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Cough is one of the most common markers that can provide information in 
diagnosing a disease. More specifically, cough is a common symptom of many 
respiratory infections. There are several types of cough, including: dry cough, 
wet cough (cough with phlegm), croup cough and whooping cough. This 
study aims to create a system that can classify the sounds of coughing up 
phlegm, dry cough, whooping cough and croup cough. The system 
development uses the concept of tiny machine learning. In the system built, 
Arduino Nano 33 BLE Sense is used as a control device and LED is used as an 
output device. 

In this study, the classification of dry cough, wet cough, croup cough and 
whooping cough was performed using the MFCC voice feature extraction. In 
the process of classifying coughing sounds using the Neural Network 
Classifier, the system has a percentage of dataset training accuracy from a 
total of 5 classes (croup, dry, noise, wet, whooping) of 97.1% by applying an 
epoch value of 500, window size 3000ms and a window increase of 500ms. 
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A. Introduction 
Based on data from Google until January 2021, there were more than 96.2 

million confirmed positive cases of COVID-19 worldwide. This has led to an 
increasing need for screening and early diagnosis tools to reach a very large and 
dispersed population. For diagnostic purposes, the World Health Organization 
(WHO) describes the main symptoms of COVID-19 as high temperature, difficulty 
breathing, and cough [1]. Cough is one of the most common markers that can 
provide information in diagnosing a disease. More specifically, cough is a common 
symptom of many respiratory infections. There are several types of cough, 
including: dry cough, wet cough (cough with phlegm), croup cough and whooping 
cough. 

In a pandemic condition where disease diagnosis is expected to be carried 
out without direct contact between patients and doctors, the question of the type 
of cough is one that is difficult for patients to answer. Usually doctors or health 
experts distinguish the sound of coughing manually. This method is done by 
listening to the patient's cough directly by utilizing the sense of hearing, namely 
the ear. This way of listening directly is certainly not what is expected in the 
conditions of the COVID-19 pandemic because it presents risks for doctors or other 
health workers who examine them.  

Even if it is circumvented by playing a recorded coughing sound to the 
doctor, this method has shortcomings in several factors. Not all doctors or health 
workers can easily distinguish the types of coughs from sound recordings. Human 
factors that present a high level of possible misdiagnosis include age factors that 
cause hearing loss, stress or fatigue factors that cause inaccuracy, and also the 
influence of work experience factors [2]. If a patient with a cough, for example, is 
diagnosed with lung cancer on his first doctor's visit and later medical records 
show that the patient really does have the flu, that would be considered a 
misdiagnosis. Therefore, in this pandemic situation, it is clear that a system is 
needed that can help classify the type of cough based on the coughing sound 
produced. by patients automatically, accurately and consistently. 

Several studies have been conducted previously to provide convenience for 
medical personnel in diagnosing cough disease quickly and computerized. In 
research [3] an automatic cough detection system was built with an approach to 
monitoring the frequency of coughing sounds designed using the Digital Signal 
Processing (DSP) algorithm. This DSP algorithm extracts features such as Linear 
Predictive Coding (LPC) coefficients, Mel Frequency Cepstral Coefficients (MFCC) 
and spectral characteristics of a sound signal to detect whether the sound is 
categorized as coughing or not. In another study [4], a classification system for 
coughing sounds was made with feature extraction using Fast Fourier Transform 
(FFT) and Power Spectral Density (PSD) as well as applying the Artificial Neural 
Network-Back Propagation (ANN-PB) method.  

To differentiate between types of cough based on the characteristics of the 
sound, a separate study [5] examined the sound waveforms and spectrograms of 
dry and wet coughs to extract characteristic features of the sound associated with 
the presence of mucus in the airways as a marker of wet cough. From other 
literature, it is known that dry cough is usually distinguished by a loud coughing 
sound [5]. Whooping cough can be characterized by a series of loud coughing 
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sounds that occur continuously [6]. Meanwhile, croup cough is characterized by 
infection in the upper respiratory tract which causes a characteristic coughing 
sound such as barking [7]. 

These studies generally still use computing devices in the form of computers 
with computing and simulation software (e.g Matlab) so that they still lack the 
portability aspect of the system to be used flexibly in different locations. 
Fortunately, the current development of edge computing technology has enabled 
the machine learning or deep learning inference processes needed for cough 
detection and classification to be carried out in real-time on relatively compact and 
portable embedded devices. Taking that fact into consideration, this research 
proposes a new approach by developing a portable system for classifying cough 
types based on audio feature extraction using MFCC, Tiny Machine Learning and 
Arduino Nano 33 BLE Sense. 
 
B. Theory 
 

Cough 
The nature of cough is important in pathological studies for diagnostic 

purposes. A typical cough sound is usually divided into three phases: (1) explosive 
expiration due to the sudden opening of the glottis, (2) an intermediate phase with 
attenuation of coughing sounds, and (3) a voiced phase due to closure of the vocal 
cords. In fact, there are various patterns of cough that occur; For example, some 
coughing sounds have only two phases (intermediate phase and voiced phase) and 
the blast phase is usually prolonged due to several diseases [9]. 

