanna@acharya.ac.in, drumesh@pesce.ac.in
1Department of Information Science & Engineering, Acharya Institute of Technology, Bengaluru
560 107, India
2Department of Computer Science & Engineering, P.E.S College of Engineering, Mandya 571 401,
India

Article Information Abstract

Submitted : 14 Jun 2023
Reviewed : 21 Jun 2023
Accepted : 27 Jun 2023

The extent to which a safety-critical system, such as an urban subway control
system, accomplishes its goals is a fundamental metric of its success.
Identifying and assessing these goals should thus be one of the primary tasks
in safety-critical system development. The breakdown of these systems may
result in the loss of human lives and assets. The failure of these systems is
caused by insufficient, incomplete, ambiguous, or conflicting requirements.
Non-functional requirements are also separated from requirement
specifications. Goal-oriented requirements engineering methodologies, such
as KAOS, are used to tackle these challenges by providing adequate,
complete, unambiguous, and consistent requirements in terms of goals. As a
result, the KAOS approach is utilized in this article to construct a goal-
oriented model of an urban subway control system. Variability and obstacle
concerns are also addressed in this study.

Keywords

Goal Modeling; KAOS;
Requirements
Engineering; Semi-
formal model; Safety-
critical systems.

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 934

A. Introduction
To ensure that the software being used successfully addresses a certain issue,

analysts have to precisely comprehend and explain the problem. At first glance,
this appears to be common sense. However, as we will see, determining the
specific nature of the problem can be difficult. As a result, it is essential to identify,
comprehend, communicate, investigate, and decide on which issues will be
addressed, why such an issue must be solved, and who will be held accountable for
fixing that issue. This is commonly referred to as requirements engineering (RE)
[1], [2].

Many research investigations [3], [4] have demonstrated that a fault in the
requirements engineering phase is the primary reason for failure in software
development initiatives. Several incidents are presented on the website “Forum on
Risks to the Public in Computers and Related Systems,” exhibiting insufficient
requirements analysis [5]. A requirement engineering flaw causes 40% of software
projects to malfunction or not succeed in achieving most of the predicted
requirements. Bell and Thayer said in 1976 that nonconformity of system
functionalities to user needs, as well as the inadequacy, inconsistency, and
vagueness of requirements documents, are all factors that lower software quality
[6]. According to Bell and Thayer, “the requirements for a system do not arise
naturally; rather, they must be engineered and subjected to ongoing review and
revision.”

The RE association has worked hard to improve the requirements
engineering phase of system development. It tries to provide techniques, methods,
and tools for extracting, specifying, deliberating, and verifying software system
requirements. As a result, RE is a critical stage in the development of high-quality
systems. It ensures that client requirements are met successfully after the system
is constructed. RE begins with gathering requirements and then expressing them.
Each requirement must be extracted, allocated, obeyed, fulfilled, justified, and
verified precisely.

In the software engineering field, there are various definitions of RE, the
earliest of which was provided by Ross and Schoman [5] in 1977: “requirements
definition is a careful assessment of the requirements that a system is to fulfill.” It
has to clarify why a system is desirable according to present and predicted
requirements, which could indicate an internal operation or an external effect. It
has to respond to which system properties are suitable in this situation. Finally, it
has to specify how the system will be created.

Sommerville and Sawyer [7] explicitly characterize RE activities. They define
RE as the task of identifying, documenting, and handling a collection of system
requirements. These activities are classified as “requirement elicitation,
requirement analysis, requirement specification, requirement validation, and
requirement management.”

Because traditional systems analysis approaches are inefficient when
working on safety-critical systems, the reputation of goal-oriented requirements
engineering (GORE) methods has grown considerably in recent years [8]. During
the requirements stage, traditional approaches regard requirements as simply
procedures and data and should not communicate validation to specific top-level
contexts in the problematic region. Several approaches focus only on software

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 935

system modeling and specification. As a result, they require assistance in
understanding the safety-critical systems comprised of the system-to-be and there
surroundings. Furthermore, when system functions are discovered to be
automated or other responsibilities are revealed to be signified and appraised,
traditional modeling and analytical methodologies do not allow for alternative
system forms. “Goal-Oriented Requirements Engineering” (GORE) attempts to
address these critical challenges [9].

