
Indonesian Journal of Computer Science
ISSN 2302-4364 (print) and 2549-7286 (online)

Jln. Khatib Sulaiman Dalam, No. 1, Padang, Indonesia, Telp. (0751) 7056199, 7058325
Website: ijcs.stmikindonesia.ac.id | E-mail: ijcs@stmikindonesia.ac.id

Attribution-ShareAlike 4.0 International License Vol. 10, No. 2, Ed. 2021 | page 201

Portable Cough Classification System Based on Sound Feature Extraction Using
Tiny Machine Learning

Lathifah Arief, Mutiah Risky, Derisma, Werman Kasoep, Nefy Puteri
lathifah.arief@it.unand.ac.id, mutiah.risky@gmail.com, derisma@it.unand.ac.id,
werman.kasoep@it.unand.ac.id, nefyputeri@it.unand.ac.id
Univesitas Andalas

Information Abstract

Submitted : 1 Oct 2021
Reviewed : 15 Oct 2021
Accepted : 27 Oct 2021

Cough is one of the most common markers that can provide information in
diagnosing a disease. More specifically, cough is a common symptom of many
respiratory infections. There are several types of cough, including: dry cough,
wet cough (cough with phlegm), croup cough and whooping cough. This
study aims to create a system that can classify the sounds of coughing up
phlegm, dry cough, whooping cough and croup cough. The system
development uses the concept of tiny machine learning. In the system built,
Arduino Nano 33 BLE Sense is used as a control device and LED is used as an
output device.

In this study, the classification of dry cough, wet cough, croup cough and
whooping cough was performed using the MFCC voice feature extraction. In
the process of classifying coughing sounds using the Neural Network
Classifier, the system has a percentage of dataset training accuracy from a
total of 5 classes (croup, dry, noise, wet, whooping) of 97.1% by applying an
epoch value of 500, window size 3000ms and a window increase of 500ms.

Keywords

Cough, MFCC, Arduino
Nano 33 BLE Sense,
Neural Network
Classifier, Tiny Machine
Learning

mailto:ijcs@stmikindonesia.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 202

A. Introduction
Based on data from Google until January 2021, there were more than 96.2

million confirmed positive cases of COVID-19 worldwide. This has led to an
increasing need for screening and early diagnosis tools to reach a very large and
dispersed population. For diagnostic purposes, the World Health Organization
(WHO) describes the main symptoms of COVID-19 as high temperature, difficulty
breathing, and cough [1]. Cough is one of the most common markers that can
provide information in diagnosing a disease. More specifically, cough is a common
symptom of many respiratory infections. There are several types of cough,
including: dry cough, wet cough (cough with phlegm), croup cough and whooping
cough.

In a pandemic condition where disease diagnosis is expected to be carried
out without direct contact between patients and doctors, the question of the type
of cough is one that is difficult for patients to answer. Usually doctors or health
experts distinguish the sound of coughing manually. This method is done by
listening to the patient's cough directly by utilizing the sense of hearing, namely
the ear. This way of listening directly is certainly not what is expected in the
conditions of the COVID-19 pandemic because it presents risks for doctors or other
health workers who examine them.

Even if it is circumvented by playing a recorded coughing sound to the
doctor, this method has shortcomings in several factors. Not all doctors or health
workers can easily distinguish the types of coughs from sound recordings. Human
factors that present a high level of possible misdiagnosis include age factors that
cause hearing loss, stress or fatigue factors that cause inaccuracy, and also the
influence of work experience factors [2]. If a patient with a cough, for example, is
diagnosed with lung cancer on his first doctor's visit and later medical records
show that the patient really does have the flu, that would be considered a
misdiagnosis. Therefore, in this pandemic situation, it is clear that a system is
needed that can help classify the type of cough based on the coughing sound
produced. by patients automatically, accurately and consistently.

Several studies have been conducted previously to provide convenience for
medical personnel in diagnosing cough disease quickly and computerized. In
research [3] an automatic cough detection system was built with an approach to
monitoring the frequency of coughing sounds designed using the Digital Signal
Processing (DSP) algorithm. This DSP algorithm extracts features such as Linear
Predictive Coding (LPC) coefficients, Mel Frequency Cepstral Coefficients (MFCC)
and spectral characteristics of a sound signal to detect whether the sound is
categorized as coughing or not. In another study [4], a classification system for
coughing sounds was made with feature extraction using Fast Fourier Transform
(FFT) and Power Spectral Density (PSD) as well as applying the Artificial Neural
Network-Back Propagation (ANN-PB) method.

To differentiate between types of cough based on the characteristics of the
sound, a separate study [5] examined the sound waveforms and spectrograms of
dry and wet coughs to extract characteristic features of the sound associated with
the presence of mucus in the airways as a marker of wet cough. From other
literature, it is known that dry cough is usually distinguished by a loud coughing
sound [5]. Whooping cough can be characterized by a series of loud coughing

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 203

sounds that occur continuously [6]. Meanwhile, croup cough is characterized by
infection in the upper respiratory tract which causes a characteristic coughing
sound such as barking [7].

These studies generally still use computing devices in the form of computers
with computing and simulation software (e.g Matlab) so that they still lack the
portability aspect of the system to be used flexibly in different locations.
Fortunately, the current development of edge computing technology has enabled
the machine learning or deep learning inference processes needed for cough
detection and classification to be carried out in real-time on relatively compact and
portable embedded devices. Taking that fact into consideration, this research
proposes a new approach by developing a portable system for classifying cough
types based on audio feature extraction using MFCC, Tiny Machine Learning and
Arduino Nano 33 BLE Sense.