 
Wet Cough (Cough with phlegm) 
Usually wet cough is caused by the presence of foreign objects (such as 

bacteria, viruses) that cause inflammation and secretions in the lower respiratory 
tract: bronchitis, asthma, pneumonia. Sometimes it can also be triggered by the 
upper respiratory tract. 

 
Dry Cough 
Dry Cough is an indication name for a dry type of cough without phlegm. A 

typical cough sound signal, consists of three phases. Phase 1: initial opening blast, 
Phase 2: noisy airflow and Phase 3: glottal closure [8]. There are cases where Stage 
3 is not seen in the cough signal [9]. 

 
Whooping Cough (Whooping Cough) 
Whooping cough is a highly contagious respiratory infection. In many people, 

this is characterized by a severe cough followed by high-pitched breathing that 
sounds like a scream [10]. 

Whooping cough, also known as pertussis, is a highly contagious respiratory 
infection caused by the bacterium Bordetella pertussis. In 2018, there were more 
than 151,000 cases of pertussis globally. Pertussis spreads easily from person to 
person mainly through droplets produced by coughing or sneezing. This disease is 
most dangerous in infants, and is the leading cause of illness and death in this age 
group. [6] 
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Deaths associated with whooping cough are rare but occur most often in 
infants. That's why it's so important for pregnant women - and anyone else who 
will be in close contact with the baby - to be vaccinated against whooping cough. 
When an infected person coughs or sneezes, tiny droplets containing germs are 
sprayed into the air and inhaled into the lungs of anyone who happens to be 
nearby. 

 
Croup Cough 
Croup is a common respiratory infection in children, croup can cause 

inflammation of the upper airways that restricts normal breathing and produces a 
coughing sound that is usually described as a "barking cough". 

A 2008-2009 study in Australia on children aged 0-14 years found croup in 
1.2% of subjects or about 154,000 times per year [7]. It is prescribed to be most 
common in children aged 1-4 years. Upper airway inflammation caused by 
infection restricts normal breathing leading to a 'croupy' or 'barking' cough 
sometimes accompanied by hoarseness, and respiratory distress [11]. 

A croup cough can be life-threatening if severe. It is the most common airway 
obstruction in children between the ages of 6 months and 6 years, peaking 
between the ages of 1 and 2 years. A characteristic coughing sound is the main 
clinical feature used in clinical practice to diagnose croup. Doctors make subjective 
judgments on coughing sounds such as barking after listening to them. Therefore 
the diagnosis of croup, is limited to human perception and depends on the skill of 
the doctor [12]. 

 
Tiny Machine Learning 
Tiny Machine Learning or often known as TinyML is a rapidly growing field 

of machine learning technology and applications including algorithms, hardware, 
and software capable of analyzing sensor data on devices (vision, audio, IMU, 
biomedical, etc.) very low, typically in the mW range, enabling a variety of always-
on use cases targeting battery-operated devices [13]. Machine Learning is one 
aspect of Artificial Intelligence (AI) where computing systems are able to learn 
from data and make decisions. Machine Learning has become one of the most 
important areas in development organizations looking for innovative ways to 
understand data assets to help businesses reach new levels of understanding [14]. 
One of the most studied research topics on supervised machine learning is case 
classification [15]. 

 
Arduino Nano 33 BLE Sense 
The Arduino Nano 33 BLE Sense board has been designed to offer a power-

efficient and cost-effective solution for builders who wish to have energy-efficient 
bluetooth connectivity. The Nano 33 BLE Sense is the same as the Arduino Nano 33 
BLE with the addition of a set of sensors [17]. 

 
Cough 
The nature of cough is important in pathological studies for diagnostic 

purposes. A typical cough sound is usually divided into three phases, namely: (1) 
explosive expiration due to the sudden opening of the glottis, (2) an intermediate 
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phase with attenuation of the coughing sound, and (3) a voiced phase due to 
coughing. 

 

 
 

Figure 1. Arduino Nano 33 BLE Sense 
 

The Arduino Nano 33 BLE Sense is an evolution of the traditional Arduino 
Nano, but features a much more powerful processor. This allows for larger 
programs than with the Arduino Uno (which has only 1MB of program memory, 32 
times more), and with more variables (128 times more RAM). The main processor 
includes other amazing features like bluetooth pairing via NFC and a very low 
power consumption mode. 

 
Mel Frequency Cepstral Coefficient (MFCC) 
One of the most important types of parametric representation used in speech 

recognition is the Mel Frequency Cepstral Coefficient (MFCC). MFCC describes the 
characteristics of the audio data frame in the cepstral domain. This shows the 
short-term power spectrum of a sound. 