At various levels of abstraction, goals are captured. GORE is the usage of goals
for extracting, organizing, identifying, developing, evaluating, documenting,
negotiating, and altering requirements. Over the past few decades, this domain has
received increasing attention [1]. Goals are regarded as an vital component of the
requirements engineering procedure in RE research. For numerous reasons, such
as requirements elicitation, specification, analysis, verification, resolution of
conflict, and translating informal to formal requirements, this credit has driven the
whole flow of research on goal specification, goal-based analysis and goal
modeling.

Comprehending, analyzing, and processing huge informal requirements into
a tangible system may be required when developing complicated technical systems
such as urban subway control systems. These requirements might be of many
types, such as security, performance, functionality, compatibility with current
systems, and so on. In this article, KAOS is used to create a goal-oriented model of
an urban subway control system as a case study to make sure that the real system
matches the desired system.

The remainder of the article is structured as follows: Section 2 correlates our
method with related works; Section 3 presents the urban subway control system;
Section 4 discusses the outcomes of applying KAOS goal-oriented modeling to an
urban subway control system; and eventually, in Section 5, we wrap up the paper.

B. Related Work

F. Semmak et al. [10] the KAOS goal-oriented method was used to enhance
requirements engineering in the framework of the Cycab domain. Cycab is a
completely automatic community transportation vehicle. They further improved
the KAOS technique to address variability concerns. This addition enables them to
develop a goal model for unpredictability. Furthermore, they verified their goal
model with a software prototype based on an unfinished version of the Cycab
application framework.

C. Ponsard et al. [9] used the KAOS GORE process to extract requirements and
supervise mission-critical systems. The model they offered is an excerpt from the
major railroads' signaling specifications. Their initial work documentation was
based on a current review of state machine charts with safety standards. They
utilized the FAUST toolset for requirement analysis, verification, and validation.

E. Dubois et al. [11] in the framework of reactive systems, they outlined three
precise and interrelated modeling tasks during the requirements engineering
phase. Furthermore, they demonstrated how the formal languages Timed
Automata, Albert II, and KAOS facilitate the aforementioned three tasks. They
utilized the i* framework to build a complex model and connect several formal
models. They used a tiny process control system to demonstrate their approach.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 936

M. Wilson and K. Wnuk [12] described the drawbacks of the goal model,
namely that they do not obtain contextual information, the active agent’s
knowledge, or another active agent who obtains the goal for fulfillment. As a result,
they expanded the goal model with intents and a context frame in their paper to
define more contextual information about goals and fulfillment techniques.

C. Ponsard et al. [13] emphasizing a model-based strategy to offer effective
assistance during the risk assessment step. They suggested a goal-oriented meta-
model of the simple automobile control sub-system for obtaining automotive
properties and system features to analyze the effect of catastrophic situations,
detect threats, and evaluate their viability.

L. Kadakolmath and Umesh D. R [14] articulated the i* model in the
framework of the urban railway IXL system. To solve variability issues and
combine early and late requirements, they adopted TGRL, an i*-based GORE
language. The created model may also be observed and assessed with jUCMNav.
Formal Tropos is used to specify the safety criteria that must be proven. It is
regarded as the i* model's formal specification language.

L. Kadakolmath and Umesh D. R [15] a thorough assessment of semi-formal
and formal methodologies in the framework of a smart mass transit system was
given. They also reviewed the most significant problems that are encountered
while implementing computer-based IXL systems. They demonstrated how the use
of B formal language and the combination of B with KAOS have increased trust in
the use of formal and semi-formal approaches in the urban railway industry.