B. Theory

Cough
The nature of cough is important in pathological studies for diagnostic

purposes. A typical cough sound is usually divided into three phases: (1) explosive
expiration due to the sudden opening of the glottis, (2) an intermediate phase with
attenuation of coughing sounds, and (3) a voiced phase due to closure of the vocal
cords. In fact, there are various patterns of cough that occur; For example, some
coughing sounds have only two phases (intermediate phase and voiced phase) and
the blast phase is usually prolonged due to several diseases [9].

Wet Cough (Cough with phlegm)
Usually wet cough is caused by the presence of foreign objects (such as

bacteria, viruses) that cause inflammation and secretions in the lower respiratory
tract: bronchitis, asthma, pneumonia. Sometimes it can also be triggered by the
upper respiratory tract.

Dry Cough
Dry Cough is an indication name for a dry type of cough without phlegm. A

typical cough sound signal, consists of three phases. Phase 1: initial opening blast,
Phase 2: noisy airflow and Phase 3: glottal closure [8]. There are cases where Stage
3 is not seen in the cough signal [9].

Whooping Cough (Whooping Cough)
Whooping cough is a highly contagious respiratory infection. In many people,

this is characterized by a severe cough followed by high-pitched breathing that
sounds like a scream [10].

Whooping cough, also known as pertussis, is a highly contagious respiratory
infection caused by the bacterium Bordetella pertussis. In 2018, there were more
than 151,000 cases of pertussis globally. Pertussis spreads easily from person to
person mainly through droplets produced by coughing or sneezing. This disease is
most dangerous in infants, and is the leading cause of illness and death in this age
group. [6]

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 204

Deaths associated with whooping cough are rare but occur most often in
infants. That's why it's so important for pregnant women - and anyone else who
will be in close contact with the baby - to be vaccinated against whooping cough.
When an infected person coughs or sneezes, tiny droplets containing germs are
sprayed into the air and inhaled into the lungs of anyone who happens to be
nearby.

Croup Cough
Croup is a common respiratory infection in children, croup can cause

inflammation of the upper airways that restricts normal breathing and produces a
coughing sound that is usually described as a "barking cough".

A 2008-2009 study in Australia on children aged 0-14 years found croup in
1.2% of subjects or about 154,000 times per year [7]. It is prescribed to be most
common in children aged 1-4 years. Upper airway inflammation caused by
infection restricts normal breathing leading to a 'croupy' or 'barking' cough
sometimes accompanied by hoarseness, and respiratory distress [11].

A croup cough can be life-threatening if severe. It is the most common airway
obstruction in children between the ages of 6 months and 6 years, peaking
between the ages of 1 and 2 years. A characteristic coughing sound is the main
clinical feature used in clinical practice to diagnose croup. Doctors make subjective
judgments on coughing sounds such as barking after listening to them. Therefore
the diagnosis of croup, is limited to human perception and depends on the skill of
the doctor [12].

Tiny Machine Learning
Tiny Machine Learning or often known as TinyML is a rapidly growing field

of machine learning technology and applications including algorithms, hardware,
and software capable of analyzing sensor data on devices (vision, audio, IMU,
biomedical, etc.) very low, typically in the mW range, enabling a variety of always-
on use cases targeting battery-operated devices [13]. Machine Learning is one
aspect of Artificial Intelligence (AI) where computing systems are able to learn
from data and make decisions. Machine Learning has become one of the most
important areas in development organizations looking for innovative ways to
understand data assets to help businesses reach new levels of understanding [14].
One of the most studied research topics on supervised machine learning is case
classification [15].

Arduino Nano 33 BLE Sense
The Arduino Nano 33 BLE Sense board has been designed to offer a power-

efficient and cost-effective solution for builders who wish to have energy-efficient
bluetooth connectivity. The Nano 33 BLE Sense is the same as the Arduino Nano 33
BLE with the addition of a set of sensors [17].

Cough
The nature of cough is important in pathological studies for diagnostic

purposes. A typical cough sound is usually divided into three phases, namely: (1)
explosive expiration due to the sudden opening of the glottis, (2) an intermediate

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 205

phase with attenuation of the coughing sound, and (3) a voiced phase due to
coughing.

Figure 1. Arduino Nano 33 BLE Sense

The Arduino Nano 33 BLE Sense is an evolution of the traditional Arduino
Nano, but features a much more powerful processor. This allows for larger
programs than with the Arduino Uno (which has only 1MB of program memory, 32
times more), and with more variables (128 times more RAM). The main processor
includes other amazing features like bluetooth pairing via NFC and a very low
power consumption mode.

Mel Frequency Cepstral Coefficient (MFCC)
One of the most important types of parametric representation used in speech

recognition is the Mel Frequency Cepstral Coefficient (MFCC). MFCC describes the
characteristics of the audio data frame in the cepstral domain. This shows the
short-term power spectrum of a sound.

The MFCC feature extraction technique basically involves windowing the
signal, applying DFT, taking a log of magnitude, and then bending the frequency on
the Mel scale, followed by applying DCT (Discrete Cosine Transform) in reverse
[21].

Edge Impulse
Edge impulse provides services that enable machine learning for all

developers with open source tools. Edge Impulse enables easy collection of real
sensor data, signal processing directly from raw data to neural network, testing
and deployment to any target device. This open source allows collecting data from
or deploying code to any device.

Using Edge Impulse, it is easy to collect sensor data, train a machine learning
(ML) model on this data in the cloud, and then apply the model back to Arduino
devices [29]. In this way, it is possible to integrate the model into the Arduino
sketch with a single function call. Sensors are then much smarter and able to
understand complex events. Time series data is a type of data that is collected
according to the order of time in a certain time span. then on the edge impulse it is
necessary to set the window size and window increase time.