The MFCC feature extraction technique basically involves windowing the 
signal, applying DFT, taking a log of magnitude, and then bending the frequency on 
the Mel scale, followed by applying DCT (Discrete Cosine Transform) in reverse 
[21]. 

 
Edge Impulse 
Edge impulse provides services that enable machine learning for all 

developers with open source tools. Edge Impulse enables easy collection of real 
sensor data, signal processing directly from raw data to neural network, testing 
and deployment to any target device. This open source allows collecting data from 
or deploying code to any device. 

Using Edge Impulse, it is easy to collect sensor data, train a machine learning 
(ML) model on this data in the cloud, and then apply the model back to Arduino 
devices [29]. In this way, it is possible to integrate the model into the Arduino 
sketch with a single function call. Sensors are then much smarter and able to 
understand complex events. Time series data is a type of data that is collected 
according to the order of time in a certain time span. then on the edge impulse it is 
necessary to set the window size and window increase time. 

 
Neural Network Classification 
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Neural Network Classification (NN) is an electronic network of neurons that 
is relatively rough based on the neural structure of the brain. Neural Network 
Classification processes the recordings one by one, and learns by comparing their 
record classification with the actual known record classification. 

Neural Network takes inspiration from the learning process that occurs in 
the human brain. NNs consist of artificial network functions, called parameters, 
that allow a computer to learn, and improve itself, by analyzing new data. Each 
parameter, sometimes also referred to as a neuron, is a function that produces an 
output, after receiving one or more inputs. The output is then passed on to the next 
layer of neurons, which uses it as the input of its own function, and produces 
further output. The output is then passed on to the next layer of neurons, and 
continues until each layer of neurons has been considered, and the terminal 
neuron has received its input. The terminal neurons then output the final results 
for the model. 

 

 
C. Research Methodology 

System General Design 
The following is a general design of the system that will be made. 
 

 
Figure 2. General Design 

 
Based on Figure 2 above, the microphone on the Arduino Nano 33 BLE Sense 

captures the sound in the surrounding environment. Then the microphone on the 
microcontroller detects the captured sound and will be classified using the Neural 
Network Classifier on the Arduino Nano 33 BLE Sense. 

Furthermore, the results of the system classification are displayed in the 
form of an output in the form of LEDs, where each LED color represents a different 
type of coughing sound, namely: yellow LED to describe coughing up phlegm; 
Orange LED to represent dry cough; Red LED to represent whooping cough; and a 
blue LED to represent croup cough. 

Process Design 
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Figure 3. Process Flowchart 

 
Based on Figure 3 above, this system is divided into several process stages, 

namely: The first process is the microphone is active and receives signals or sound 
waves from the surrounding environment. Then the system will classify the voice 
signal. Furthermore, the results of the system classification will be displayed in the 
form of an output in the form of a lit LED. 

 
Hardware Design 
The overall hardware design can be seen in Figure 4. 
 

 
Figure 4. Hardware Design 

 
Based on Figure 4. above, the working principle of each device is as follows. 
1. The built-in Arduino Nano 33 BLE Sense microphone sensor MP34DT05, is 

used as a tool or component used to record audio signals and then convert them 
into an analog signal electrical waveform. 

2. Arduino Nano 33 BLE Sense, acts as a controller and processing for 
systems with machine learning and processing for reading voice signal data and 
then performs the classification process for voice signals. 

3. Output LED, serves to display the results of the system classification in the 
form of LEDs where each LED color represents the type of system classification for 
different cough sounds. 
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Software Design 
The software used in this system is the Arduino Program and the Edge 

Impulse Application, the program that will be used is divided into three, namely 
the system training program, the system testing program, and the program 
displaying the output of the system classification results in the form of LEDs. 

 
System Training Design 
In designing this training system, it is useful to conduct training on the 

system in order to be able to get the results of the classification of the type of 
coughing sound according to what has been determined. This training process 
begins by labeling each audio dataset and then proceeds to create an impulse 
design. The impulse design is organized into 4 blocks: time series data, processing, 
learning, and output features. 

Then perform feature extraction using MFCC, then the system will take the 
dataset randomly and then classify it using Neural Network (Hard Library). The 
purpose of conducting system training is to get the data model as desired. This 
software will be designed based on the flowchart below: 

 
 

Figure 5. System Training Flowchart 
 

System Testing Design 
At the design stage, system testing is carried out by classifying cough sounds 

using live testing on Edge Impulse which is connected to a mobile phone. Then 
testing was also carried out on the Arduino Nano 33 BLE Sense system. For more 
details on how this software is designed, it can be seen in the following algorithm. 



ISSN 2302-4364 (print)  ISSN 2549-7286 (online) 

Indonesian Journal of Computer Science   Vol., No., Edisi | page 209   

 
Figure 6. System Testing Flowchart 

 
D. Result and Discussion 

 
The classification system for the type of cough based on voice feature 

extraction is implemented based on the tools and materials described in the 
previous chapter. So that the implementation and testing process is structured, the 
implementation and testing is divided into two parts of discussion, namely 
hardware implementation and software implementation. 