C. Urban Subway Control System

Rail Rapid Transit (RRT) is a well-established and widely used urban transit
system. It carries a large amount of passengers quickly. RRT is a subway system of
transportation that operates at high speeds on permanent guideways in
metropolitan areas. With technological advancement, the RRT system is now
entirely reliant on “Intelligent Transport System” (ITS) technology. Hence, RRT is
now referred to as a “Smart Mass Transit System.”

The adoption of computerized IXL systems in urban subways resulted in
automatic and autonomous trains as well as a rise in demand for highly regular
trains with regular stops. However, with technical developments in
telecommunications and information technology, the Rail Safety Improvement Act
of 2008 proposes a “Positive Train Control” (PTC) system for subway rail [16]. PTC
is a combination of cutting-edge technology designed to reduce mishaps triggered
by human error, locate malfunctions, malfunctions of equipment, and other types
of train operator errors. PTC attempts to prevent train-on-train accidents, detours
generated by excessive speed, and early track derailments.

The “Communication-Based Train Control” (CBTC) system is an extremely
advanced train control and signaling system that is currently a favored
technological solution for smart mass transit systems such as subways all over the
globe. CBTC systems are often used to monitor autonomous subway and suburban
trains. CBTC requires train information to be delivered to a centralized zone, which
in turn transmits the information to all system entities. To track train location and
speed, this system employs a “Global Positioning System” (GPS) or transponder
tags [16], [17].

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 937

For handling traffic and subway control, the CBTC transmits signals between
trains and trackside objects. It also detects the train's exact location more
precisely. This results in a well-organized and safe system for monitoring railway
passenger traffic and reducing train intervals. Not only do these control systems
assure subway safety, but they also integrate, interact, and automate areas of
operation, gather passenger data, and inspect it. As a result, the precise efficacy
and comprehensive safety guarantee of these control systems are crucial. The
primary causes of control system malfunctions include faulty requirements
specifications, design mistakes, wrong implementations, and human testing, which
must be avoided with a high-level degree of certainty. Furthermore, in today's
smart mass transit systems, it is important to fulfill not only safety standards but
also data precision and operational correctness. For all of these factors, a KAOS-
based goal-oriented model is employed in this article to specify and analyze the
requirements of an urban subway control system.

D. KAOS Methodology

GORE is concerned with the behaviors that lead to the development of system
requirements. The key behaviors that are often included in GORE methods are goal
extraction, goal augmentation, and numerous types of goal evaluation, as well as
the assignment of goal fulfillment responsibilities to actors. A goal, as defined by
Axel van Lamsweerde [18], is “an objective that the system should achieve through
the cooperation of agents in the software-to-be and the environment.”

GORE depicts the provided system and its surrounding environment as a group
of active agents called “actors or stakeholders.” Each actor could limit their
behavior in order to verify the constraints. The actors in the subway control
system detailed in this paper are track circuits, an automatic train controller, a
train driver, an interlocking system, and so on. A goal is an intent that the system
should attain with the help of actors in the system-to-be and its surroundings. A
requirement is a goal. To achieve this goal, a system relies on only one active agent
in the software system, and it is also an agent's obligation. For instance, “ejection of
train doors when alarm rings” is a goal whose accomplishment is reliant on the
actor ‘train door actuators’. An expectation is a goal as well. A system relies on only
one active agent in the system context to achieve this goal. For instance, “the green
signal should not be turned on until the trap points have been set to the proper
position” is a goal whose achievement is dependent on the actor's ‘interlocking
system’. An assumption implies a goal whose achievement is dependent on the
achievement of additional goal. Softgoals, as opposed to goals, are non-functional
requirements for which achievement is not clearly specified. For instance, safety is
a non-functional requirement, and certain tasks have a positive influence on it
while others have an adverse effect. KAOS places a greater emphasis on goal
fulfilment, with fewer emphasis on softgoals and assumptions.