Neural Network Classification

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 206

Neural Network Classification (NN) is an electronic network of neurons that
is relatively rough based on the neural structure of the brain. Neural Network
Classification processes the recordings one by one, and learns by comparing their
record classification with the actual known record classification.

Neural Network takes inspiration from the learning process that occurs in
the human brain. NNs consist of artificial network functions, called parameters,
that allow a computer to learn, and improve itself, by analyzing new data. Each
parameter, sometimes also referred to as a neuron, is a function that produces an
output, after receiving one or more inputs. The output is then passed on to the next
layer of neurons, which uses it as the input of its own function, and produces
further output. The output is then passed on to the next layer of neurons, and
continues until each layer of neurons has been considered, and the terminal
neuron has received its input. The terminal neurons then output the final results
for the model.

C. Research Methodology

System General Design
The following is a general design of the system that will be made.

Figure 2. General Design

Based on Figure 2 above, the microphone on the Arduino Nano 33 BLE Sense

captures the sound in the surrounding environment. Then the microphone on the
microcontroller detects the captured sound and will be classified using the Neural
Network Classifier on the Arduino Nano 33 BLE Sense.

Furthermore, the results of the system classification are displayed in the
form of an output in the form of LEDs, where each LED color represents a different
type of coughing sound, namely: yellow LED to describe coughing up phlegm;
Orange LED to represent dry cough; Red LED to represent whooping cough; and a
blue LED to represent croup cough.

Process Design

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 207

Figure 3. Process Flowchart

Based on Figure 3 above, this system is divided into several process stages,

namely: The first process is the microphone is active and receives signals or sound
waves from the surrounding environment. Then the system will classify the voice
signal. Furthermore, the results of the system classification will be displayed in the
form of an output in the form of a lit LED.

Hardware Design
The overall hardware design can be seen in Figure 4.

Figure 4. Hardware Design

Based on Figure 4. above, the working principle of each device is as follows.
1. The built-in Arduino Nano 33 BLE Sense microphone sensor MP34DT05, is

used as a tool or component used to record audio signals and then convert them
into an analog signal electrical waveform.

2. Arduino Nano 33 BLE Sense, acts as a controller and processing for
systems with machine learning and processing for reading voice signal data and
then performs the classification process for voice signals.

3. Output LED, serves to display the results of the system classification in the
form of LEDs where each LED color represents the type of system classification for
different cough sounds.

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 208

Software Design
The software used in this system is the Arduino Program and the Edge

Impulse Application, the program that will be used is divided into three, namely
the system training program, the system testing program, and the program
displaying the output of the system classification results in the form of LEDs.

System Training Design
In designing this training system, it is useful to conduct training on the

system in order to be able to get the results of the classification of the type of
coughing sound according to what has been determined. This training process
begins by labeling each audio dataset and then proceeds to create an impulse
design. The impulse design is organized into 4 blocks: time series data, processing,
learning, and output features.

Then perform feature extraction using MFCC, then the system will take the
dataset randomly and then classify it using Neural Network (Hard Library). The
purpose of conducting system training is to get the data model as desired. This
software will be designed based on the flowchart below:

Figure 5. System Training Flowchart

System Testing Design
At the design stage, system testing is carried out by classifying cough sounds

using live testing on Edge Impulse which is connected to a mobile phone. Then
testing was also carried out on the Arduino Nano 33 BLE Sense system. For more
details on how this software is designed, it can be seen in the following algorithm.

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 209

Figure 6. System Testing Flowchart

D. Result and Discussion

The classification system for the type of cough based on voice feature

extraction is implemented based on the tools and materials described in the
previous chapter. So that the implementation and testing process is structured, the
implementation and testing is divided into two parts of discussion, namely
hardware implementation and software implementation.

Hardware Implementation

Hardware implementation is the process of assembling (wiring) hardware
components that have been adapted to the hardware requirements of the system.
To build a cough classification system based on this sound feature extraction, the
hardware used is Arduino Nano 33 BLE Sense, LED, built-in microphone on
Arduino Nano 33 BLE Sense and jumper cables. These components are arranged as
shown in Figure 7.

Figure 7. Hardware Implementation

In Figure 7. these hardware components have the following functions:

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 210

• Arduino Nano 33 BLE Sense, functions as the main system and as a
controller that will process data, process the work of the system and
run a cough classification program based on sound feature extraction.

• MP34DT05 microphone sensor built-in Arduino Nano 33 BLE Sense,
serves to receive and capture sound signals from the environment.

• LEDs here serve as output media for displaying the classification
result, i.e the type of coughing, identified from the sound provided.

Software Implementation

Software implementation is needed so that the hardware can work according
to system requirements. The process of implementing the software into the system
is as follows:

Collecting Dataset
In this study, data collection was carried out on the Edge Impulse application.

Before collecting the dataset on Edge Impulse, the dataset is selected. The process
of selecting and sorting datasets is done using the Audacity application. The
selection process carried out is cutting and eliminating datasets that have noise or
a lot of idle time. The process of removing the noise and silent parts is done so that
the model does not study this noise/silent part as a cough dataset. The process of
selecting and cutting the noise/silent part of the coughing sound can be seen in
Figures 8 and 9.