 
Hardware Implementation 

Hardware implementation is the process of assembling (wiring) hardware 
components that have been adapted to the hardware requirements of the system. 
To build a cough classification system based on this sound feature extraction, the 
hardware used is Arduino Nano 33 BLE Sense, LED, built-in microphone on 
Arduino Nano 33 BLE Sense and jumper cables. These components are arranged as 
shown in Figure 7. 

 

 
Figure 7. Hardware Implementation 

 
In Figure 7. these hardware components have the following functions: 
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• Arduino Nano 33 BLE Sense, functions as the main system and as a 
controller that will process data, process the work of the system and 
run a cough classification program based on sound feature extraction.  

• MP34DT05 microphone sensor built-in Arduino Nano 33 BLE Sense, 
serves to receive and capture sound signals from the environment.  

• LEDs here serve as output media for displaying the classification 
result, i.e the type of coughing, identified from the sound provided. 

 
Software Implementation 

Software implementation is needed so that the hardware can work according 
to system requirements. The process of implementing the software into the system 
is as follows: 

 
Collecting Dataset 
In this study, data collection was carried out on the Edge Impulse application. 

Before collecting the dataset on Edge Impulse, the dataset is selected. The process 
of selecting and sorting datasets is done using the Audacity application. The 
selection process carried out is cutting and eliminating datasets that have noise or 
a lot of idle time. The process of removing the noise and silent parts is done so that 
the model does not study this noise/silent part as a cough dataset. The process of 
selecting and cutting the noise/silent part of the coughing sound can be seen in 
Figures 8 and 9. 

 

 

Figure 8. Cough audio sample before cutting the noise/silent part 
 

 
Figure 9. Cough audio sample after cutting the noise/silent part 
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The dataset collected in this study must have a frequency of 16000 Hz so that 

the data matches the required frequency on the Arduino Nano 33 BLE Sense. The 
process of collecting datasets on Edge Impulse is done using a file uploader. 
Labeling is adjusted to each file name according to the format. The number of 
datasets collected is 1877 seconds. The dataset that has been collected is then 
divided into two group: 

 
A. Training Dataset 
The total dataset for training collected was 1501 seconds (25 minutes 1 
second) consisting of: 

 
Table 1. Training Dataset 

Label Time (ms) 
Croup 342 
Dry 245 
Noise 323 
Wet 268 
Whooping 323 
Total 1501 

B. Testing Dataset  
The total dataset for testing collected was 375 seconds (6 minutes 15 
seconds) consisting of:  

 
Table 2. Testing Dataset 
Label Time (ms) 

Croup 66 
Dry 75 
Noise 72 
Wet 67 
Whooping 94 
Total 375 

 
Impulse Design 
Impulse design is done to take a collection of data and then divide it into 

smaller windows. Then use signal processing blocks to perform voice feature 
extraction and classify new data using learning blocks. Impulse design includes 4 
processes, namely: 

• Time Series Data, this block aims to set the duration of the window size, 
increase the window and add zero-pad data if needed. window size is used 
to determine the length of duration in one audio sample that will be 
processed to get a good accuracy value. The increase window is used to set 
the increase in the duration of the sample that will be used as the next 
sample. The next step is to add zero-pad data so that the data sample that 
is shorter than the window size can still be processed by adding a zero 
value to the data sample that is shorter than the window size so that the 
system gets better performance. 
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• Processing Block, the signal processing block to extract features from the 
audio signal used in this research is Mel Frequency Cepstral Coefficients 
(MFCC) with audio input. 

• Learning Block, the learning block used in this research is the Neural 
Network with the addition of the Keras library which learns patterns from 
data, and applies them to new data. 

• Output Features, based on the dataset that has been collected and labeled, 
this system has 5 outputs, namely croup, dry, noise, whooping and wet. 

 
MFCC Block Configuration 
In this section, the configuration of the MFCC block is performed, and shows a 

visualization of the MFCC audio output known as a spectrogram. The pattern seen 
in the spectrogram contains information about the type of sound it represents. 

The spectrogram generated by the MFCC block will then be forwarded to the 
Neural Network architecture which will recognize the pattern of each type of 
sound. Before being forwarded to the Neural Network to conduct dataset training, 
it is necessary to create MFCC blocks on all audio windows through the Generate 
Features. 

After doing Generate Features, the results of the 3D representation show the 
distribution of the sample dataset. In the previous impulse design, the number of 
window size and window increase settings have been made. 

Neural Network Configuration 
The network that will be trained in this study uses MFCC as input, then 

mapped into one of five types of classification croup, dry, whooping, wet and noise 
as the output form. 
 