The KAOS is a GORE process that includes a comprehensive set of formal
evaluation methodologies. KAOS is an acronym that means “Knowledge
Acquisition in Automated Specification” [19] or “Keep All Objects Satisfied” [20].
 KAOS is portrayed as a multi-paradigm framework that permits various stages of
extraction and analysis to be combined [10]. Such as qualitative for deciding
between possibilities, semi-formal for organizing and modeling goals, and formal

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 938

when more accurate analysis is necessary. As a result, the KAOS goal-oriented
language integrates system agents, assumptions, objects, and functions; semantic
frameworks for abstract goal modeling; state-based specifications for system
functions; and linear-time temporal logic for goal and object definition. For every
construct, the KAOS language is divided into two levels: the outside graphical
semantic layer and the inside formal layer. The qualities of the object and goal
constructs, as well as their relationships with other concepts, are provided in the
outer graphical semantic layer, while formal definitions are provided in the inner
formal layer.

A goal is described in KAOS as a “prescriptive statement of intent about some
system whose satisfaction, in general, requires the cooperation of some of the
agents forming that system” [1]. Goals in KAOS can define either functional or non-
functional services. Goals in KAOS are systematized using AND/OR refinement
hierarchies, and goal refinement is completed when each subgoal is allocated to a
different agent. As a result, goals are overseen and controlled by an agent. A goal
under an agent's responsibility in a software system is termed a requirement, while
a goal under an agent's responsibility in a system's environment is called an
expectation. The lightweight goal specification is stated in temporal logic, utilizing
goal definition patterns such as achieve, avoid, maintain, cease, and optimize.
Additional goals in KAOS include information goals, satisfaction goals, and
accuracy goals. Satisfaction goals are functional goals that are linked to the
fulfillment of an agent's requests. Information goals are functional goals linked to
informing an agent about object states. Finally, accuracy goals are non-functional
goals that are connected to representing the condition of the monitored or
regulated objects in the system context.

E. Result and Discussion

The primary purpose of developing the KAOS goal model of an urban subway
control system is to offer efficient commuter transportation from one location to
another. The KAOS goal model is developed using the objectiver tool [21]. Figure 1
shows the main goal of subway system and its refinement. In Figure 1, a goal is
represented by using a parallelogram symbol, and refinements of a parent goal are
represented by using yellow circles. The checkmark in the circle repre-sents ‘and
decomposition’ of subgoals, that is all three subgoals should be fulfilled to
accomplish the parent goal. The pattern in Figure 1 is read as “To satisfy the goal
effi-cient transportation of urban rail commuters, the control system must provide
com-fortable transportation, safe and secure transportation, and rapid
transportation services.” To achieve the parent goal “Efficient Transportation of
Train Passengers,” it is refined into three subgoals as listed below.

Comfortable Transportation: to fulfill this goal urban rail should accelerate
or decelerate easily. Train arrival information must be shared in time with the
commuters at a railway station. Train departure, which station will arrive next
stop and so on are well communicated with commuters inside a train.

Safe and Secure Transportation: to fulfill this goal the possibility of
accidents should drop below the threshold enforced by the safety guidelines. For
example, the safety distance among two trains travels along with each other must
be adequate to avoid the rear train from colliding with the front train. On a specific

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 939

block, the speed of a train may never go beyond the speed limit of that block. If a
block entry signal is set to stop then a train never enter a block. If a train is moving
then its doors must be locked.

Rapid Transportation: to fulfill this goal the headway between trains must
be reduced by avoiding excessive delays and running trains at high frequency.

Figure 1. Generic goal ‘Efficient Transportation of Train Passengers.’

The comfortable transportation child goal in Figure 1 is further decomposed
into subgoals as exposed in below Figure 2. The pattern in Figure 2 is read as “To
satisfy comfortable transportation service, the commuters must reserve a seat easily,
and control system must provide boarding and alighting information in time.”

Figure 2. Generic goal ‘Comfortable Transportation.’

In Figure 2, ‘Infrastructure Available’ is a domain property. To satisfy
comfortable transportation, infrastructure to provide comfortable transportation
must be available. In Figure 2 it is shown in the pentagon symbol. Properties that
are relevant to the application domain are called domain properties. There are two
kinds of domain properties. The first one is domain invariants and the second one
is domain hypotheses. Domain invariants are descriptive declarations regarding
the environment, likely to hold unchangeably in each state of the domain object.
For example, ‘train doors should open if and only if train speed is zero.’ Domain
hypotheses are descriptive declarations fulfilled by the system environs and

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 940

subject to change. For example, ‘an urban railway control system has at least one
display-based interface to provide information to commuters.’