Figure 8. Cough audio sample before cutting the noise/silent part

Figure 9. Cough audio sample after cutting the noise/silent part

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 211

The dataset collected in this study must have a frequency of 16000 Hz so that

the data matches the required frequency on the Arduino Nano 33 BLE Sense. The
process of collecting datasets on Edge Impulse is done using a file uploader.
Labeling is adjusted to each file name according to the format. The number of
datasets collected is 1877 seconds. The dataset that has been collected is then
divided into two group:

A. Training Dataset
The total dataset for training collected was 1501 seconds (25 minutes 1
second) consisting of:

Table 1. Training Dataset

Label Time (ms)
Croup 342
Dry 245
Noise 323
Wet 268
Whooping 323
Total 1501

B. Testing Dataset
The total dataset for testing collected was 375 seconds (6 minutes 15
seconds) consisting of:

Table 2. Testing Dataset
Label Time (ms)

Croup 66
Dry 75
Noise 72
Wet 67
Whooping 94
Total 375

Impulse Design
Impulse design is done to take a collection of data and then divide it into

smaller windows. Then use signal processing blocks to perform voice feature
extraction and classify new data using learning blocks. Impulse design includes 4
processes, namely:

• Time Series Data, this block aims to set the duration of the window size,
increase the window and add zero-pad data if needed. window size is used
to determine the length of duration in one audio sample that will be
processed to get a good accuracy value. The increase window is used to set
the increase in the duration of the sample that will be used as the next
sample. The next step is to add zero-pad data so that the data sample that
is shorter than the window size can still be processed by adding a zero
value to the data sample that is shorter than the window size so that the
system gets better performance.

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 212

• Processing Block, the signal processing block to extract features from the
audio signal used in this research is Mel Frequency Cepstral Coefficients
(MFCC) with audio input.

• Learning Block, the learning block used in this research is the Neural
Network with the addition of the Keras library which learns patterns from
data, and applies them to new data.

• Output Features, based on the dataset that has been collected and labeled,
this system has 5 outputs, namely croup, dry, noise, whooping and wet.

MFCC Block Configuration
In this section, the configuration of the MFCC block is performed, and shows a

visualization of the MFCC audio output known as a spectrogram. The pattern seen
in the spectrogram contains information about the type of sound it represents.

The spectrogram generated by the MFCC block will then be forwarded to the
Neural Network architecture which will recognize the pattern of each type of
sound. Before being forwarded to the Neural Network to conduct dataset training,
it is necessary to create MFCC blocks on all audio windows through the Generate
Features.

After doing Generate Features, the results of the 3D representation show the
distribution of the sample dataset. In the previous impulse design, the number of
window size and window increase settings have been made.

Neural Network Configuration
The network that will be trained in this study uses MFCC as input, then

mapped into one of five types of classification croup, dry, whooping, wet and noise
as the output form.

Training Process

The Neural Network training process in this study is a sequential model. In

this training program, a learning rate of 0.005 is entered. In this study, the training
process was carried out by choosing the epoch values of 100, 200, 300, 400 and
500. The following are the results of the dataset training process in Table 3.

Table 3. Training Result

Epoch Accuracy (%) Loss

Accuration per Classification (%)

Croup Dry Noise Wet Whooping

100 94.07.00 00.22 98.02 87.02.00 97.05.00 89.02.00 92.01.00

200 95.05.00 00.27 100.00 87.02.00 99.02.00 89.02.00 90.05.00

300 96 00.18 100.00 87.02.00 100.00 83.08.00 95.02.00

400 96 00.18 100.00 87.02.00 100.00 83.08.00 95.02.00

500 97.01.00 00.16 100.00 91.05.00 100.00 89.02.00 95.02.00

Based on Table 3 which contains the training results, the epoch 500 value gives the
best accuracy value compared to the use of epoch 100, 200, 300 and 400. In
addition, epoch 500 also gives the lowest loss value.

Software Testing

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 213

Testing on Model
The results of the training process that has been carried out show that the

model works well on the training data. Using the testing dataset that has been
prepared previously, the testing process is done to ensure that the model also
achieve a good result on new data. In this study, the process was carried out by
testing the model achieved at each of the epoch values namely 100, 200, 300, 400
and 500. The testing process carried out on the different epoch values had
different accuracy results. The following is Table 4 that contains the results of the
model testing process.

Table 4. Testing Result

Epoch Accuracy

(%)
100 76.47
200 77.12
300 78.65
400 78.65
500 80.83

Based on the test results using the epoch values of 100, 200, 300, 400 and

500, the best model testing result is the use of the 500 epoch values. The following
are the results of the testing model on the 500 epoch:

Table 5. Testing Model

No Sample Name Label Duration Accuracy
Classification

Result

Croup

01.00 croup.t1.wav croup 9s 100% 12 croup

02.00 croup.t2.wav croup 8s 100% 11 croup

03.00 croup.t3.wav croup 14s 100% 22 croup

04.00 croup.t4.wav croup 16s 100% 26 croup

05.00 croup.t5.wav croup 10s 26%
5 noise, 4 croup,

3 wet, 3 uncertain

06.00 croup.t6.wav croup 10s 100% 14 croup

Dry

07.00 dry.t1.wav dry 4s 100% 2 dry

08.00 dry.t2.wav dry 3s 100% 1 dry

09.00 dry.t3.wav dry 4s 50%
1 dry, 1

whooping

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 214

10.00 dry.t4.wav dry 4s 100% 3 dry

11.00 dry.t5.wav dry 5s 100% 5 dry

12.00 dry.t6.wav dry 17s 72%
21 dry, 7 wet, 1

uncertain

13.00 dry.t7.wav dry 9s 16%

4 wet, 4

uncertain, 2 dry,

2 whooping

14.00 dry.t8.wav dry 3s 0% 1 uncertain

15.00 dry.t9.wav dry 5s 80% 4 dry, 1 wet

16.00 dry.t10.wav dry 6s 100% 7 dry

17.00 dry.t11.wav dry 18s 48%
15 dry, 12 wet, 4

uncertain

18.00 dry.t12.wav dry 4s 0%
2 wet, 1

whooping

Noise

19.00 noise.t1.wav noise 22s 56%
22 noise, 7 wet, 4

dry, 4 uncertain

20.00 noise.t2.wav noise 20s 100% 35 noise

21.00 noise.t3.wav noise 27s 100% 49 noise

22.00 noise.t4.wav noise 3s 100% 1 noise

Wet

23.00 wet.t1.wav wet 6s 66%
4 wet, 2

whooping

24.00.00 wet.t2.wav wet 4s 100% 2 wet

25.00.00 wet.t3.wav wet 4s 100% 2 wet

26.00.00 wet.t4.wav wet 3s 100% 1 wet

27.00.00 wet.t5.wav wet 4s 0% 3 whooping

28.00.00 wet.t6.wav wet 5s 60% 3 wet, 2 uncertain

29.00.00 wet.t7.wav wet 6s 100% 7 wet

30.00.00 wet.t8.wav wet 4s 100% 3 wet

31.00.00 wet.t9.wav wet 5s 100% 4 wet

32.00.00 wet.t10.wav wet 4s 66%
2 wet, 1

whooping

33.00.00 wet.t11.wav wet 5s 100% 4 wet

34.00.00 wet.t12.wav wet 4s 100% 3 wet

35.00.00 wet.t13.wav wet 5s 75%
3 wet, 1

whooping

36.00.00 wet.t14.wav wet 4s 100% 2 wet

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 215

37.00.00 wet.t15.wav wet 4s 100% 2 wet

Whooping

38.00.00 whooping.t1.wav whooping 4s 100% 3 whooping

39.00.00 whooping.t2.wav whooping 6s 100% 6 whooping

40.00.00 whooping.t3.wav whooping 8s 100% 11 whooping

41.00.00 whooping.t4.wav whooping 5s 100% 5 whooping

42.00.00 whooping.t5.wav whooping 5s 100% 5 whooping

43.00.00 whooping.t6.wav whooping 4s 100% 3 whooping

44.00.00 whooping.t7.wav whooping 4s 100% 3 whooping

45.00.00 whooping.t8.wav whooping 5s 25%

1 croup, 1 dry, 1

noise, 1

whooping

46.00.00 whooping.t9.wav whooping 5s 80%
4 whooping, 1

uncertain

47.00.00 whooping.t10.wav whooping 5s 100% 5 whooping

48.00.00 whooping.t11.wav whooping 5s 0% 4 wet, 1 uncertain

49.00.00 whooping.t12.wav whooping 5s 60%
3 whooping, 2

uncertain

50.00.00 whooping.t13.wav whooping 5s 100% 5 whooping

51.00.00 whooping.t14.wav whooping 5s 100% 4 whooping

52.00.00 whooping.t15.wav whooping 5s 100% 4 whooping

53.00.00 whooping.t16.wav whooping 5s 100% 5 whooping

54.00.00 whooping.t17.wav whooping 5s 100% 5 whooping

The testing results presented in a confusion matrix as seen in Table 6 below.

Table 6. Confusion Matrix

 predicted labels

 croup dry noise wet whooping uncertain

actual

values

croup 89 0 5 3 0 3

dry 0 61 0 26 4 10

noise 2 4 107 7 0 4

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 216

wet 0 0 0 42 7 2

whooping 1 1 1 4 72 4

To evaluate the performance of the classifier, the following steps are used:
True Positive (TP), subjects with class 'x' correctly classified the cough as

class 'x'.
False Positive (FP), the subject with the condition class '~x' but the classifier

classifies the cough as class 'x'.
True Negative (TN), subjects with class '~x' and classifier classified the cough

as class '~x'.
False Negative (FN), the subject with cough class 'x' and classifier classified

the sound as class '~x'.
Sensitivity, refers to the classifier's ability to correctly identify subjects with

class 'x'.
Sensitivity = TP /(TP + FN)
Classification Accuracy of the Classifier, this is the ratio of the total number of

correct assessments to the total number of assessments.
Accuracy = (TN + TP)/(TN + TP + FN + FP)

Table 7. Results of Data Performance Evaluation for Class Classification of
Croup Cough

Classification Result Value
Total Amount of Data 459
True Positive (TP) 89
True Negative (TN) 356
False Positive (FP) 3
False Negative (FN) 11
Sensitivity / Recall 89%
Accuracy 97%

Based on table 7. above, the results of the performance evaluation of the data

used for the classification of croup cough class obtained an accuracy value of 97%.
Classification is able to separate different data by correctly classifying subject data
in the croup class. It can be seen from 100 cough validation data features, obtained
True Positive (TP) as many as 89 data features.

Table 8. Results of Data Performance Evaluation for Class Classification of

Dry
Classification Result Value

Total Amount of Data 459
True Positive (TP) 61
True Negative (TN) 353
False Positive (FP) 5
False Negative (FN) 40
Sensitivity / Recall 60%
Accuracy 90%

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 217

Based on table 8. above, the results of the evaluation of the performance of
the validation data used for the dry cough class classification obtained an accuracy
value of 90%. Classification is able to separate different data by correctly
classifying subject data in the dry class. It can be seen from 101 cough validation
data features, obtained True Positive (TP) as many as 61 data features.