Training Process 

 
The Neural Network training process in this study is a sequential model. In 

this training program, a learning rate of 0.005 is entered. In this study, the training 
process was carried out by choosing the epoch values of 100, 200, 300, 400 and 
500. The following are the results of the dataset training process in Table 3. 

 
Table 3. Training Result 

Epoch Accuracy (%) Loss 

Accuration per Classification (%) 

Croup Dry Noise Wet Whooping 

100 94.07.00 00.22 98.02 87.02.00 97.05.00 89.02.00 92.01.00 

200 95.05.00 00.27 100.00 87.02.00 99.02.00 89.02.00 90.05.00 

300 96 00.18 100.00 87.02.00 100.00 83.08.00 95.02.00 

400 96 00.18 100.00 87.02.00 100.00 83.08.00 95.02.00 

500 97.01.00 00.16 100.00 91.05.00 100.00 89.02.00 95.02.00 

 
Based on Table 3 which contains the training results, the epoch 500 value gives the 
best accuracy value compared to the use of epoch 100, 200, 300 and 400. In 
addition, epoch 500 also gives the lowest loss value. 
 
Software Testing  
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Testing on Model  
The results of the training process that has been carried out show that the 

model works well on the training data. Using the testing dataset that has been 
prepared previously, the testing process is done to ensure that the model also 
achieve a good result on new data. In this study, the process was carried out by 
testing the model achieved at each of the epoch values namely 100, 200, 300, 400 
and 500. The testing process carried out on the different epoch values had 
different accuracy results. The following is Table 4 that contains the results of the 
model testing process. 

 
Table 4. Testing Result 

 
Epoch Accuracy 

(%) 
100 76.47 
200 77.12 
300 78.65 
400 78.65 
500 80.83 

 
 
Based on the test results using the epoch values of 100, 200, 300, 400 and 

500, the best model testing result is the use of the 500 epoch values. The following 
are the results of the testing model on the 500 epoch: 

 
Table 5. Testing Model 

 
 

No Sample Name Label Duration Accuracy 
Classification 

Result 

Croup 

01.00 croup.t1.wav croup 9s 100% 12 croup 

02.00 croup.t2.wav croup 8s 100% 11 croup 

03.00 croup.t3.wav croup 14s 100% 22 croup 

04.00 croup.t4.wav croup 16s 100% 26 croup 

05.00 croup.t5.wav croup 10s 26% 
5 noise, 4 croup, 

3 wet, 3 uncertain 

06.00 croup.t6.wav croup 10s 100% 14 croup 

Dry 

07.00 dry.t1.wav dry 4s 100% 2 dry 

08.00 dry.t2.wav dry 3s 100% 1 dry 

09.00 dry.t3.wav dry 4s 50% 
1 dry, 1 

whooping 
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10.00 dry.t4.wav dry 4s 100% 3 dry 

11.00 dry.t5.wav dry 5s 100% 5 dry 

12.00 dry.t6.wav dry 17s 72% 
21 dry, 7 wet, 1 

uncertain 

13.00 dry.t7.wav dry 9s 16% 

4 wet, 4 

uncertain, 2 dry, 

2 whooping 

14.00 dry.t8.wav dry 3s 0% 1 uncertain 

15.00 dry.t9.wav dry 5s 80% 4 dry, 1 wet 

16.00 dry.t10.wav dry 6s 100% 7 dry 

17.00 dry.t11.wav dry 18s 48% 
15 dry, 12 wet, 4 

uncertain 

18.00 dry.t12.wav dry 4s 0% 
2 wet, 1 

whooping 

Noise 

19.00 noise.t1.wav noise 22s 56% 
22 noise, 7 wet, 4 

dry, 4 uncertain 

20.00 noise.t2.wav noise 20s 100% 35 noise 

21.00 noise.t3.wav noise 27s 100% 49 noise 

22.00 noise.t4.wav noise 3s 100% 1 noise 

Wet 

23.00 wet.t1.wav wet 6s 66% 
4 wet, 2 

whooping 

24.00.00 wet.t2.wav wet 4s 100% 2 wet 

25.00.00 wet.t3.wav wet 4s 100% 2 wet 

26.00.00 wet.t4.wav wet 3s 100% 1 wet 

27.00.00 wet.t5.wav wet 4s 0% 3 whooping 

28.00.00 wet.t6.wav wet 5s 60% 3 wet, 2 uncertain 

29.00.00 wet.t7.wav wet 6s 100% 7 wet 

30.00.00 wet.t8.wav wet 4s 100% 3 wet 

31.00.00 wet.t9.wav wet 5s 100% 4 wet 

32.00.00 wet.t10.wav wet 4s 66% 
2 wet, 1 

whooping 

33.00.00 wet.t11.wav wet 5s 100% 4 wet 

34.00.00 wet.t12.wav wet 4s 100% 3 wet 

35.00.00 wet.t13.wav wet 5s 75% 
3 wet, 1 

whooping 

36.00.00 wet.t14.wav wet 4s 100% 2 wet 
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37.00.00 wet.t15.wav wet 4s 100% 2 wet 