The safe and secure transportation child goal in Figure 1 is further
decomposed into subgoals as shown below Figure 3. The pattern in Figure 3 is
read as “To satisfy safe and secure transportation service, the control system must
maintain train doors closed while a train is moving until alarm rings, and it must
avoid train collision and de-railment, and train speed should be below its block limit.”

Figure 3. Generic goal ‘Safe and Secure Transportation.’

In Figure 3 some requirements have been used. A requirement is a goal in a
software system that is accountable to a single agent and is represented by thick-
bordered parallelograms. For example, ‘ejection of train doors when alarm rings,’
‘train speed should be below block limit,’ and ‘train doors open when alarm stop
ringing.’ Requirements can be further refined as shown in Figure 3. Agents are
stakeholders symbolized as pink boxes with angle corners. For example, automatic
train controllers and train door actuators. The responsibility relationship is
symbolized as red circles, that link an agent to a requirement for which the agent is
responsible. Figure 3 also shows a conflict between a goal train door closed while
moving and re-quirement train doors open when the alarm stop ringing.

The rapid transportation child goal in Figure 1 is further decomposed into
subgoals as shown in below Figure 4. The pattern in Figure 4 is read as “To satisfy
rapid transportation service, the control system must achieve a high frequency of
trains, maintain worst case stopping distance between trains and avoid crowding.”

Avoid train collisions child goal in Figure 3 is further decomposed into
subgoals as shown in below Figure 5. The pattern in Figure 5 is read as “To avoid
collisions, the control sys-tem must avoid two trains occupying on the same block,
and maintain worst case stopping distance.”

In KAOS, a specified goal can be found on several diagrams to refine several
higher-level goals, because the goal model is a directed graph. For instance, the
goal ‘maintain the worst-case stopping distance between successive trains until the
train reaches its destination,’ appears in both Figure 4 and Figure 5. It contributes
to the goal of rapid transportation and avoids train collisions. In Figure 5

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 941

requirement ‘train should stop at block entry if a red signal is on,’ is a variant and it
should be satisfied by either train driver or automatic train controller. In KAOS,
variability can be denoted by using alternate responsibility allocations of goals to
agents, and OR goal decompositions.

Figure 4. Generic goal ‘Rapid Transportation.’

Figure 5. Generic goal ‘Avoid Train Collisions.’

Avoid train derailment child goal in Figure 3 is further decomposed into
subgoals as shown in below Figure 6. The pattern in Figure 6 is read as “To avoid
train derailment, the control system must avoid sideswipes, avoid unauthorized train
for entering into mainline from siding line, and the green signal should not be on
until trap points have been set to a proper position, and regular and consistent
maintenance of rail infrastructure is required.”

In Figure 6 a goal ‘green signal should not be on until the trap points have been
set to a proper position,’ is an expectation. It is a goal in a system's environment that

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 942

is under the accountability of a single actor. They do not need to be refined further,
and they are symbolized as thick-bordered yellow-colored parallelograms.
Expectation assignment to some agents is symbolized by using pink circles.

Figure 6. Generic goal ‘Avoid Train Derailment.’

Maintain worst-case stopping distance between successive trains until train

reach destination in both Figure 4 and Figure 5. is further decomposed into
subgoals as shown in below Figure 7. The pattern in Figure 7 is read as “To
maintain worst case stopping dis-tance between successive trains until they reach a
destination, the control system must maintain safe acceleration commands and
supervise train acceleration.”

Figure 7. Generic goal ‘Maintain Worst-Case Stopping Distance.’