Table 9. Results of Data Performance Evaluation for Class Classification of
Noise Cough

Classification Result Value
Total Amount of Data 459
True Positive (TP) 107
True Negative (TN) 329
False Positive (FP) 6
False Negative (FN) 17
Sensitivity / Recall 86%
Accuracy 95%

Based on table 9. above, the results of the evaluation of the performance of

the validation data used for class classification of noise obtained an accuracy value
of 95%. Classification is able to separate different data by correctly classifying the
subject data in the noise class. Seen from 124 samples of noise class data, obtained
True Positive (TP) as many as 107 data samples.

Table 10. Results of Data Performance Evaluation for Class Classification of

Wet Cough

Classification Result Value
Total Amount of Data 459

True Positive (TP) 42
True Negative (TN) 368
False Positive (FP) 40
False Negative (FN) 9
Sensitivity / Recall 82%

Accuracy 89%

Based on table 10 above, the results of the evaluation of the performance of

the data used for the classification of the wet class obtained an accuracy value of
89%. Classification is able to separate different data by correctly classifying subject
data in the wet class. It can be seen from 51 samples of wet class data, obtained
True Positive (TP) as many as 42 data samples.

Table 11. Results of Data Performance Evaluation for Class Classification of

Whooping Cough

Classification Result Value
Total Amount of Data 459
True Positive (TP) 72
True Negative (TN) 365
False Positive (FP) 11
False Negative (FN) 11

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 218

Sensitivity / Recall 87%
Accuracy 95%

Based on table 11. above, the results of the evaluation of the performance of

the validation data used for the classification of the whooping class obtained an
accuracy value of 95%. Classification is able to separate different data by correctly
classifying subject data in the whooping class. It can be seen from 83 samples of
whooping class data, obtained True Positive (TP) as many as 72 data samples.

Hardware Testing and Analysis
Arduino Nano 33 BLE Sense Test and Analysis
The Arduino Nano 33 BLE Sense test and analysis was carried out to find out

how the performance and memory usage was when the program was run on the
Arduino Nano 33 BLE Sense.

the program uses 259624 bytes or 26% of the total maximum storage space
of 983040. And global variables used are 50032 bytes or 19% of dynamic memory
with a maximum number of 262144 bytes. This means that the program that is run
on the Arduino Nano 33 BLE Sense can run well.

Testing and Analysis of LED Components for classification with

Confidence Rating > 0.70
The testing of the cough classification indicator program aims to test the

accuracy of the indicators in classifying the system according to predetermined
conditions. In this test, LED is used as an indicator of cough classification. There
are 4 LEDs that serve as indicators, namely, a red LED as an output for the
classification of croup cough, a green LED as a dry cough classification output, a
blue LED as a wet cough classification output (phlegm) and a yellow LED as a
whooping cough classification output (whooping).

Percentage of Success = Total Percentage of Success Trials
Percentage of Success = 19/25 x 100%
Percentage of Success = 76%

Table 12. Cough Classification Indicator Test

No Name
Duration

(Frequency)

Notes R G B Y

(Croup) (Dry) (Wet) (Whooping)

1 Croup-1 45s (5x) 4x - - 1x Fit

2 Croup-2 10s (2x) 2x - - - Fit

3 Croup-3 92s (6x) 5x - - - Fit

4 Croup-4 34s (6x) 6x - - - Fit

5 Croup-5 25s (4x) 4x - - - Fit

6 Dry-1 11s (3x) - 2x - - Fit

7 Dry-2 6s (2x) - 1x - - Fit

8 Dry-3 10s (3x) - 1x - 1x Not Fit

9 Dry-4 9s (2x) - 1x - - Fit

10 Dry-5 5s (1x) - 1x - - Fit

11 Wet-1 8s (2x) - - 1x - Fit

12 Wet-2 6s (2x) - - - 1x Not Fit

13 Wet-3 5s (1x) - - - - Not Fit

14 Wet-4 5s (1x) - - - - Not Fit

https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1y810tw
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.4i7ojhp
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2xcytpi
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1ci93xb
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.3whwml4
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2bn6wsx
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.qsh70q
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.3as4poj
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1pxezwc
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.49x2ik5
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2p2csry
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.147n2zr
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.3o7alnk
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.23ckvvd

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 219

15 Wet-5 6s (2x) - 1x 1x - Not Fit

16 Whooping-1 26s (3x) 1x - - 2x Fit

17 Whooping-2 21s (2x) - 1x - 1x Not Fit

18 Whooping-3 22s (2x) - - - 1x Fit

19 Whooping-4 54s (4x) - 1x - 2x Fit

20 Whooping-5 72s (7x) - - - 6x Fit

21 Noise-1 5s (1x) - - - - Fit

22 Noise-2 5s (1x) - - - - Fit

23 Noise-3 5s (1x) - - - - Fit

24 Noise-4 5s (1x) - - - - Fit

25 Noise-5 5s (1x) - - - - Fit

Based on Table 12 above, it can be seen that from 25 experiments conducted

with 5 classes of croup cough sounds, 5 classes of dry cough sounds, 5 types of wet
cough sound classes, 5 classes of whooping cough sounds and 5 classes of noise
sounds with different amounts of sound duration. The difference and frequency of
episodes of different coughs according to the table above resulted in a percentage
of successful cough classification of 76%.

Overall System Testing and Analysis
Overall system testing is carried out to determine the ability of the system

that has been built in solving the given problem, namely determining the type of
cough sound based on voice feature extraction and indicating it via LED according
to each type of cough.

Testing this system is done by looking at how the system gives an indication
of the sound given. The results of system testing can be seen in Table 13 below.
Overall system testing result in the table shows there are 5 incorrect classification
results and 20 correct classification results according to the actual label using
epoch 500. The percentage of the system's success in indicating the type of
coughing sound is:

Percentage of Success = Number of System Success Number of Trials
Percentage of Success = (20/25) x 100%
Success Percentage = 80%

Of the 25 data that have gone through the cough sound classification process
in the system, the percentage of success is 80%.