Whooping 

38.00.00 whooping.t1.wav whooping 4s 100% 3 whooping 

39.00.00 whooping.t2.wav whooping 6s 100% 6 whooping 

40.00.00 whooping.t3.wav whooping 8s 100% 11 whooping 

41.00.00 whooping.t4.wav whooping 5s 100% 5 whooping 

42.00.00 whooping.t5.wav whooping 5s 100% 5 whooping 

43.00.00 whooping.t6.wav whooping 4s 100% 3 whooping 

44.00.00 whooping.t7.wav whooping 4s 100% 3 whooping 

45.00.00 whooping.t8.wav whooping 5s 25% 

1 croup, 1 dry, 1 

noise, 1 

whooping 

46.00.00 whooping.t9.wav whooping 5s 80% 
4 whooping, 1 

uncertain 

47.00.00 whooping.t10.wav whooping 5s 100% 5 whooping 

48.00.00 whooping.t11.wav whooping 5s 0% 4 wet, 1 uncertain 

49.00.00 whooping.t12.wav whooping 5s 60% 
3 whooping, 2 

uncertain 

50.00.00 whooping.t13.wav whooping 5s 100% 5 whooping 

51.00.00 whooping.t14.wav whooping 5s 100% 4 whooping 

52.00.00 whooping.t15.wav whooping 5s 100% 4 whooping 

53.00.00 whooping.t16.wav whooping 5s 100% 5 whooping 

54.00.00 whooping.t17.wav whooping 5s 100% 5 whooping 

 
 
The testing results presented in a confusion matrix as seen in Table 6 below.  

 
Table 6. Confusion Matrix 

  
  predicted labels 

    croup dry noise wet whooping uncertain 

actual 

values 

croup 89 0 5 3 0 3 

dry 0 61 0 26 4 10 

noise 2 4 107 7 0 4 
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wet 0 0 0 42 7 2 

whooping 1 1 1 4 72 4 

 
To evaluate the performance of the classifier, the following steps are used: 
True Positive (TP), subjects with class 'x' correctly classified the cough as 

class 'x'. 
False Positive (FP), the subject with the condition class '~x' but the classifier 

classifies the cough as class 'x'. 
True Negative (TN), subjects with class '~x' and classifier classified the cough 

as class '~x'. 
False Negative (FN), the subject with cough class 'x' and classifier classified 

the sound as class '~x'. 
Sensitivity, refers to the classifier's ability to correctly identify subjects with 

class 'x'. 
Sensitivity = TP /(TP + FN) 
Classification Accuracy of the Classifier, this is the ratio of the total number of 

correct assessments to the total number of assessments. 
Accuracy = (TN + TP)/(TN + TP + FN + FP) 
 

Table 7. Results of Data Performance Evaluation for Class Classification of 
Croup Cough 

Classification Result Value 
Total Amount of Data 459 
True Positive (TP) 89 
True Negative (TN) 356 
False Positive (FP) 3 
False Negative (FN) 11 
Sensitivity / Recall 89% 
Accuracy 97% 

 
Based on table 7. above, the results of the performance evaluation of the data 

used for the classification of croup cough class obtained an accuracy value of 97%. 
Classification is able to separate different data by correctly classifying subject data 
in the croup class. It can be seen from 100 cough validation data features, obtained 
True Positive (TP) as many as 89 data features. 

 
Table 8. Results of Data Performance Evaluation for Class Classification of 

Dry 
Classification Result Value 

Total Amount of Data 459 
True Positive (TP) 61 
True Negative (TN) 353 
False Positive (FP) 5 
False Negative (FN) 40 
Sensitivity / Recall 60% 
Accuracy 90% 
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Based on table 8. above, the results of the evaluation of the performance of 
the validation data used for the dry cough class classification obtained an accuracy 
value of 90%. Classification is able to separate different data by correctly 
classifying subject data in the dry class. It can be seen from 101 cough validation 
data features, obtained True Positive (TP) as many as 61 data features. 

Table 9. Results of Data Performance Evaluation for Class Classification of 
Noise Cough 

Classification Result Value 
Total Amount of Data 459 
True Positive (TP) 107 
True Negative (TN) 329 
False Positive (FP) 6 
False Negative (FN) 17 
Sensitivity / Recall 86% 
Accuracy 95% 

 
Based on table 9. above, the results of the evaluation of the performance of 

the validation data used for class classification of noise obtained an accuracy value 
of 95%. Classification is able to separate different data by correctly classifying the 
subject data in the noise class. Seen from 124 samples of noise class data, obtained 
True Positive (TP) as many as 107 data samples. 