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 943

Handling Obstacles
Obstacles are circumstances in which a requirement, an expectation, or even

a goal, is violated. The obstacle is supposed to ‘obstruct’ a requirement, an
expectation, or a goal. Handling obstacles is extremely crucial for safety-critical
systems. It permits analysts to recognize and deal with circumstances to give a
strong new requirement to prevent or decrease the effects of obstacles.

An assertion that is reliable with the domain model is an obstacle to
achieving a goal, but the objective's negation is the logical result of the model
composed by an assertion and the domain model. As soon as obstacles are
recognized, they can be purified by using AND or OR decomposition. Once the
obstacles are handled successfully the resulting software system is more reliable.

For example, in Figure 8, An obstacle ‘Red Signal is on and Train not Stopped
at Block Entry,’ to the goal ‘Train Should Stop at Block Entry if Red Signal is on,’ oc-
curs when the train is not stopped at block entry even if a red signal is on. In Figure
8, obstacles are shown in orange-colored parallelograms. The obstruction link
shown in the orange arrow is used to link obstacles to the goals they obstruct.
Refinement of obstacles is accomplished in the same way we refine goals, but
obstacles are most often ‘OR-refined’ while goals are generally ‘AND-refined.’ In
Figure 8, also the new requirements are linked to the obstacle they resolve by
using the resolution link shown in the green arrow. For example, if the signal is not
visible then the train driver has to stop the train and wait for the guard signal.

Figure 8. Obstacle ‘Red Signal is on and Train not Stopped at Block Entry.’

F. Conclusion
In this article, the authors discussed GORE in the framework of an urban

subway control system. Safety-critical systems, such as urban subway control
systems, necessitate identifying, extracting, organizing, assessing, documenting,
and revising requirements for the concrete system. In this article, they used the
KAOS approach to offer appropriate, complete, unambiguous, and consistent
requirements in terms of goals. The authors also addressed issues such as conflict
management, variability, and obstacle detection. An objectiver tool is used to
construct a KAOS-based goal-oriented model. In future enhancements, the authors
intend to formalize the goal model using first-order linear-time temporal logic
formulae and model-check these requirements.

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 944

G. References
[1] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided tour,”

in Proceedings Fifth IEEE International Symposium on Requirements
Engineering, Toronto, Ont., Canada: IEEE Comput. Soc, 2000, pp. 249–262. doi:
10.1109/ISRE.2001.948567.

[2] A. van Lamsweerde, Requirements engineering: from system goals to UML
models to software specifications. Chichester, England ; Hoboken, NJ: John
Wiley, 2009.

[3] T. Hall, S. Beecham, and A. Rainer, “Requirements problems in twelve
software companies: an empirical analysis,” IEE Proc. - Softw., vol. 149, no. 5,
p. 153, 2002, doi: 10.1049/ip-sen:20020694.

[4] A. Finkelstein and J. Dowell, “A comedy of errors: the London Ambulance
Service case study,” in Proceedings of the 8th International Workshop on
Software Specification and Design, Schloss Velen, Germany: IEEE Comput. Soc.
Press, 1996, pp. 2–4. doi: 10.1109/IWSSD.1996.501141.

[5] D. T. Ross and K. E. Schoman, “Structured Analysis for Requirements
Definition,” IEEE Trans. Softw. Eng., vol. SE-3, no. 1, pp. 6–15, Jan. 1977, doi:
10.1109/TSE.1977.229899.

[6] T. E. Bell and T. A. Thayer, “Software Requirements: Are They Really a
Problem?,” in Proceedings of the 2nd International Conference on Software
Engineering, in ICSE ’76. Washington, DC, USA: IEEE Computer Society Press,
1976, pp. 61–68.

[7] I. Sommerville and P. Sawyer, Requirements engineering: a good practice
guide. Chichester, Eng. ; New York: Wiley, 1999.

[8] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided tour,”
in Proceedings Fifth IEEE International Symposium on Requirements
Engineering, Toronto, Ont., Canada: IEEE Comput. Soc, 2000, pp. 249–262. doi:
10.1109/ISRE.2001.948567.