Table 13. Overall System Test

No Class
LED

Serial Monitor Time(s) Notes
R G B Y

1 Croup 1 0 0 0
croup: 0.97656

3.476 Fit
class : croup

2 Croup 1 0 0 0
croup : 0.78516

3.476 Fit
class : croup

3 Croup 1 0 0 0
croup: 0.86719

3.476 Fit
class : croup

4 Croup 1 0 0 0
croup:0.94922

3.476 Fit
class : croup

5 Croup 1 0 0 0
croup:0.98828

3.477 Fit
class : croup

6 Dry 0 1 0 0
dry:0.96484

3.476 Fit
class : dry

7 Dry 0 0 0 0 uncertain 3.476 Not Fit

8 Dry 0 1 0 0
dry:0.79297

3.476 Fit
class : dry

https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.ihv636
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.32hioqz
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1hmsyys
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.41mghml
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2grqrue
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.vx1227
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.3fwokq0
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1v1yuxt
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.4f1mdlm
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2u6wntf
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.19c6y18

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 220

9 Dry 0 1 0 0
dry: 0.76562

3.476 Fit
class : dry

10 Dry 0 1 0 0
dry:0.75000

3.476 Fit
class : dry

11 Wet 0 0 1 0
wet: 0.81641

3.476 Fit
class : wet

12 Wet 0 0 0 1
whooping: 0.98828

3.476 Not Fit
class : whooping

13 Wet 0 0 0 0 class : uncertain 3.476 Not Fit

14 Wet 0 1 0 0
dry: 0.78906

3.477 Not Fit
class : dry

15 Wet 0 0 1 0
wet: 0.75000

3.476 Fit
class : wet

16 Whooping 0 0 0 1
whooping: 0.86719

3.476 Fit
class : whooping

17 Whooping 0 0 0 1
whooping: 0.76562

3.477 Fit
class : whooping

18 Whooping 0 0 0 1
whooping: 0.89844

3.476 Fit
class : whooping

19 Whooping 0 0 0 1
whooping: 0.80078

3.476 Fit
class : whooping

20 Whooping 0 0 0 1
whooping: 0.99609

3.476 Fit
class : whooping

21 Noise 0 0 0 0
noise: 0.72656

3.476 Fit
wet: class : noise

22 Noise 0 0 0 0
noise: 0.99609

3.476 Fit
class : noise

23 Noise 0 0 0 0
noise: 0.98438

3.477 Fit
class : noise

24 Noise 0 0 0 0
noise: 0.99609

3.476 Fit
class : noise

25 Noise 0 0 0 0
noise: 0.81250

3.476 Fit
class : noise

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 221

E. Conclusion
Based on testing and analysis of the whole system on a portable system for

classifying cough types based on voice feature extraction using tiny machine
learning, the conclusions are as follows:

The training process on the classification of the Neural Network algorithm
using epoch 500 can increase the accuracy value to produce an accuracy
percentage of 97.1% and a loss of 0.16.

The testing process on the Neural Network algorithm classification carried
out on Model Testing using epoch 500 produces an accuracy percentage of 80.83%.

The system testing environment affects the classification accuracy value on
the system when in a noisy environment, the sensor will detect every incoming
sound and affect sensor readings.

The use of a window size of 3000 ms has described a more realistic feature
space for concept learning. Spatial distance is quite compatible with conceptual
distance. However it is not possible to define a perfect characteristic function
based on this feature due to imperfect separation, but this realistic feature space
can be used to study useful approximations for characteristic functions with small
errors.

The use of zero-pad data helps data samples that are shorter than the
window size can still be processed by adding a zero value to data samples that are
shorter than the window size so that the system gets better performance.

F. References

[1] G. Deshpande and B. W. Schuller, “An Overview on Audio, Signal, Speech, &

Language Processing for COVID-19,” arXiv, pp. 1–5, 2020.
[2] Prihastomo, Ibnu Hafid, “Optimasi Fitur Suara pada Klasifikasi Suara Batuk

Basah/Kering Anak-Anak dengan Algoritme Genetika” Universitas Islam
Yogyakarta.2018.

[3] M. Mlynczak, K. Pariaszewska, and G. Cybulski, “Automatic cough episode
detection using a vibroacoustic sensor,” Proc. Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. EMBS, vol. 2015-Novem, no. September, pp. 2808–2811, 2015, doi:
10.1109/EMBC.2015.7318975.

[4] N. Afifah, “Klasifikasi Penyakit Batuk Berdasarkan Sinyal Data Suara
Menggunakan Ekstraksi Ciri Fast Fourier Transform Dan Power Spectral
Density Dengan Algoritma Jaringan Saraf Tiruan- Propagasi Balik,” vol. 2, no. 2,
pp. 2841–2846, 2012.

[5] H. Chatrzarrin, A. Arcelus, R. Goubran, and F. Knoefel, “Feature extraction for
the differentiation of dry and wet cough sounds,” MeMeA 2011 - 2011 IEEE Int.
Symp. Med. Meas. Appl. Proc., pp. 162–166, 2011, doi:
10.1109/MeMeA.2011.5966670.

[6] World Health Organozation. 2018. "Pertussis". https://www.who.int/health-
topics/pertussis#tab=tab_1 . accessed at6 Februari 2021 , 16.20 .

[7] J. Charles, H. Britt, and S. Fahridin, "Croup," Australian Family Physician, vol. 39,
no. 5, pp. 269-269, 2010.