 
Table 10. Results of Data Performance Evaluation for Class Classification of 

Wet Cough 
 

Classification Result Value 
Total Amount of Data 459 

True Positive (TP) 42 
True Negative (TN) 368 
False Positive (FP) 40 
False Negative (FN) 9 
Sensitivity / Recall 82% 

Accuracy 89% 

 
Based on table 10 above, the results of the evaluation of the performance of 

the data used for the classification of the wet class obtained an accuracy value of 
89%. Classification is able to separate different data by correctly classifying subject 
data in the wet class. It can be seen from 51 samples of wet class data, obtained 
True Positive (TP) as many as 42 data samples. 

 
Table 11. Results of Data Performance Evaluation for Class Classification of 

Whooping Cough 
 

Classification Result Value 
Total Amount of Data 459 
True Positive (TP) 72 
True Negative (TN) 365 
False Positive (FP) 11 
False Negative (FN) 11 
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Sensitivity / Recall 87% 
Accuracy 95% 

 
Based on table 11. above, the results of the evaluation of the performance of 

the validation data used for the classification of the whooping class obtained an 
accuracy value of 95%. Classification is able to separate different data by correctly 
classifying subject data in the whooping class. It can be seen from 83 samples of 
whooping class data, obtained True Positive (TP) as many as 72 data samples. 

 
Hardware Testing and Analysis 
Arduino Nano 33 BLE Sense Test and Analysis 
The Arduino Nano 33 BLE Sense test and analysis was carried out to find out 

how the performance and memory usage was when the program was run on the 
Arduino Nano 33 BLE Sense. 

the program uses 259624 bytes or 26% of the total maximum storage space 
of 983040. And global variables used are 50032 bytes or 19% of dynamic memory 
with a maximum number of 262144 bytes. This means that the program that is run 
on the Arduino Nano 33 BLE Sense can run well. 

 
Testing and Analysis of LED Components for classification with 

Confidence Rating > 0.70 
The testing of the cough classification indicator program aims to test the 

accuracy of the indicators in classifying the system according to predetermined 
conditions. In this test, LED is used as an indicator of cough classification. There 
are 4 LEDs that serve as indicators, namely, a red LED as an output for the 
classification of croup cough, a green LED as a dry cough classification output, a 
blue LED as a wet cough classification output (phlegm) and a yellow LED as a 
whooping cough classification output (whooping). 

 
Percentage of Success = Total Percentage of Success Trials 
Percentage of Success = 19/25 x 100% 
Percentage of Success = 76% 
 

Table 12. Cough Classification Indicator Test 
 

No Name 
Duration 

(Frequency) 

        

Notes R G B Y 

(Croup) (Dry) (Wet) (Whooping) 

1 Croup-1 45s (5x) 4x - - 1x Fit 

2 Croup-2 10s (2x) 2x - - - Fit 

3 Croup-3 92s (6x) 5x - - - Fit 

4 Croup-4 34s (6x) 6x - - - Fit 

5 Croup-5 25s (4x) 4x - - - Fit 

6 Dry-1 11s (3x) - 2x - - Fit 

7 Dry-2 6s (2x) - 1x - - Fit 

8 Dry-3 10s (3x) - 1x - 1x Not Fit 

9 Dry-4 9s (2x) - 1x - - Fit 

10 Dry-5 5s (1x) - 1x - - Fit 

11 Wet-1 8s (2x) - - 1x - Fit 

12 Wet-2 6s (2x) - - - 1x Not Fit 

13 Wet-3 5s (1x) - - - - Not Fit 

14 Wet-4 5s (1x) - - - - Not Fit 

https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1y810tw
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.4i7ojhp
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2xcytpi
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1ci93xb
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.3whwml4
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2bn6wsx
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.qsh70q
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.3as4poj
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1pxezwc
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.49x2ik5
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2p2csry
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.147n2zr
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.3o7alnk
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.23ckvvd
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15 Wet-5 6s (2x) - 1x 1x - Not Fit 

16 Whooping-1 26s (3x) 1x - - 2x Fit 

17 Whooping-2 21s (2x) - 1x - 1x Not Fit 

18 Whooping-3 22s (2x) - - - 1x Fit 

19 Whooping-4 54s (4x) - 1x - 2x Fit 

20 Whooping-5 72s (7x) - - - 6x Fit 

21 Noise-1 5s (1x) - - - - Fit 

22 Noise-2 5s (1x) - - - - Fit 

23 Noise-3 5s (1x) - - - - Fit 

24 Noise-4 5s (1x) - - - - Fit 

25 Noise-5 5s (1x) - - - - Fit 

 
Based on Table 12 above, it can be seen that from 25 experiments conducted 

with 5 classes of croup cough sounds, 5 classes of dry cough sounds, 5 types of wet 
cough sound classes, 5 classes of whooping cough sounds and 5 classes of noise 
sounds with different amounts of sound duration. The difference and frequency of 
episodes of different coughs according to the table above resulted in a percentage 
of successful cough classification of 76%. 