[9] C. Ponsard, P. Massonet, A. Rifaut, J. F. Molderez, A. van Lamsweerde, and H.
Tran Van, “Early Verification and Validation of Mission Critical Systems,”
Electron. Notes Theor. Comput. Sci., vol. 133, pp. 237–254, May 2005, doi:
10.1016/j.entcs.2004.08.067.

[10] F. Semmak, R. Laleau, and C. Gnaho, “Supporting variability in goal-based
requirements,” in 2009 Third International Conference on Research Challenges
in Information Science, Fez, Morocco: IEEE, Apr. 2009, pp. 237–246. doi:
10.1109/RCIS.2009.5089287.

[11] E. Dubois, E. Yu, and M. Petit, “From early to late formal requirements: a
process-control case study,” in Proceedings Ninth International Workshop on
Software Specification and Design, Ise-Shima, Japan: IEEE Comput. Soc, 1998,
pp. 34–42. doi: 10.1109/IWSSD.1998.667917.

[12] M. Wilson and K. Wnuk, “Towards Multi-context Goal Modeling and Analysis
with the Help of Intents,” in 2018 IEEE 8th International Model-Driven
Requirements Engineering Workshop (MoDRE), Banff, AB: IEEE, Aug. 2018, pp.
68–72. doi: 10.1109/MoDRE.2018.00015.

[13] C. Ponsard, V. Ramon, and J.-C. Deprez, “Goal and Threat Modelling for Driving
Automotive Cybersecurity Risk Analysis Conforming to ISO/SAE 21434:,” in
Proceedings of the 18th International Conference on Security and Cryptography,

 ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol. 12, No. 3, Ed. 2023 | page 945

Science and Technology Publications, 2021, pp. 833–838. doi:
10.5220/0010603008330838.

[14] L. Kadakolmath and D. R. Umesh, “i*-Based Goal-Oriented Modeling and
Requirements Specification of an Urban Railway Interlocking System,” J. Sci.
Res., vol. 66, no. 02, pp. 30–39, 2022, doi: 10.37398/JSR.2022.660205.

[15] L. Kadakolmath and D. R. Umesh, “A Survey on Formal Specification and
Verification of Smart Mass Transit Railway Interlocking System,” Int. J. Saf.
Secur. Eng., vol. 11, no. 6, pp. 671–682, Dec. 2021, doi: 10.18280/ijsse.110607.

[16] J. C. Peters and J. Frittelli, “Positive Train Control (PTC): Overview and Policy
Issues,” PPRI Digital Library, R42637, 2012. [Online]. Available:
http://docs.lib.purdue.edu/gpridocs/10

[17] L. Rakesh and L. Kadakolmath, “Modeling and formal verification of SMT rail
interlocking system using PyNuSMV,” in 2018 4th International Conference on
Recent Advances in Information Technology (RAIT), Dhanbad: IEEE, Mar. 2018,
pp. 1–8. doi: 10.1109/RAIT.2018.8388983.

[18] A. Van Lamsweerde, “Requirements engineering in the year 00: a research
perspective,” in Proceedings of the 22nd international conference on Software
engineering - ICSE ’00, Limerick, Ireland: ACM Press, 2000, pp. 5–19. doi:
10.1145/337180.337184.

[19] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed requirements
acquisition,” Sci. Comput. Program., vol. 20, no. 1–2, pp. 3–50, Apr. 1993, doi:
10.1016/0167-6423(93)90021-G.

[20] A. van Lamsweerde and E. Letier, “From Object Orientation to Goal
Orientation: A Paradigm Shift for Requirements Engineering,” in Radical
Innovations of Software and Systems Engineering in the Future, M. Wirsing, A.
Knapp, and S. Balsamo, Eds., in Lecture Notes in Computer Science, vol. 2941.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 325–340. doi:
10.1007/978-3-540-24626-8_23.

[21] Respect-IT, “Objectiver.” in The power tool to engineer your Technical and
Business Requirements. Respect-IT, 2012. [Online]. Available:
http://www.objectiver.com/