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 222

[8] J. Liu, Z. Wang, G. Li, X. Xu, and Z. Qiu, “Cough Detection Using Deep Neural
Networks,” 2014.

[9] Y. Shi, H. Liu, Y. Wang, M. Cai, and W. Xu, “Theory and application of audio-
based assessment of cough,” J. Sensors, vol. 2018, 2018, doi:
10.1155/2018/9845321.

[10] Mayo Clinic Staff. "Whooping Cough".
https://www.mayoclinic.org/diseases-conditions/whooping-
cough/symptoms-causes/syc-20378973. accessed at 6 Februari 2021 , 16.00 .

[11] C. L. Bjornson and D. W. Johnson, "Croup in children," CMAJ: Canadian
Medical Association Journal, vol. 185, no. 15, pp. 1317-1323, 2013.

[12] R. V. Sharan, U. R. Abeyratne, V. R. Swarnkar, and P. Porter, “Automatic
croup diagnosis using cough sound recognition,” IEEE Trans. Biomed. Eng., vol.
66, no. 2, pp. 485–495, 2019, doi: 10.1109/TBME.2018.2849502.

[13] Janapa Reddi, Vijay. " The Future of ML is Tiny and Bright
".https://learning.edx.org/course/course-
v1:HarvardX+TinyML1+3T2020/block-
v1:HarvardX+TinyML1+3T2020+type@sequential+block@31122d81c836493
0883bf446d457bb3e/block-
v1:HarvardX+TinyML1+3T2020+type@vertical+block@61c2efbfd16445b1a34
2f1926ab8d47a , accessed at22 Januari 2021, 13.40 .

[14] Oyedeji, A., Salami, A., Folorunsho, O., & Abolade, O. (2020, March 30).
Analysis and Prediction of Student Academic Performance Using Machine
Learning. JITCE (Journal of Information Technology and Computer
Engineering), 4(01), 10-15.
https://doi.org/https://doi.org/10.25077/jitce.4.01.10-15.2020

[15] Nofriani, N. (2020, September 30). Machine Learning Application for
Classification Prediction of Household’s Welfare Status. JITCE (Journal of
Information Technology and Computer Engineering),4(02),72-82.
https://doi.org/https://doi.org/10.25077/jitce.4.02.72-82.2020

[16] Lutkevich, Ben. " Definition Microcontroller (MCU) " .
https://internetofthingsagenda.techtarget.com/definition/microcontroller,
accessed at22 Januari 2021 , 13.23 .

[17] Arduino Team. 2018. " Getting started with the Arduino NANO 33 BLE
Sense ". https://www.arduino.cc/en/Guide/NANO33BLESense/ . accessed at23
Januari 2021 , 20.23 .

[18] Tensorflow.2021."Get started with TensorFlow Lite".
https://www.tensorflow.org/lite/guide/get_started . accessed at1 Februari
2021 , 13.30 .

[19] Tanwar, Sanchit. 2019."Building our first neural network in keras" .
https://towardsdatascience.com/building-our-first-neural-network-in-keras-
bdc8abbc17f5#:~:text=Keras%20is%20a%20simple%20tool,output%20is%2
0of%204%20values.&text=In%20our%20neural%20network%2C%20we,of%
2016%20and%2012%20dimension . accessed at1 Februari 2021 , 15.52 .

[20] Keras. "Keras". https://keras.io/ . accessed at29 Januari 2021 , 11.30 .
[21] P. Works and S. Recognition, “MFCC Features,” pp. 7–16, 1959, doi:

10.1007/978-3-319-49220-9.

ISSN 2302-4364 (print) ISSN 2549-7286 (online)

Indonesian Journal of Computer Science Vol., No., Edisi | page 223

[22] Edge Impulse .2020. " TinyML for All Developers with Edge Impulse" .
https://www.hackster.io/news/tinyml-for-all-developers-with-edge-impulse-
2cfbbcc14b90 . accessed at5 Februari 2021 , 15.42 .

[23] Hackster .2020. " Edge Impulse Brings TinyML to Millions of Arduino
Developers" . https://www.hackster.io/news/edge-impulse-brings-tinyml-to-
millions-of-arduino-developers-91cec576dc99 . accessed at1 Februari 2021 ,
13.00 .

[24] W. Thorpe, M. Kurver, G. King, and C. Salome, “Acoustic analysis of cough,”
ANZIIS 2001 - Proc. 7th Aust. New Zeal. Intell. Inf. Syst. Conf., no. November, pp.
391–394, 2001, doi: 10.1109/ANZIIS.2001.974110.

[25] C. W. Thorpe, L. J. Toop, and K. P. Dawson, “Towards a quantitative
description of asthmatic cough sounds,” Eur. Respir. J., vol. 5, no. 6, pp. 685–
692, 1992.

[26] Arduino Team. 2020. " Arduino CLI: An introduction ".
https://blog.arduino.cc/2020/03/13/arduino-cli-an-introduction/ . accessed
at23 Januari 2021 , 20.10 .

[27] National Center for Immunization and Respiratory Diseases, Division of
Bacterial Diseases .2017. " Pertussis (Whooping Cough)".
https://www.cdc.gov/pertussis/about/signs-symptoms.html . accessed at6
Februari 2021 , 15.30 .

[28] Khandelwal, Renu. 2020 . " A Basic Introduction to TensorFlow Lite " .
https://towardsdatascience.com/a-basic-introduction-to-tensorflow-lite-
59e480c57292 . accessed at1 Februari 2021 , 13.20 .

[29] Frontline Solvers ."Neural Network Classification" .
https://www.solver.com/xlminer/help/neural-networks-classification-intro .
accessed at24 Januari 2021 , 20.52 .