 
Overall System Testing and Analysis 
Overall system testing is carried out to determine the ability of the system 

that has been built in solving the given problem, namely determining the type of 
cough sound based on voice feature extraction and indicating it via LED according 
to each type of cough. 

Testing this system is done by looking at how the system gives an indication 
of the sound given. The results of system testing can be seen in Table 13 below. 
Overall system testing result in the table shows there are 5 incorrect classification 
results and 20 correct classification results according to the actual label using 
epoch 500. The percentage of the system's success in indicating the type of 
coughing sound is: 

Percentage of Success = Number of System Success Number of Trials 
Percentage of Success = (20/25) x 100% 
Success Percentage = 80% 

Of the 25 data that have gone through the cough sound classification process 
in the system, the percentage of success is 80%. 
 

Table 13. Overall System Test 
 

No Class 
LED 

Serial Monitor Time(s) Notes 
R G B Y 

1 Croup 1 0 0 0 
croup: 0.97656 

3.476 Fit 
class : croup 

2 Croup 1 0 0 0 
croup : 0.78516 

3.476 Fit 
class : croup 

3 Croup 1 0 0 0 
croup: 0.86719 

3.476 Fit 
class : croup 

4 Croup 1 0 0 0 
croup:0.94922 

3.476 Fit 
class : croup 

5 Croup 1 0 0 0 
croup:0.98828 

3.477 Fit 
class : croup 

6 Dry 0 1 0 0 
dry:0.96484 

3.476 Fit 
class : dry 

7 Dry 0 0 0 0 uncertain 3.476 Not Fit 

8 Dry 0 1 0 0 
dry:0.79297 

3.476 Fit 
class : dry 

https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.ihv636
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.32hioqz
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1hmsyys
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.41mghml
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2grqrue
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.vx1227
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.3fwokq0
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.1v1yuxt
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.4f1mdlm
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.2u6wntf
https://docs.google.com/document/d/1lxUFmY5rxn0ds0630dY-n5HXBtarjDow/edit#bookmark=id.19c6y18
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9 Dry 0 1 0 0 
dry: 0.76562 

3.476 Fit 
class : dry 

10 Dry 0 1 0 0 
dry:0.75000 

3.476 Fit 
class : dry 

11 Wet 0 0 1 0 
wet: 0.81641 

3.476 Fit 
class : wet 

12 Wet 0 0 0 1 
whooping: 0.98828 

3.476 Not Fit 
class : whooping 

13 Wet 0 0 0 0 class : uncertain 3.476 Not Fit 

14 Wet 0 1 0 0 
dry: 0.78906 

3.477 Not Fit 
class : dry 

15 Wet 0 0 1 0 
wet: 0.75000 

3.476 Fit 
class : wet 

16 Whooping 0 0 0 1 
whooping: 0.86719 

3.476 Fit 
class : whooping 

17 Whooping 0 0 0 1 
whooping: 0.76562 

3.477 Fit 
class : whooping 

18 Whooping 0 0 0 1 
whooping: 0.89844 

3.476 Fit 
class : whooping 

19 Whooping 0 0 0 1 
whooping: 0.80078 

3.476 Fit 
class : whooping 

20 Whooping 0 0 0 1 
whooping: 0.99609 

3.476 Fit 
class : whooping 

21 Noise 0 0 0 0 
noise: 0.72656 

3.476 Fit 
wet: class : noise 

22 Noise 0 0 0 0 
noise: 0.99609 

3.476 Fit 
class : noise 

23 Noise 0 0 0 0 
noise: 0.98438 

3.477 Fit 
class : noise 

24 Noise 0 0 0 0 
noise: 0.99609 

3.476 Fit 
class : noise 

25 Noise 0 0 0 0 
noise: 0.81250 

3.476 Fit 
class : noise 
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E. Conclusion 
Based on testing and analysis of the whole system on a portable system for 

classifying cough types based on voice feature extraction using tiny machine 
learning, the conclusions are as follows: 

The training process on the classification of the Neural Network algorithm 
using epoch 500 can increase the accuracy value to produce an accuracy 
percentage of 97.1% and a loss of 0.16. 

The testing process on the Neural Network algorithm classification carried 
out on Model Testing using epoch 500 produces an accuracy percentage of 80.83%. 

The system testing environment affects the classification accuracy value on 
the system when in a noisy environment, the sensor will detect every incoming 
sound and affect sensor readings. 

The use of a window size of 3000 ms has described a more realistic feature 
space for concept learning. Spatial distance is quite compatible with conceptual 
distance. However it is not possible to define a perfect characteristic function 
based on this feature due to imperfect separation, but this realistic feature space 
can be used to study useful approximations for characteristic functions with small 
errors. 

The use of zero-pad data helps data samples that are shorter than the 
window size can still be processed by adding a zero value to data samples that are 
shorter than the window size so that the system gets better performance. 
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